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ABSTRACT 

 

This thesis is concerned with the application of model updating techniques to structures 
whose dynamic performance is affected by static loading.  The influence of structural 
loading is identified as important in dynamical terms.  As a result, experimentally 
determined dynamic data should not necessarily be regarded as being uniquely 
representative of a structure.  This observation has particular significance to the 
likelihood of success of model updating.  Indeed the major source of error in dynamic 
finite element modelling may well be the omission of static loads.  There are strong 
repercussions for schemes which use dynamic data for damage detection. 

The methods for including load-effects in dynamic finite element models are outlined. 
A “static updating” technique which takes into account nonlinear geometry effects is 
demonstrated by means of experimental case studies.  This technique is shown to 
produce finite element models of structures which match measured dynamic data. 

Two new types of updating parameters are introduced in this thesis which allow the 
effects of loading to be accounted for in a finite element model.  The parameters are 
shown to be suitable for implementation in the popular sensitivity based approach to 
updating.  The first parameter accounts for the effects of stress stiffening in struts or 
beams and the second allows rigid body rotation of these types of elements.  The 
changes made to beam type elements, while physically realistic, are shown not to be 
members of the generic beam element family. 

The stress stiffening parameter is shown to allow loading in structural frames to be 
identified from dynamic data even with no a priori knowledge of load state.  The rigid 
body rotation term is shown in the case of a 2D beam to allow identification of 
deformation given limited initial knowledge of the deflected shape.  An extension of the 
latter technique is developed which allows the magnitude of pre-defined deflection 
shapes or “profiles” to be updated. 

An experimental case study is presented in which success is achieved in updating a 
finite element model of the structure to account for load effects.  Axial loads identified 
in a frame are shown to compare satisfyingly with static measurements of loading.  The 
convergence is found to be reliable and robust, even when including other updating 
parameters. 

A strategy for model updating is proposed which includes the effects of static loading.  
The approach should be adopted whenever static loading is suspected of influencing 
dynamic behaviour. 
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NOMENCLATURE 

 

Wherever possible notation has been defined in the text of the thesis.  The following 

definitions are provided since they are used frequently but are not intended to be an 

exhaustive list of all notation used. 

 

Abbreviations 

FE Finite Element 

FEM Finite Element Model 

MAC Modal Assurance Criterion 

CMP Correlated Mode Pair 

COMAC Co-ordinate Modal Assurance Criterion 

FRAC Frequency Response Assurance Criterion 

Symbols 

 magnitude 

2
 p2  (Euclidean) norm 

∞
 p∞  norm 

frob
 frobenius norm 

 matrix 

{ } vector 

{ }*  transposed complex conjugate 

[ ]T  transpose of matrix 

+  pseudo-inverse of a matrix 

{ }FE  Finite element vector 
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{ }exp  Experimental vector 

[ ]A  Analytical structural matrix 

[ ]U  Updated structural matrix 

[ ]e  Elemental structural matrix 

Roman Letters 

i,j,k indices 

x,y,z co-ordinates 

u,v,w displacements 

p updating parameter 

modesn  Number of modes 

freqn  Number of frequency points 

dofsn  Number of degrees of freedom 

pn  Number of updating parameters 

en  Number of elements 

R  Residual 

Greek Letters 

α  receptance matrix 

[ ]Ψ  arbitrarily scaled mode shape matrix 

[ ]Φ  mass-normalised mode shape matrix 

{ }φ  mass normalised mode shape vector 

ω  frequency in rads s-1 

f  frequency in Hz 

η dimensionless distance along beam 
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CHAPTER 1 

INTRODUCTION 

"...the formulation of the mathematical model is the most critical step in any dynamic 
analysis, because the validity of the calculated results depends directly on how well the 

mathematical description can represent the behaviour of the real physical system" 
Clough R. W., Penzien J.  Dynamics of Structures [1] 

1.1 Prologue 

Computer models of structures provide the engineer with an extremely powerful tool for 

understanding their behaviour.  A great deal of information about structural 

performance can potentially be obtained from simulations without the expense of 

undertaking structural testing of prototype structures.  Unlike practical experimental 

testing, the number of scenarios which can be examined are almost boundless; it 

becomes possible to load a structure up to - and beyond - failure as often and in as many 

ways as the engineer desires! 

The particular ability to model dynamic structural behaviour allows structures to be 

designed in the most cost effective and safe manner.  This mitigates against the adverse 

effects of excessive vibration.  There is, of course, an economic case for producing ever 

lighter, cheaper structures.  However, this must not be achieved at the expense of safety, 

reliability and durability, each of which is strongly influenced by structural dynamic 

behaviour. 

Computer-models can be built with some confidence from knowledge of the structure's 

geometry and material properties.  This confidence in the quality of the model can be 

enhanced if the computer model can in some way be compared with experimental 

measurements from a prototype structure.  A mismatch between experimental and 

analytical measurements motivates a process whereby the analytical model is altered to 

provide a closer agreement with experimental readings.  The hope and expectation is 

that the altered model provides an improved representation of the prototype structure. 
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The ability to alter an a priori analytical model of a structure from test data further 

opens the possibility that the finite element model can be treated as a store of 

knowledge.  This “encyclopaedia” of the structure’s condition allows the computer 

model to be re-adjusted to account for time varying changes to structural response.  In 

terms of structural monitoring, dynamic measurements can be thought of essentially as a 

signature of a structure.  Thus, changes to this signature represent change to the 

structure itself. 

1.2 Structural Modelling 

A closed form differential equation approach to modelling the behaviour of structures is 

possible only in the simplest cases, such as beams and plates.  In the late fifties an 

approximate approach involving discretisation of structures into a potentially large 

number of sub elements, whose behaviour is known, came to prominence.  The so 

called finite element (FE) method allows the stiffness and mass distribution of a 

structure to be described in matrix terms with rows and columns representing the active 

degrees of freedom. 

A finite element model of a structure can be used for calculating response to both static 

and dynamic loading.  Many of the choices have to be made by an experienced 

engineer.  Estimates of material properties will often be textbook values and geometric 

properties may be based upon the initial design rather than the measured configuration.  

The finite element model and associated predictions of static and dynamic behaviour of 

any structure is not unique.  Indeed the well known DYNAS survey [2] and a more 

recent survey by Lloyd's Register [3] show large variations in prediction of dynamic 

structural behaviour by a number of finite element models of the same structure by 

different practitioners.  Several important factors can be identified as being responsible 

for poor prediction of dynamic response.  These principally include: 

• mis-estimation of structural material properties; 

• inaccurate modelling of structural geometry; 
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• poor choice of element type and quantity required; and 

• difficulty in modelling complex structural components, the most common 

and widespread being the pitfalls which attend the modelling of structural 

joints. 

Further errors in dynamic prediction of finite element models can arise due to model 

reduction.  This is undertaken for FE models with very large numbers of degrees of 

freedom to reduce the size of the eigenvalue problem. 

1.3 Dynamic Measurements 

Vibration is a characteristic common to all engineering structures, from the smallest 

electrical components to the largest bridges and dams. The effect of vibration upon 

structural performance can be instrumental in causing fatigue, discomfort or ultimately 

structural failure. 

The dynamic characteristics of a structure - even measured at few points spatially on a 

structure - offer a great deal of information about the structural form.  Consequently, the 

use of dynamic data for characterising structural behaviour has long been popular.  The 

well known example of striking solid train wheels and assessing their integrity based on 

the audible response of the wheel is a good example. 

The field of modal analysis is concerned with characterising the dynamic behaviour of 

structures from experimental data.  The methodology for dynamically testing structures 

and identifying modal behaviour is set out clearly in [4].  Dynamic test data are most 

commonly described in terms of a modal model consisting of resonant frequencies and 

mode-shapes.  A process of modal identification is required to process raw measured 

data into this format.  Corresponding predictions of dynamic behaviour can be 

determined from a finite element model using eigenvalue extractions techniques. 

Comparison of experimental and FE data in the modal domain is used extensively in 

this thesis. 
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1.4 Correction of FE Model Using Dynamic Data 

Every attempt should be made to use realistic, or better still, measured parameters in the 

process of building the finite element model as section 1.2 has indicated.  However, 

there is still likely to be some error in the finite element model. 

The comparison of predicted structural dynamic behaviour with experimentally 

measured data allows a great deal of insight into the likely sources of error in the finite 

element model.  This has been motivated by the requirement to improve the finite 

element model of a structure.  A large number of techniques have been developed 

whereby analytical FE models of structures are altered such that their dynamic 

characteristics become a closer match of experimentally determined behaviour. 

Today, the “correction” of finite element models in this way is extremely widespread 

especially when the main purpose of the finite element model is to understand dynamic 

rather than static behaviour.  A range of techniques exist for altering finite element 

models.  At the most simple, it is very common to make a small number of changes to 

the overall properties of a finite element model in a number of iterations.  This type of 

process involves a large amount of intervention from an engineer to assess the level of 

improvement in the dynamic predictions of the FE model.  The engineer also has to 

ensure that changes made to the finite element model are realistic.  While a perfectly 

acceptable approach, this manual technique is labour intensive and relies on the 

intuition of the engineer to identify possible sources of error in the finite element model.  

Finite element model updating is an alternative to these manual techniques.  The 

methods allow changes to be made in an automatic sense.  Several different approaches 

to model updating have been developed.  Methods regarded as being of most use 

involve an optimisation scheme whereby a number of structural parameters (updating 

parameters) are altered to minimise an objective function.  Limitations upon the amount 

of information available from experimentation curtail the number of updatable 

parameters.  Factors upon elemental mass and stiffness are undoubtedly the most 

popular updating parameters.  The procedure is iterative with changes made to the finite 
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element model at each step.  The objective function is a formulation of the differences 

in dynamic behaviour between the experimental data and the finite element model.  This 

is recalculated at each stage of the iteration.  While continuing to be an active area of 

research, efforts to achieve robust model updating have achieved little success. 

One important aspect of finite element model updating is that there exists much 

confidence in the experimental dynamic data and less in the finite element model itself.  

The concentration upon the finite element model as being in error stems partly from the 

fact that finite element modelling and modal analysis are often treated as separate 

disciplines.  It is common for the two areas to be conducted by different departments in 

research and development organisations.  An awakened interest in the possibility that 

any single set of dynamic data is not uniquely representative of the structure offers new 

challenges to model updating.  This thesis takes up the mantle by considering how finite 

element model updating can be adapted to account for time varying (transient) changes 

in dynamic behaviour. 

1.5 Variations in Dynamic Readings 

Given the inevitable uncertainty in the veracity of the initial finite element model, the 

motivation for using experimental data to improve upon initial assumptions is clear.  

The experimental dynamic data are thus treated as being uniquely representative of the 

structure.  Additionally, the collection of large numbers of sets of experimental data or 

the construction of a number of prototypes is an expensive undertaking.  It is not 

surprising then that the potential variance in dynamic measurements either from: 

(a) a single structure under a variety of conditions; or 

(b) nominally identical structures; 

have been given comparatively little attention.  Fregolent et al. [5] specifically consider 

case (b).  They provide a case study of using an FE model to characterise the behaviour 
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of a family of structures with nominally identical properties.  Several papers by 

Imregun, for instance [6] and [7] consider a similar problem. 

The experimental work presented by Fregolent et al., as is common practice, seeks to 

test the experimental structure in very carefully controlled laboratory conditions.  The 

purpose is to produce noise-free and consistent results.  Generally, structures are tested 

in isolation from the surroundings.  The quest for less obtrusive supporting conditions is 

an active research area; Carne and Dohrmann [8] for instance investigate the effect of 

supporting conditions in some detail. 

The result of testing structures in free-free conditions is twofold.  A good consistency of 

results can certainly be achieved.  However, the results only represent the test structure 

under the specific conditions which exist at the time of testing. 

In both the laboratory regime, and especially in more practical situations, the variation 

of dynamic data from the same structure - case (a) above - is increasingly being 

recognised as an important factor which must be considered.  For instance, recent work 

by Woon and Mitchell [9] found that ambient laboratory temperature was responsible 

for subtly altering material properties and thus changing the dynamic behaviour of a 

simple plate specimen.  At the other extreme engineers attempting to characterise the 

dynamic behaviour of large civil engineering structures such as bridges, buildings and 

dams frequently report differing dynamic behaviour being identified from the same 

structure at different times.  Alampalli [10] for instance, presents widely variable 

baseline results from tests on a highway bridge under different conditions.  The 

variation in measurements is attributed to the in-service environment, signal processing 

factors and variation amongst operators.  The dynamic measurement of the bridge was 

motivated by the hope that changes to the vibration signature would enable areas of 

damage or deterioration to be located.  Most disturbingly, it is reported that the 

variations in baseline modal data can be greater than the changes resulting from 

damage. 
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If the application of model updating strategies outside of the laboratory is to become 

practicable, a clear requirement exists for a unique baseline measurement of the 

dynamic behaviour to be available or for the factors which alter the dynamic behaviour 

to be accounted for in finite element models. 

1.6 Load Dependence of Dynamic Behaviour 

Amongst the plethora of factors which effect dynamic behaviour, the effect of load 

upon structures stands out as being an important factor requiring closer consideration. 

Structures by their very nature are called upon to carry loading.  Table 1.1 for instance, 

sets out a selection of possible structural loading scenarios.  The effect of loading is 

well known to cause changes to dynamic behaviour.  The influence of axial load on a 

column’s transverse vibration as well as the change in pitch of stringed instruments with 

wire tension are both good examples.   

 

Load Cause Examples 

Thermal Space structures, bridges, aircraft, 
aeroengines 

Static steady state All civil/mechanical structures External  

Pseudo static Aircraft manoeuvres, helicopter rotor 
blades 

Manufacturing induced 
stress 

machined component (grinding, 
milling, welding), composite 

materials (rates of cure), residual 
stress 

Lack of fit Machined components with poorly 
defined tolerances 

Internal  

Work hardening Ageing aircraft 

Table 1.1  - Sources of Static Stress in Structures 

The specific effect of loading upon dynamic behaviour when comparing with finite 

element models appears to have been overlooked for several reasons.  In laboratory 

conditions, every attempt is made to isolate a test structure from its surroundings, which 

results in no load being transmitted.  For in-situ testing, there is a generally low 
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expectation of accurate results leading to a culture where the reasons for discrepancies 

between expected and measured dynamic data are not specifically investigated. 

1.7 Combined Static and Dynamic Load Identification 

The consideration of the interaction between static and dynamic loading is particularly 

opportune since developments in sensor technology are fuelling interest in monitoring 

of both static and dynamic behaviour of in-situ structures.  The ability to monitor 

structures in this way is principally bought about by improvements in strain gauge 

technology. 

The use of piezoelectric transducers to measure strain to very high resolution is 

described in [11].  Such gauges have recently become available commercially, the 

performance of one such product is described in [12] where resolution of signals of an 

astonishing three orders of magnitude better than the common resistive type of gauges 

are quoted.  While this type of gauge is currently very expensive it is clear that the 

future offers the possibility that strain will not continue to be the poor relation of 

translational quantities in terms of measurement fidelity. 

The use of optical fibres for structural monitoring offers the opportunity to monitor 

structural behaviour at large numbers of locations about the structure, over a long period 

of time and at relatively modest cost.  The specific use of this equipment to measure 

strain has received attention recently.  A so-called Bragg grating system, for instance, 

involves treatment of short sections of a fibre optic cable which when bonded to a 

structure allows strain at that point to be determined remotely from processing of 

emitted and reflected light signals.  Such a system comprising 64 strain gauge channels 

is described in [13].  The optical fibre in this case is mounted on the soffit of a bridge 

and allows the response of the bridge to be sampled at frequencies of up to 360Hz.  This 
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implies a useful range of up to 180Hz1 although in this case resolution at a range of up 

to 45Hz was used. 

A clear research opportunity exists to consider the interaction of the static and dynamic 

components of strain on structures so that the static effects can be accounted for during 

dynamic updating of finite element models.  This area is investigated in this thesis. 

1.8 Scope of Thesis 

This thesis seeks to extend the possibility of using model updating techniques to 

structures whose dynamic behaviour is affected by the transient effects described in the 

preceding sections.  Specifically the influence of structural loading is identified as a 

source of variability of dynamic behaviour.  As well as demonstrating the effect of 

loading upon dynamic response, several methods of including this effect in finite 

element models are explored to help to improve the chances of successfully identifying 

permanent errors in the model. 

The background to finite element model updating and in particular the evolution in 

choice of updating parameters is presented in chapter 2.  A simple case study using 

measured experimental data is presented which allows some of the shortcomings of 

model updating to be demonstrated. 

Chapter 3 introduces the changes to finite element modes which arise from static 

loading using a nonlinear geometric approach.  The potential effects on dynamic 

readings due to static effects are also outlined. 

The methods introduced in chapter 3 are implemented in chapter 4 with respect to 

measured static experimental data.  The results are compared with experimental data.  

Loading is measured accurately but indirectly using strain gauges allowing the issue of 

                                                 
1 This is the Nyquist frequency.  For this particular structure, the 0-180Hz range allows a great deal of the 
dynamic behaviour to be spanned.  The sampling rate of strain data using this particular technique is a 
function of the number of gauging positions along each optical fibre. 
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load identification to be addressed practically.  Additionally, the difficulty in identifying 

a set of unique modal data corresponding to zero loading is addressed. 

Chapter 5 introduces a novel approach which allows load dependent structural 

properties to be updated from dynamic measurements.  The methods are validated using 

a number of simulated experimental case studies. 

A comprehensive experimental case study is presented in chapter 6 in which 

experimentally measured dynamic data is used to update a finite element model.  A 

methodology is proposed for dynamic model updating in the presence of static 

structural loads.  In addition, the author proposes a method for identifying static loads 

from dynamic data.  The results are discussed in detail and directions for future research 

indicated. 

1.9 Notes on Thesis 

Nearly all of the finite element work described in this thesis was performed in 

MATLAB [14] using the finite element toolbox CALFEM [15] developed as a teaching 

tool at Lund University, Sweden.  The basic package - developed for educational 

purposes - was augmented substantially by the author to include 3D stress stiffening 

effects and nonlinear geometry capabilities.  Additional FE modelling work and 

validation of the MATLAB code was performed using ANSYS version 5.4 [16] 

Throughout this thesis two example structures are introduced and revisited several 

times.  While any particular experimental arrangement cannot be expected to be 

representative of all structures, the two experiments were designed to allow many 

aspects of the effect of loading on structures to be examined.  Both arrangements are the 

subjects of extensive analysis which in turn is compared with a large volume of 

experimental work. 

For reasons of brevity and simplicity, the numerical examples and experiments 

presented in this thesis relate to the study of frameworks made up of beam type 
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elements.  They are undoubtedly the most popular element type and particularly 

important in modelling of civil engineering structures.  Where appropriate the 

application of the methods to other element types is described. 

The first stage in the validation of new updating methods is generally carried out by 

simulating experimental data, with the use of experimentally measured data something 

of a rarity.  Both methods are used in this thesis with the distinction being made as clear 

as possible.  Simulated experimental data are referred to by enclosing the word 

experimental in quotation marks.  Whenever measured data is referred to, in all cases it 

derives from experimental modal analysis. 

The standard notation for modal testing and analysis set out in [17] is used wherever 

possible throughout this thesis. 
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CHAPTER 2 

FINITE ELEMENT MODEL UPDATING USING EXPERIMENTAL DATA 

2.1 Introduction 

As the previous chapter has outlined, the goal of finite element model updating is to use 

experimental data to improve the accuracy and hence quality of an analytical finite 

element model of a structure.  Much work has been expended in the last twenty years in 

developing and improving methods to help to meet this target.  While a vast amount of 

literature related to the mathematical treatment of the model updating problem exists, 

evidence of the use of updating techniques being applied to measured data to solve 

practical problems is - by contrast - scant. 

The purpose of this chapter is to introduce some of the concepts which will be used later 

in the thesis as well as reviewing the state of the art in related fields.  The following 

sections present a brief introduction to the finite element method and to modal testing.  

Developments in finite element model updating are then considered with particular 

reference to the evolution of parameters amenable to updating.  A review of literature 

related to the use of measured experimental data to update finite element models is also 

presented. 

The chapter is concluded by means of a simple case study which allows some of the 

topics related to conditioning of updating problems, choice of parameters and validity 

of the solution to be examined with reference to experimentally determined data. 

2.2 The Finite Element Method 

The development of the finite element method has its roots in the aircraft industry in the 

1950s where the problem of analysing complex aeroplane structures stretched the 
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available analytical methods of the day.  Courant [18] is generally credited with 

proposing a method which was destined to be highly suited for implementation on 

digital computers.  Papers by Turner et al. [19] and Argyris and Kelsey [20] laid the 

foundations for the finite element method as it is used today.  The term finite element 

was first used by Clough et al. in 1960 [21].  The use of finite element methods has 

burgeoned in the intervening period.  Huge rises in the size and complexity of structural 

problems amenable to FE modelling as well as an increase in the variety of elements 

available to the engineer have been observed.  Today a vast amount of literature is 

devoted to the subject; Zienkiewicz [22] and Bathe [23] for example provide a 

comprehensive coverage of the field. 

The finite element method has been adopted by a number of areas of engineering such 

as heat transfer and magnetic field analysis.  In this thesis, the original application of 

structural engineering is considered.  In this domain, the technique broadly consists of 

discretising a structure into a number of small substructures.  This allows the 

displacement or stress in these elements to be approximated, the latter being the most 

common approach.  These elements must then be assembled in such a way that stresses 

are continuous across element interfaces and the internal stresses are in equilibrium both 

with each other and with the applied loads.  The finite element method can thus be 

thought of as a two stage process, the first being the construction of finite elements and 

the second their assembly into structural matrices. 

Many aspects of the finite element method can be best described by means of example.  

To this end the construction of 2D beam stiffness and mass elements are described in 

sections 2.2.2 and 2.2.4.  The 2D beam element and its 3D counterpart are employed 

extensively in this thesis; however the method by which the elements are generated can 

be applied to a wide range of different element types.  The following sections briefly 

outline other relevant aspects of the finite element method in particular the issue of 

transformation of finite element co-ordinates which forms the basis of a deformation 

updating technique presented in chapter 5. 
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2.2.1 Matrix Structural Analysis 

The most common problem arising in structural analysis is to determine the deflection 

arising from a set of static loads.  If the loads at a number of points about a structure - or 

degrees of freedom - are defined by a vector { }F  and the displacements at the 

corresponding points are similarly defined { }x , a matrix stiffness [ ]K  is required to 

relate the load and displacement. 

{ } [ ]{ }xKF =  (2.1) 

Of most interest to dynamicists is a similar formulation which includes inertia and 

damping terms 

[ ]{ } [ ]{ } [ ]{ } { }FxKxCxM =++ &&& , (2.2) 

where [M] is the mass matrix describing the distribution of mass about the structural 

degrees of freedom and { }x&  and { }x&&  are the first and second derivatives of the 

displacement with respect to time.  Note that the force applied to the system is now a 

function of time.  While mass and stiffness of a structure are measured and relatively 

easily derived, the mechanism whereby energy is lost through damping is less easily 

modelled.  The viscous damping model represented by matrix [ ]C  in equation (2.2) is 

commonly but by no means exclusively used2, being proportional to velocity.  

Structural damping is an important area of structural dynamics which has deservedly 

received much attention.  Of most importance is that damping dominates the amplitude 

of vibration around resonance [4].  Since this thesis is more concerned with modal 

placement than amplitude dependency the consideration of identification of damping 

parameters will not be discussed in any great detail herein. 

                                                 
2 Hysteretic (or structural) damping is also commonly used, being represented by the matrix [ ]H  in the 

equation [ ]{ } [ ]{ } [ ]{ } { }FxKxiHxM =++&& . 
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The undamped equation of motion from (2.2) is 

[ ]{ } [ ]{ } { }FxKxM =+&& . (2.3) 

For free (unforced) vibrations the following relationship is obeyed 

[ ]{ } [ ]{ } 0=+ xKxM && , (2.4) 

the solution to which can be written in the form 

{ } ti
j

jeΨx ω=}{ , (2.5) 

where the jω  are the resonant frequencies.  Substituting back into (2.4) leads to the 

well known eigenvalue problem 

[ ]{ } [ ]{ } jjj ΨMΨK λ= , (2.6) 

where 

2
jj ωλ = , (2.7) 

and { } jΨ  can be thought of the mode shapes corresponding to the system natural 

frequencies { } jω . 

While the eigenvalues have an exact relationship with the resonant frequencies, the 

eigenvectors are arbitrarily scaled; it is common practice to define a uniquely scaled set 

of eigenvectors such that 

[ ] [ ][ ] [ ]IΦMΦ T = . (2.8) 

This results in 

[ ] [ ][ ] )(λdiagΦKΦ T = , (2.9) 

where [ ]Φ  is the matrix of mass normalised eigenvectors. 
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2.2.2 The Two Dimensional Beam 

Elemental stiffness matrices are most commonly created using assumed displacement 

fields, the method for which is given in appendix A.  The derivation presented therein is 

general and can be applied to any element type and proposed displacement field.  The 

construction of the elemental stiffness matrices of a 2D beam is described in this section 

using the techniques and notation set out in appendix A. 

Consider first the axial loading of such a beam, shown in figure 2.1.  From equation 

(A.13) in appendix A, the displacement of a general point in the bar is related to the end 

displacements of the bar by the shape function. 

{ } [ ] { }ee ∆Nu = . (2.10) 

For the axial displacement of the beam, the shape function is trivial and can be inserted 

directly into (2.10) leading to 

{ }
⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡ −

=
2

1

∆x
∆x

L
x

L
xLu . (2.11) 

From equation (A.15) the strain displacement matrix - [ ]B  - is defined as 

[ ] [ ] [ ]NB T∂= , (2.12) 

thus for the 2D beam 

[ ] ⎥⎦
⎤

⎢⎣
⎡−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎥⎦
⎤

⎢⎣
⎡ −

∂
∂

=
LLL

x
L

xL
x

B 11 . (2.13) 

The elemental stiffness matrix from (A.17) is 

[ ] [ ] [ ][ ]( ) ⎥
⎦

⎤
⎢
⎣

⎡
−

−
=⎥⎦

⎤
⎢⎣
⎡−

⎭
⎬
⎫

⎩
⎨
⎧−

== ∫∫ 11
1111

1
1

0 L
AEAdx

LL
E

L
L

dVBEBK
L

V

T
e , (2.14) 

which is intuitively correct and could have been ascertained directly.  However, it is the 

exception rather than the rule that elemental matrices can be constructed “by 

observation”. 
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The lateral displacement of a beam undergoing shearing and rotational loading (shown 

in figure 2.2) can be shown from elementary theory to be of cubic order and hence the 

generalised expression for lateral displacement can be expressed as 

[ ]
⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

∆
∆
∆
∆

=

2

2

1

1

4321

θ
y
θ
y

NNNNu . (2.15) 

A set of cubic functions [24] is required to express the shape functions iN  

3

3

2

2

1
231
L
x

L
xN +−= , (2.16)  

2

32

2
2

L
x

L
xxN +−= , (2.17) 

3

3

2

2

3
23
L
x

L
xN −= , (2.18) 

and 

2

32

4 L
x

L
xN += . (2.19) 

It is important to note that these expressions are assumed and are not necessarily exact 

or unique.  Thus while leading to a viable finite element, the result will be one of an 

infinite number of similarly viable but subtly different elements, this non-uniqueness is 

exploited by so-called generic element updating parameters described in section 2.3.3 

and subsequently in section 5.4. 

The strain displacement matrix is therefore 

[ ] [ ] [ ] ⎥⎦
⎤

⎢⎣
⎡ +−−+−+−=∂= 232232

6212664126
L
x

LL
x

LL
x

LL
x

L
NB T  (2.20) 

and the form of (A.17) which is applicable to beam elements [24] is 

[ ] [ ] [ ]( )dVBEIBK
V

T
e ∫= . (2.21) 
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Combining (2.20) and (2.21) and multiplying out gives 

[ ]

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−−−

−
−

=

4626
612612
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612612

22

22

LL
LLLL

LL
LLLL

L
EIK e . (2.22) 

Combining (2.14) and (2.22) to find the elemental stiffness for a full 2D beam element 

which can resist shear and moment as well as axial load gives 

[ ]
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460260

61206120
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260460
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0000

22

2323

22

2323

. (2.23) 

This is the well known and very widely used Euler-Bernoulli formulation for a two 

dimensional cubic beam element. 

2.2.3 Stress and Strain 

Stress and strain are calculated by most finite element software as a function of nodal 

displacements.  From equation (A.20) in appendix A, we recall that the general strain 

{ }ε  is related to the nodal displacements { }∆  for a particular element by its strain 

displacement matrix [ ]B  

{ } [ ]{ }∆= Bε . (2.24) 

The relationship between stress and strain for zero initial stress is given by (A.10) as 

{ } [ ]{ }εσ E=  (2.25) 
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and so from (2.24) and (2.25) 

{ } [ ][ ]{ }∆= BEσ . (2.26) 

Required stresses are calculated element by element.  Each point within the element will 

have a number of components of stress3 associated with it and thus some user input is 

required to specify which stress is required.  Stress can be defined in either local or 

global co-ordinates depending on the element type.  For instance, the stress caused by 

beam flexure is given in the element’s local co-ordinates since this type of stress is, by 

definition, in the direction of the beam’s axis. 

Returning to the example of the 2D beam, the standard equation for flexural stress is 

given by 

I
My

flexural =σ , (2.27) 

where y  is the distance from the beam’s neutral axis and I  is the second moment of 

area of the section.  Recalling that the product of the strain displacement matrix and the 

elemental nodal displacements gives the curvature, then the following relationship can 

be written 

[ ]{ }∆== BEI
dx

vdEIM 2

2

. (2.28) 

From (2.27) and (2.28) it can be seen that 

[ ]{ }yBEflexural ∆=σ . (2.29) 

This formulation for stress is used to estimate the stress on the outer surface of a beam 

element and will be used as a comparative measure with the experimental observations 

in chapter 4. 

                                                 
3 Three for a 2D element and 6 for a 3D element. 
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2.2.4 Construction of Mass Matrices 

Using finite elements for dynamic analysis requires consideration of inertial forces 

which arise from mass undergoing acceleration.  Traditionally mass was considered as 

discrete particles distributed about a structure, resulting in lumped mass matrices an 

approach which results in a non-continuous inertia distribution.  A consistent 

formulation of the mass matrix [25] can be shown  to be 

[ ] [ ] [ ]∫=
V

T
e dVNNρM  (2.30) 

where ρ is the material density and other symbols are defined in appendix A. 

Substituting the shape functions for the 2D beam (2.11) and (2.16)-(2.19) into (2.30) 

and integrating over the volume leads to the elemental mass matrix 

[ ]

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−

−
−

=

22

22

42203130
22156013540

001400070
31304220
13540221560
007000140

420

LLLL
LL

LLLL
LL

ALM e
ρ  (2.31) 

2.2.5 Co-ordinate Transformation 

The formulation of the elemental matrices described above has - for convenience and 

generality - been relative to a set of axes local to the element itself.  To convert 

elemental stiffness matrices from the local set of co-ordinates ),,( zyx  within which 

they were formulated into the global co-ordinates ),,( zyx  of the structure of which 

they must form a part a transformation is required.  This is given by 
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. (2.32) 
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Figure 2.3 shows the local and global axes of a three dimensional bar or beam type of 

element. 

Forces in elemental co-ordinates can similarly be transformed: 

[ ] [ ][ ]FTF T
=  (2.33) 

Equating work done in the local co-ordinates with that done in global co-ordinates, it 

can be shown that 

[ ] [ ] [ ] [ ] [ ] [ ] [ ][ ]∆=∆=∆ TTFFF TTTT . (2.34) 

The transformation matrix, T, can then be seen to be orthogonal, i.e. 

[ ] [ ] [ ]ITT T =  (2.35) 

Considering work done once more and now including the local elemental stiffness 

[ ] [ ][ ] 1∆ −
= FK  and global elemental stiffness [ ]K  

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ][ ]ee
TT

eee
T
eee

T
e TKTKK ∆∆∆∆∆∆ == , (2.36) 

therefore 

[ ] [ ] [ ] [ ]TKTK e
T

e = . (2.37) 

It can be shown [26] that the elements of [ ]T  are the trigonometric identities for 

direction cosines.  Thus for the two dimensional beam example, the transformation [ ]T  

is given by 

[ ] ⎥
⎦

⎤
⎢
⎣

⎡
Λ

Λ
=

0
0

2DbeamT , (2.38) 

where 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=Λ

100
0
0

yyyx

xyxx

nn
nn
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the terms of which are the elemental direction cosines such that 

L
xx

nn yyxx
12 −

== , (2.40) 

and 

L
yynn yxxy

12 −
=−= . (2.41) 

If the angle between the local x-axis and global x-axis is θ  then the transformation 

matrix becomes  
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The transformation matrix for a three dimensional beam is found in a similar manner to 

be given by 
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with the direction cosines having the same definition as in the two dimensional beam 

case. 



Chapter 2 – Finite Element Model Updating Using Experimental Data 23 

 

2.2.6 Construction of Global Matrices 

Once transformed into global axes, elemental structural matrices can be constructed into 

global structural matrices where each row and column in the global matrices represents 

a degree of freedom of the modelled structure.  For connectivity of elements some 

overlap of elemental matrices will occur in the global matrices.  For more 

comprehensive details the reader is referred to an elementary text on finite element 

implementation such as [22] or [23]. 

The most recent model updating technologies display a trend towards altering 

parameters at an elemental level.  Therefore, it is important to consider the model in 

terms of elemental matrices and their connectivities since the latter are lost once the 

transformation into global matrices has been performed.  The storage space and 

processing time involved in storing the structural matrices is insignificant compared 

with the matrix inversions and eigen-solutions which are commonly performed a 

number of times during updating. 

2.2.7 Finite Element Modelling for Model Updating 

The philosophy of model updating is to improve finite element models of structures.  

However, the functionality of the finite element method itself is largely overlooked in 

the literature.  Therefore, the procedural aspects of the finite element method have been 

dwelt upon in the previous sections. 

With ever increasing computer power and the cost of storing data dropping the size of 

finite element models are increasing.  It is not uncommon for a finite element model to 

contain several hundred thousand degrees of freedom.  Most of the credible examples of 

model updating however (section 2.6), consist of making changes to relatively simple 

FE models whose construction is trivial and does not require the power of a commercial 

FE package. 
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Updating of real-life finite element models which might well consist of tens of 

thousands of degrees of freedom requires that only a limited amount of structural 

information can be stored and processed at once. 

As later sections will demonstrate, the only involvement of the commercial FE package 

in the model updating process is to generate the initial structural matrices.  It is the 

opinion of the author that future model updating techniques should enjoy a more 

intimate relationship with the finite element method.  To this end, the use of finite 

element methods to identify loading on structures and to determine accurate deflected 

shapes of real structures as part of a model updating strategy are investigated in the 

forthcoming chapters. 

2.3 Model Updating Technologies 

The following sections outline and explore some of the main issues relating to the 

current state of the art.  They are concerned with the application of updating procedures 

to practical situations with particular reference to choice of updating parameters.  It is 

not the intention to give a comprehensive review of the field.  For this the reader is 

directed to review papers such as those by Natke [27], Visser and Imregun [28] and 

Mottershead and Friswell [29] as well as a book by Friswell and Mottershead [30].  

These give more comprehensive coverage of the very large amount of literature related 

to model updating. 

2.3.1 Direct Methods 

The earliest methods which fall under the model updating heading are known as direct 

methods.  The first advocates of these were Berman and Nagy [31] and Baruch [32].  

These methods consist of updating a set of structural matrices by making change to any 

of the terms in a single step.  The result is that while the updated finite element model 

will exactly reproduce the experimental results, there is no guarantee that the model will 

correctly predict the structural response in other loading or testing configurations.  This 
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is inevitable since the changes have not been made with reference to the physical 

relevance of the structural matrices. 

Levin et al. [33] have recently examined in some detail the effect of making ad hoc 

changes to a set of structural matrices.  They conclude that the inclusion of such terms 

is likely to result in the representation of a structure containing grounded springs which 

can have a profound and unrealistic effect on dynamic response. 

Direct methods have been largely superseded by sensitivity and other forms of 

optimisation methods.  The resulting updated models are constrained to be physically 

realisable and are outlined in the following sections. 

2.3.2 Sensitivity Methods 

Another generation of methods requires the determination of the sensitivity of a set of 

updating parameters to differences in dynamic behaviour between analytical and 

experimental dynamic data.  The techniques yield an expression of the form 

[ ]{ } { }obspS ∆=∆ . (2.45) 

where { }p∆  are a set of alterations to a set of updating parameters upon which the 

structural matrices are dependent, { }obs∆  are a set of differences in dynamic behaviour 

between an analytical model and experimental observations and [ ]ijS  is the sensitivity 

of observation i  to change in updating parameter j . 

The form of [ ]S  depends on the choice of updating parameter (section 2.3.3).  Apart 

from certain exceptional cases, the changes in parameter value have nonlinear 

relationships with the changes in observed dynamic behaviour.  In such cases a first 

order approximation of [ ]S  is used and the best choice of { }p∆  to match the { }obs∆  are 

found iteratively. 

These methods can be subdivided into techniques which use modal data and those 

which use frequency response functions as the system descriptor.  The methods both 

continue to enjoy popularity and are examined practically in section 2.7.  Furthermore 
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the ability of the eigenvalue sensitivity method of model updating to account for the 

effect of load on structures is described in chapters 5 and 6. 

2.3.2.1 Methods using Eigenvalues and Eigenvectors 

The comparison of observed resonant frequencies and - to a lesser extent - mode shapes 

with their analytical counterparts pre-dates model updating as the most obvious and 

direct method of comparing analytical predictions of dynamic behaviour with 

experimental observations.  Indeed, manual methods of altering aspects of the analytical 

model to bring predictions of resonant frequencies into agreement with observed values 

was and is standard practice.  It is logical then that early methods of updating should 

seek to find the sensitivity of system eigenvalues to changes in certain structural 

parameters. 

The rate of change of eigenvalues with respect to structural parameters, jp , can be 

derived as follows [34].  Considering iλ  and { }iφ  which are the solutions to the 

equation (2.6) derived in section 2.2.1. 

[ ] [ ]( ){ } { }0=− ii MλK φ , (2.46) 

where the eigenvectors are mass-normalised such that 
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φφ . (2.47) 

If either or both of the structural matrices is a function of a parameter jp , 

differentiating (2.46) with respect to jp  gives 
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Pre-multiplying by { }T
iφ  makes the right hand side of (2.48) vanish due by an 

orthogonality argument.  Re-arranging leads to 
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which is the rate of change of the thi  system eigenvector to the thj  updating parameter.  

This relationship is used extensively in chapters 5 and 6 of this thesis. 

Methods have also been developed which also employ discrepancies in eigenvectors.  

This is partly to address the problem that only a relatively small number of resonant 

frequencies are available for updating.  The use of eigenvectors to update structures 

suffers from their being relatively insensitive to structural modifications as well as the 

level of uncertainty in their value when determined experimentally. 

2.3.2.2 Methods Using Frequency Response Data 

To address the issue of lack of information provided by the potentially small number of 

resonant frequencies in a measured frequency range, researchers have turned to using 

the response data directly.  This has the additional benefit that there is no requirement 

for time consuming and potentially inaccurate modal identification to be performed.  A 

further feature of the method is that some residual information from frequencies outside 

the measured range is implicit within the experimental data. 

The development of the so-called response function method of model updating is 

generally attributed to Lin and Ewins [35] with a significant later contribution from 

Fritzen [36].  The method employs the sensitivity of structural parameters to differences 

in experimental measurements and analytical predictions of frequency response 

functions.  The sensitivity matrix relates the structural updating parameters to the 

changes in receptance by 

{ } ( ){ }ωαω ∆=pS )]([ , (2.50) 

where the change in receptance term on the right hand side is defined as 

{ } { } { }expFE )()()( ωαωαωα −=∆ . (2.51) 

The sensitivity of the receptance at the thi  degree of freedom to the thj  updating 

parameter jp  at a given frequency point can be shown [37] to be 
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An appropriate choice of updating parameter leads to an iterative solution to find the set 

of values which minimise the difference between experimental and FE predictions of 

receptance at given frequency points. 

A number of sensitivity matrices at as many frequency points as one wishes to compare 

between experimental and analytical models can be constructed and stacked as 
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to produce freqsdof nn ×  equations in pn  unknowns where dofn , freqsn  and pn  are 

respectively the number of degrees of freedom at which responses are available, the 

number of frequency points and the number of (unknown)  parameter values. 

At first glance, the generally greatly overdetermined system of equations given by 

(2.53) allows a large number of parameters to be updated with some confidence.  In 

practice there is a large amount of inter-dependence of the rows of the sensitivity 

matrix.  A number of techniques exist for selecting the most useful frequency points for 

instance [38].  It is the opinion of the author however, that the extra information yielded 

from considering differences in response is not significantly greater than that from 

changes in eigenvalues. 

2.3.3 Selection of Updating Parameters 

The issue of choice of updating parameter is crucial in the development of finite 

element model updating.  The brief history of the subject is punctuated by the 

introduction of different updating parameter schemes.  It is a general topic which 

applies to whatever choice of comparison between experimental and analytical data is 

made.  Chapter 5 of this thesis investigates new types of updating parameter.  It is 
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important to understand the motivation and requirements which determine the choice of 

these parameters. 

Considering a Taylor expansion about the original structural matrices in terms of a set 

of updating parameters, the thj  of which is defined as jp .  A first order approximation 

for the updated systems matrices is found to be 
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∂
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where the summation sign represents matrix building4.  If the first order derivative of 

the structural matrices with respect to the chosen updating parameters can be found then 

an approximation to the changes required to the structural matrices can be derived.  A 

best solution for jp  can be established by a process of optimisation of a generally over-

determined yet ill-conditioned problem (commonly by using singular value 

decomposition described in section 2.4). 

A particular case which has commonly been applied in model updating is to define the 

updating parameters as factors of individual or groups of elemental stiffness or mass 

matrices.  The updated structural matrices are given by 
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and 

[ ] [ ] [ ]∑
=
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U MpMM
1

, (2.57) 

where [ ]
jeK  and [ ]

jeM  are, respectively, the thj  elemental stiffness and mass matrices. 

                                                 
4 This equation is strictly true for elemental matrices having the same dimensions as the global value. 
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It is common for the updating parameters to be chosen to factor a group of elements – or 

super-element.  This is because the number of individual elements in an FE model may 

be very large and the amount of data available to inform the choice of updating 

parameters relatively small. 

Mottershead et al. [39] have considered a different approach whereby geometric 

properties of elements are updated principally to enable identification of joint 

behaviour.  Joints are known to be a likely source of error in the FE model.  Specialised 

finite elements have been developed in which the elemental formulation is recast in 

terms of a structural parameter change.  This is likely to account for differences 

between experimental and analytical models.  For instance the flexural and shear 

stiffness of a 2D beam (equation (2.22)) is modified to include a flexible length l  and a 

rigid part a  and is given by [40] as  
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with the corresponding mass matrix given by 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−−+++

−+

=

24
22156

3131354444156
135422156156

420
][

222

lsym
l

lallalala
lla

ALM e
ρ . (2.59) 

The offset parameter - a - therefore becomes the updating parameter.  It is noted that 

while varying the value of a apparently has little effect on the stiffness matrix, the 

flexibility (to which the lower modes of vibration are most sensitive) is changed 

significantly by perturbations of the offset parameter. 

A similar method involving the development of specialised finite elements to update a 

particular model of a rubber seal is described by Ahmadian et al [41].  A finite element 

model of the rubber component is built from first principles.  Its dependence upon a 

number of user-defined parameters (in this case two) can then be updated. 
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A more general approach for parameter selection, also motivated by the perceived 

requirement to update structural joints, has been suggested by Gladwell and Ahmadian 

[42].  They consider families of elemental stiffness and mass matrices that are 

physically realisable and which will alter the overall dynamic characteristics of a 

structure of which they are a part.  Thus the generic element is any element of a family 

which has certain properties in common with an initial elemental matrix.  This approach 

allows a great deal of scope in the changes one can make to elements while ensuring 

that the element remains physically realisable.  It is therefore very attractive.  A 

comparison of generic updating parameters with load-dependent updating parameters is 

undertaken in chapter 5 (section 5.4). 

While the generic element method appears to be deservedly gaining in popularity, many 

practitioners continue to factor elemental stiffness and mass matrices as described by 

equations (2.56) and (2.57).  Given that information available to inform the updating 

process is scarce, the choice of suitable and sensible parameters for model updating is 

of paramount importance. 

2.4 The use of Singular Value Decomposition in Model Updating 

Singular value decomposition (SVD) is a very powerful tool in the consideration of the 

equations which arise in the formulation of model updating problems.  In the following 

sections the use of SVD for optimising over and under determined multiple parameter 

problems is considered.  In addition the method is applied to estimate the conditioning 

of sensitivity equations. 

The method is described in [43] and its use in optimisation in dynamical systems is 

comprehensively set out by Maia [44].  The singular value decomposition comprises 

recasting a matrix into the product of two orthogonal matrices [U] and [V] as well as a 

set of singular values [ ]Σ  thus: 

[ ] { } { } { }[ ] [ ] { } { } { }[ ] [ ][ ][ ]TT

nnnnnnnnnn VUvvvuuuA
ccccrrrrcr

Σ=Σ=
×××× ...... 2121  (2.60) 
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The columns of [ ]U  and [ ]V  are respectively said to be the left and right singular 

vectors of [ ]A . 

The matrix [ ]Σ  consists of a set of ( )cr nn ,min  singular values ...,, 21 σσ arranged in 

descending order along the leading diagonal, 
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It is very common for updating procedures - and certainly those employed in the later 

stages of this thesis - to require the solution of an equation of the form 

[ ]{ } { }bxA =  (2.62) 

where { }b  is a set of measured values and [ ]A  is a set of sensitivities of the measured 

values { }b  to changes in a set of parameters { }x .  If the rank of [ ]A  is greater than the 

number of elements in { }x  the problem is overdetermined.  Since in the case of updating 

problems, both [ ]A  and { }b  contain experimental data or derivatives of it, an exact 

solution to { }x  is unlikely to be obtainable.  In such cases other criteria must be used to 

select a set of values of { }x .  While a set of equations for determination of updating 

parameters can appear over-determined, the sets of equations are likely to be nearly 

linearly dependent on one another.  In other words the whole problem is ill-conditioned.  

The SVD allows a quick insight into the rank of an updating problem.  It can be shown 

[43] to be r  where 

0...... 121 ≥≥≥≥≥≥ +rr σσσσ  (2.63) 

and 

εσ <+1r  (2.64) 

where ε  is a small threshold value below which sets of equations can be thought of as 

not contributing usefully to the overall solution.  A comparison of the ratio of the thk  
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singular value to the first in practical terms gives an indication of the practical rank of 

the problem. 

Turning to the solution of (2.62) the clearest choice is to minimise the value of the 

residual, R , defined as 

{ } [ ]{ }
µ

xAbR −=  (2.65) 

where the parameter µ  indicates that several different residuals can be defined based 

upon type of norm.  Most commonly the two norm or the so called Frobenius norm are 

employed. 

Golub and Van Loan [43] show that for any problem of the type, including the 

underdetermined case, there exists exactly one { }x  which minimises the sum of the 

squares of the residuals, 
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the least squares estimate of { }x  is given by 
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resulting in 
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The vector [ ]{ }LSxA  can be thought of as a predictor of { }b  and is the orthogonal 

projection of { }b  onto the range of [ ]A . 

The pseudo inverse matrix [ ]+A  where 

{ } [ ] { }bAx LS
+=  (2.70) 
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can be found to be 

[ ] [ ][ ] [ ]TUVA ++ Σ=  (2.71) 

where 
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The pseudo inverse of [ ]A  is the unique Frobenius norm of the residual 
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Furthermore, if the rank of [ ] rnA =  then 

[ ] [ ]( ) [ ]TT AAAA
1−+ = , (2.74) 

clearly for the particular case cr nn =  

[ ] [ ] 1−+ = AA . (2.75) 

2.5 Issues Related to Using Experimental Data 

The details of experimental dynamic testing of structures and the subsequent 

identification of a dynamic model of a test structure will not be covered in detail here.  

A comprehensive coverage of the area can be found in [4].  The extent to which a single 

set of identified data can be thought of as uniquely defining a structure is currently an 

area of active research.  The variance of predictions of dynamic data from nominally 

similar5 structures falls within this definition.  The effects of essentially transient 

changes to a structure’s dynamic behaviour resulting from loading - which is the 

principal topic of this thesis - being an important example. 

                                                 
5 The expression nominally similar is used a number of times throughout this thesis and refers to the fact 
that a single FE model will be used to represent a single structure under any conditions as well as any 
identically manufactured structure. 
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The effect of “noise” on experimental data along with the other well known difficulties 

such as lack of frequency bandwidth and limitations on the number of measurement 

locations is blamed extensively for any lack of success in using measured data to update 

finite element models.  The term can be used as something of a catch-all into which any 

number of unidentified factors whose effect is to hinder successful model updating 

using experimental data can be thrown.  Different predictions of dynamic behaviour can 

occur from the same structure at different times or from nominally identical structures.  

However, the factors which cause this variation have only recently received some 

attention and are discussed below. 

Cafeo et al. [45] set out to consider the variability of test measurements in a methodical 

manner, their motivation being the reduction of tests required while maintaining 

confidence in the results.  They observe that the variability in modal test data results 

from either inconsistencies in the modal/test analysis procedure or in the structure that 

is being tested.  The former is investigated with reference to a set of 9 tests on 7 

vehicles.  Specifically the test/analysis procedure is subdivided into the following: 

(a) Linearity Considerations; 

(b) Shaker Attachment Method; 

(c) Measurement System; 

(d) Accelerometer Placement; and 

(e) Signal Processing Considerations. 

The study of these individual components of a dynamic test provides the basis for a 

thorough investigation in to the causes for test-to-test error.  While they are not studied 

in any great detail, the dynamic behaviours of the seven nominally identical vehicle 

specimens are seen to vary quite considerably.  Further investigation of the test-to-test 

variability problem [46] leads to some very useful guidelines on methods to avoid 

variability of measurements resulting from inconsistencies in the measuring and 

analysis of structures. 
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Balmès [47] considers the problem of a single FRF model being required to represent a 

real structure.  He notes that the behaviour of a single structure can be altered by time 

varying factors such as ageing, temperature effects, loading conditions.  Also, he states 

that variation amongst a population of nominally identical structures can occur due to 

manufacturing tolerances, residual stresses and welding point positions.  The results of 

the “GARTEUR” round-robin exercise whereby a number of laboratories tested a single 

structure each with their own testing equipment are examined.  The relative simplicity 

of the model and the availability of free-free testing in laboratory conditions led to the 

observation that differences in dynamic readings arose from slight differences in test 

equipment and procedures. 

De Clerck [48] notes the difficulty of comparing multiple sets of nominally similar data 

and describes a method which statistically compares a number of sample modal 

analyses.  A relatively simple formulation involving the term by term comparison of the 
thi  sample eigenvector { }iφ  with the average of the population is given by 

{ } { }∑
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=
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i
nii nEAV
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A more sophisticated method involves the singular value decomposition (SVD) which is 

covered more fully in section (2.4) below.  The SVD of the set of eigenvalues is taken 
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and the average of the n eigenvectors in this way is given by 

{ } { }
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with the maximum normalised singular vector,  

2
11

n
S  (2.79) 

shown to give a measure of the consistency between a set of measured modal data.  The 

remaining singular values are found to represent the spatial variance of the set of 

eigenvectors. 
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This approach allows the variation of mode shapes with respect to variability of 

components of the model to be considered.  The usefulness of these methods was 

proved with a simple FE model whose characteristics could be changed and dynamic 

response re-calculated many times and there appears to be a clear requirement to test the 

effectiveness of the method in a real-life situation. 

Ziaei-Rad and Imregun [6] appear to be amongst the first to consider the specific area of 

understanding what level of noise in the experimental data can still allow a finite 

element model to be successfully updated.  They describe the problem in terms of the 

range of error arising from the measurement of a single specimen.  They acknowledge 

that the method is equally valid in considering the variability in dynamic behaviour 

between nominally identical structures.  The method considers the response function 

method of section 2.3.2.2 with a noise model of the form 

[ ] [ ] [ ]( ) [ ]εα +∆+= −1
FEFEexp ZZ , (2.80) 

where the dynamic stiffness matrix [ ]Z  is given by 

[ ] [ ] [ ]( )MKZ 2ω−=  (2.81) 

and the subscripts FE  and exp  denote analytical (FE) prediction and experimental 

measurement respectively.  An upper bound upon the error matrix is found to be given 

by 

[ ] [ ] [ ] 2
FEFEFE ZZZ ∆+∆<<ε , (2.82) 

where [ ]ε  in this case denotes the Frobenius norm of the error matrix.  This expression 

indicates that the level of noise in the experimental data (or discrepancy between test to 

test measurements) which can be tolerated by the response function updating technique 

is a function of the type of mathematical model employed. 

The common choice of updating factors of elemental mass and stiffness matrices 

(equations (2.56) and (2.57)) lead to a formulation of the sensitivity equation (2.45) 

which includes terms from the error matrix 
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[ ] [ ]( ){ } [ ] [ ]εε αα ∆+∆=′+ pSS , (2.83) 

where { }p′  are noise affected p-values.  The solution is found by finding the pseudo 

inverse (described in section 2.4 and denoted ‘+’) of the sensitivity matrix 

{ } [ ] [ ]( ) [ ] [ ]εε αα ∆+∆+=′ +SSp . (2.84) 

Ziaei-Rad and Imregun show that for the case of the norm of the sensitivity error matrix 

being much smaller than that of the sensitivity matrix itself then a solution is possible.  

For the converse case they show that the extent of the noise leads to equation (2.84) 

becoming increasingly ill-conditioned.  This method allows a statistical consideration of 

the variability in experimental data to be used to assess the likelihood of success in 

performing model updating. 

2.6 Updating Applied to Real Structures 

Despite the large amount of literature published on the subject of finite element model 

updating, there is a relatively small amount of information describing the experiences of 

applying such techniques to measured data.  Instead many of the methods devised have 

been demonstrated and validated using only simulated experimental data - that is to say 

that the data originate from an analytical model rather than from a real structure.  The 

use of simulated data offers the analyst the chance to assess in a systematic and rigorous 

way the effects of various perceived aspects of experimental data.  Many of the 

limitations which apply to experimental data can be accounted for and investigated in 

simulations.  These include: 

• truncation of experimental data in the frequency range; and 

• limitation on the number of measurement points upon a structure. 

Other factors however can be less well understood by means of the use of simulated 

case studies - for instance: 
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• interaction between the test structure and excitation and measurement 

equipment; and 

• noise resulting from the experimental process. 

The importance of these factors is well known as is their detrimental effect upon the 

success of any model updating strategy. 

A number of authors have described experiences in applying automatic model updating 

techniques in practical situations; a review of the literature follows.  Much literature 

uses the word updating to describe processes which amount to little more than manual 

alterations to structural matrices.  The following examples differ in that the updating is 

automatic in that structural parameters are altered in a number of steps according to pre-

determined set of rules. 

Hoff and Natke [49] appear to be amongst the first to apply model updating techniques 

to practically measured experimental data in 1988.  A radar tower was modelled using 

3D beam elements and a lumped parameter model of the foundation behaviour resulting 

in some 52 degrees of freedom.  Unsurprisingly, calculations showed that eigenvalues 

and eigenvectors were most sensitive to the stiffness in the region of the tower’s 

foundation.  These were used as updating parameters and converged updated values for 

these parameters were obtained from eight identified resonant frequencies. 

Imregun et al. [50] considered a box like structure in 1993.  The response function 

method (RFM) was used to update the finite element model of a sheet metal box 

comprising 716 active degrees of freedom.  Some of the material properties of the finite 

element model were altered manually at the correlation stage.  A limited number of 

responses (one direction only) were used to update the properties of two of the sides of 

the box but with limited success despite the choice of multiple sets of frequency points.  

The authors concluded that the scale of the discrepancy between measured and 

predicted FRFs was beyond that which could reasonably be reconciled. 
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At around the same time, Lammens et al. [51] considered the use of measured 

experimental data for model updating.  They took the cautious approach of using very 

simple models - namely a PVC plate and a small frame structure.  A method employing 

the difference between pairs of frequency response functions was used to update a small 

number of elementary updating parameters.  The influence of frequency point selection 

was considered practically as well as the use of including damping in the analytical 

model.  While finding that updating using real experimental data is possible - at least at 

a very simple level - they arrive at a number of interesting conclusions.  Firstly that the 

choice of frequency points is important in influencing the likelihood of a successful 

update.  Secondly it was observed that the amount of information available from the 

structure limits the number of updating parameters which can be updated.  They also 

found that zero damping in the analytical model produces more robust convergence than 

attempting to include damping parameters in the updating process. 

Imregun et al. [7] investigated both the response function method and the eigen-

sensitivity methods of model updating using experimental data from five nominally 

identical L-shaped plates with spot welded connections.  A significant observation from 

this work is that the five specimens exhibited remarkably different dynamic behaviour.  

The assumption that the global correction matrices can be found by multiplying 

individual element matrices by scaling factors (equation (2.56) and (2.57)) is used.  

Updating is performed using both the response function method (section 2.3.2.2) and an 

eigen-sensitivity method (2.3.2.1).  The eigen-sensitivity method was found to fare 

better when augmented in a two stage approach with certain constraints.  While the 

method based on response function also produced satisfactory results, the choice of 

frequency points was found to have a strong influence on the likelihood of success.  The 

choice of FRF estimator led to the response being ill-defined around resonance and 

therefore not contributing to a well conditioned problem. 

A further set of experiments was presented by Imregun et al. [52] with two nominally 

identical structures built to compare with a simple FE model.  The correlation between 
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one of the sets of data and the finite element model was found to be very poor and 

hence was not used in the subsequent model updating procedures – a worrying 

observation.  Updating was performed using the response function method with 

converged results only occurring after rejecting noisy experimental FRFs and rejecting 

the use of damping parameters.  It was noted that a number of sets of p-values led to 

converged solutions clearly demonstrating that the solution is non-unique.  The 

computational effort is investigated and shown to require the least square inversion of a 
matrix of size ( ) pfdof nnn ××  and the inversion of a matrix of size dofdof nn ×  fn  times 

where dofn  equals the number of degrees of freedom, fn  the number of frequency 

points considered and pn  is the number of p-values.  It is noted that this amount of 

heavy computation is practical only for very small models. 

The application of model updating techniques has not been confined to small structures 

tested under laboratory conditions.  Imregun and Agardh [53] considered responses 

measured from a three span road bridge.  Sixty five measurement positions were 

employed and 12 modes were extracted in the 0-40 Hz frequency range and compared 

with results on a 1050 degree of freedom finite element model with reasonably good 

correlation found between pairs of modes.  The noisy nature of the data led to the 

decision to use the eigen-sensitivity method to update elemental stiffness factors 

(equation (2.56)) with successfully converging solutions.  The conclusions are upbeat 

suggesting that the method could be used for damage detection.  The authors note that 

the use of dynamic data has become popular as a method for monitoring bridges and 

other large structures for signs of damage.  The finite element model of a structure can 

then be thought of as a repository of information regarding current levels of damage and 

deterioration which can be periodically updated using dynamic test data. 

Waters [54] concluded an in depth study of the FRF sensitivity method by using high 

quality experimental data from a plate wing model.  High order frequency responses 

were used and frequency points were selected to be away from resonance to avoid ill-

conditioning.  The plate was initially cantilevered but the clamping arrangement and the 
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bench upon which the specimen was mounted were found to influence the dynamic 

response so free-free testing was used instead.  The effect of interaction of the structure 

and the shaker and stinger was also found to significantly pollute the experimental data.  

The stiffnesses and masses of groups of elements as well as an element representing the 

mass of the force transducer were updated and convergence was achieved. 

Mottershead [55] summarised several case studies of application of updating of the 

geometric joint properties described in section 2.3.3 to practical situations.  The finite 

element of a welded joint was successfully updated by increasing the initial offset 

parameter by 3%.  In a variation upon this theme a specialised element for modelling 

the rubber interface between a car window and adjacent bodywork was developed and 

two of the elemental parameters adjusted to give the closest fit to a set of experimental 

data.  The veracity of the updated rubber seal model was tested by re-testing the seal 

with a metal sheet replacing the car window.  The closeness of the agreement gives 

much confidence in the accuracy of the updated model in a way that is not generally 

available. 

Mottershead and James [40] considered both joint geometry and generic elements to 

update a three storey aluminium space frame structure.  The sensitivities of resonant 

frequencies to three elemental eigenvalues were considered.  These contributions from 

these updating parameters, however, added exclusively positive values to the overall 

sensitivity matrix.  Since the experimental results did not lie exclusively above or below 

the finite element model prediction, no combination of the elemental eigenvalues could 

adjust the resonant frequency prediction of the finite element model.  To address this 

problem the mass of the structure adjacent to its joints was also considered although it is 

acknowledged that there was no reason to suppose that the mass was in any way mis-

modelled in the original model. 

More recently Imamovic [56] considered the practicality of updating FE models using 

measured experimental data in some detail.  He concluded that methods employing 

sensitivity of parameters to eigenvalues offer the best prospect of updating finite 
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element models of structures using measured experimental data.  Several practical case 

studies are considered.  Experimental data from a cantilever plate6 mounted in a large 

rubber block was obtained from several sources and the average experimental data were 

used and compared with a finite element model of the structure where the principal 

plate component was modelled using 60 plate elements.  For the first seven correlated 

modes, the initial finite element model produced resonant frequencies which were of 

greater magnitude than their experimentally observed counterparts by factors of 

between 7 and 27%.  Due to the limited availability of resonant frequencies observed, 

the stiffnesses of five plate elements closest to the grounded end of the cantilever were 

used as updating parameters with a converged solution arising.  Alterations to the 

stiffnesses of these elements of between –40% and +20% are required to bring the FE 

prediction into agreement with the observed data.  The author inferred that much of the 

discrepancy lay in the modelling of the joint between plate and foundation.  While this 

may be true it is also clear that resonances of the cantilever (as opposed to the low 

magnitude resonances resulting from the straining the rubber foundation) are most 

sensitive to the stiffnesses of this part of the structure.  They would thus be changed 

most readily by the updating method whether or not they actually contribute to the 

discrepancies between FE prediction and measured dynamic data. 

A further study involved a very large (92 000 DoF) model of an aeroplane engine 

casing.  Firstly a set of super-elements was chosen where elements were considered to 

share properties.  Multiple combinations of stiffness factors were considered with some 

300 of these producing converged solutions.  The best solution was chosen based on 

issues such as good modal assurance criterion (MAC) [57] values between correlated 

mode pairs (CMPs) and improvement in the agreement of modes not included in the 

updating process. 

                                                 
6 The test data derived from a simple structure designed and built by Lloyds Register and tested by three 
independent companies 
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These applications of model updating procedures to experimental data represent a 

useful attempt to apply immature technologies in the hostile environment in which they 

must eventually operate.  The mismatch between the amount of information from a 

modal test and the range of possible parameters in a finite element model still appears to 

be the largest obstacle.  Some converged solutions suggested in the literature appearing 

at best to be rather arbitrary.  It is the opinion of the author that the limited scope for 

change of finite element models common to all of the examples described above means 

that the wrong problem is being solved.  Specifically, the choice of updating parameter 

is crucial.  Specialised updating parameters which allow the scope to alter a finite 

element model to represent any possible structural configuration appear to present a 

route to successfully implementing model updating in practice.  This area of research is 

pursued in chapters 5 and 6 of this thesis.  In the mean time, a case study is presented 

which allows some of the issues raised in this section to be demonstrated. 

2.7 Case Study 

As an introduction to the consideration of using experimental data to update finite 

element models a simple case study is presented here.  This is included to highlight the 

more general features and drawbacks of model updating.  The test data derive from a 

real structure tested on several occasions.  The use of real experimental data allows 

some conclusions to be drawn about the requirement for repeatability of results. 

It is prudent that in considering the possibility of updating real structures one should 

start with a very simple structure allowing the areas of uncertainty to be isolated and 

studied in detail. 

The experimental specimen is a narrow mild steel plate of dimension 850 × 100 × 5mm.  

Further work on this structure is described in chapter 4; a full description of the 

experimental data collection techniques is deferred until that point.  The tests upon the 

narrow plate described in this section essentially validate the FE model. 
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Dynamic measurements were taken with the plate hanging in free-free conditions, the 

experimental arrangement is shown schematically in figure 2.4.  The response of the 

plate was measured along the centre line of the plate using a scanning Doppler Laser 

Velocimeter.  Excitation was applied at a point 250mm from one end.  Frequency 

response functions between the load point and up to 18 response points along the length 

of the plate were calculated. 

2.7.1 Identified Resonant Frequencies 

Dynamic measurements were conducted on three independent occasions.  The same 

equipment was used during each test but was disassembled in between sessions.  The 

tests will be referred to as A, B and C.  The three test programmes differed in several 

ways, a combination of point measurements7 and complete measurements were taken 

during the three sets of tests and during test B point FRFs were measured at different 

levels of forcing.  Tests A and B involved measurements in the 0-800 Hz frequency 

range while test C considered the range 0-400 Hz. 

Two different modal identification methods were used.  The global method outlined by 

Fillod et al. [58] was employed to analyse the full sets of 18 FRFs while a line fitting 

method [59] was used to identify frequencies from single point measurements.  In 

addition to using a large set of response measurements the global method also allows 

identification of multiple modes.  The line fit method by contrast might be used where a 

single response is available and modes are sufficiently spaced that interaction is 

minimal.  The global method would be expected to provide the better quality estimate of 

resonance frequencies since most information is used.  While these two modal 

identification methods are common and representative, they are both members of an 

increasingly large family of such methods.  For a comprehensive and recent review of 

the field one should turn to chapter 4 of [60]. 

                                                 
7 Measurement point and excitation point are coincident 
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Table 2.1 summarises the tests conducted as well as showing the results of modal 

analyses performed on data from the structure.  The two pairs of resonant frequency 

data gained using the global method were extracted from the same data but at different 

times. 

 

Test A Test B Test C 

18 FRFs 4 Point FRFs at Different Loading 18 FRFs 

0-800 Hz 0-800Hz 0-400Hz 
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37.73 36.83 37.18 37.68 36.54 36.97 35.25 36.84 36.92 36.91 

101.00 100.86 100.98 100.78 100.83 100.98 100.17 100.90 100.90 100.86 

197.73 197.69 197.78 197.70 197.76 197.86 197.86 198.10 197.88 197.86 

328.78 328.80 328.61 327.75 327.91 327.67 327.97 328.22 328.11 328.08 

492.20 492.23 492.25 491.46 491.56 491.82 491.54 - - - 

688.92 688.98 688.97 688.97 688.67 688.80 688.75 - - - 

Table 2.1 – Identified Resonant Frequencies 

The mean and standard deviation8 of the value estimated for each resonant frequency 

are shown in table 2.2.  The scarcity of data and the relative inter-dependence of 

readings9 relating to the circumstances of their collection makes it difficult to draw very 

firm conclusions regarding the variability of data.  It is however interesting to note that 

any one of the modal analyses would have allowed the modal analyst to be very 

confident that the correct readings for the plate had been attained. 
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, where Xi  is the i th  observation and nobs  is the 
number of observations. 
9 Each column for instance should be treated as independent of the other columns since the readings were 
taken and to a lesser extent the modal analyses were performed at the same time. 
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 Experimentally Identified Resonance Frequency (Hz) 

Mode 
Number Mean Min Max Standard 

Devation 

1 36.89 35.25 37.73 0.69 

2 100.83 100.17 101.00 0.24 

3 197.82 197.69 198.10 0.12 

4 328.19 327.67 328.80 0.41 

5 491.87 491.46 492.25 0.36 

6 688.87 688.67 688.98 0.12 

Table 2.2 – Comparison of Variation of Experimental Modal Analyses 

The data suggest that certain modes can be extracted with some more consistency than 

others, the standard deviation of the prediction of modes 3 and 6 is 20% of the standard 

deviation of the first mode.  This difference in consistency could result from a 

combination of a number of factors such as noise in certain parts of the frequency range, 

close modes, lower levels of response etc.  It is not intended to pursue the consideration 

of the reasons for inconsistency of extraction of modal parameters. 

2.7.2 Finite Element Modelling of Beam 

The behaviour of the narrow plate which has been discussed in the previous section is 

modelled as a set of two dimensional beam elements of the type described in sections 

2.2.2 and 2.2.4 to keep the problem at a relatively elementary level.  The principal 

parameters used in the finite element model are shown in table 2.3. 

 

Parameter Value Chosen 

Young's Modulus 2.11x1011 Nm-2
 

Density 7850 kgm-3 

Second Moment of Area (I) 1.04167x10-9 m4 

Table 2.3 - Material and Geometric Properties Chosen in Updating 
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The predictions of resonant frequencies yielded by this simple method are shown in 

table 2.4 along with the average experimental observations for comparison.  The plate 

was modelled with 17 two dimensional Euler-Bernoulli beam elements such that the 

node points matched the measurement points on the structure described above.  

Additionally the plate was modelled with twice as many beam elements and further with 

34 elements the results are shown in table 2.4 along with the closed form prediction 

[61].  The analytical readings, like the identified experimental readings, show some 

variety. 

 

 Experimentally Identified 
Resonance Frequencies (Hz) Analytical Natural Frequencies (Hz) 

Bending 
Mode Min Mean Max 

FE – 17 
Beam 

Elements 

FE – 34 
Beam 

Elements 

Closed 
Form 

1 35.25 36.89 37.73 36.82 36.60 34.00 

2 100.17 100.83 101.00 101.48 100.88 93.73 

3 197.69 197.82 198.10 198.99 197.79 183.75 

4 327.67 328.19 328.80 329.07 327.03 303.74 

5 491.46 491.87 492.25 491.86 488.65 453.73 

6 688.67 688.87 688.98 687.56 682.72 633.73 

Table 2.4 – FE Predictions of Resonant Bending Frequencies 

The coarsest discretisation using 17 elements each of length 50mm produces excellent 

agreement with the experimental data.  This would be regarded as a good starting point 

for model updating.  It is shown in section 2.2.2, however, that the finite element 

method using elements derived from the displacement method described in appendix A 

will always produce an overestimate of resonant frequencies.  This is acknowledged and 

in at least one case it has been studied [62].  However, the cause of mismatch between 

finite element prediction and experimental observation is rarely taken into account.  

This is because improving the finite element prediction dramatically increases the 

processing time required to extract the eigen-solution.  Some practitioners [63] employ 

a rule of thumb that the first third of the resonant frequencies produced by a finite 
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element model can be regarded as mesh convergant.  The similar FE model with double 

the number of elements gives a very slightly lower prediction of the resonant 

frequencies as one would expect.  However, one might argue that the elemental 

formulation is less valid when elemental length is less than width. 

2.7.3 Updating of Finite Element Model 

As the proceeding sections have described, there is some uncertainty about which 

experimental data should be used for updating.  Furthermore the choice of parameters to 

be updated is by no means simple.  In this case the test structure is sufficiently 

uncomplicated that any error in the finite element model is expected to lie in global 

properties such as mass and stiffness or in the added mass of the shaker and force 

transducer arrangement. 

To assess the effectiveness of updating using experimental data, the stiffness of the 

beam between 200 and 250mm from one end (element 5 of the 13 beam element model) 

was reduced by 23.1%.  This value of artificial error implies that a factor of exactly 1.3 

must be applied to the stiffness of this area to bring it to the same value as the rest of the 

beam.  The artificial error is analogous to an initial mis-modelling but allows the 

usefulness of updating strategies to be quantitatively examined. 

Eight updating runs were performed with the effect of some of the principal factors 

varied.  Three sets of experimental data were used, the description of each updating run 

is given in table 2.5.  It is important to note that each of the different problems are 

realistic and that any could be chosen in practice. 
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Run Experimental 
Data Set 

Experimental 
Modes FE Model Updating 

Parameters 

1 Mean 1-6 17 3,5,7 

2 Min 1-6 17 3,5,7 

3 Max 1-6 17 3,5,7 

4 Mean 1-6 17 3-10 

5 Min 1-6 17 3-10 

6 Max 1-6 17 3-10 

7 Mean 1-3 17 3,5,7 

8 Mean 4-6 17 3,5,7 

Table 2.5 – Initial Parameters For Experimental Data Updating 

The three sets of experimental data referred to are the mean and extreme identified 

resonant frequencies shown in table 2.4. 

Only stiffness parameters are updated with the updated stiffness matrix being given by 
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where the second summation represents the elements which are not factored by the pn  

updating parameters jp . 

Since only six resonant frequencies were available, updating of any more parameters 

than this number of (independent) parameters leads to an underdetermined problem.  

Two sets of updating parameters were chosen, the three stiffnesses of respectively 

elements 3, 5 and 7 leading to an overdetermined problem and stiffness of elements 3 

through 10 leading to an underdetermined problem. 

Updating was carried out using the eigenvalue sensitivity method described in section 

2.3.2.1 

Convergence was assumed to have occurred when the largest change in any of the 

updating parameter dropped below 1% of their original value and was achieved in each 

case within five or six iteration representing quite robust convergence. 
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Figure 2.5 shows the value of the residual with each iteration.  The residual is defined in 

general terms in section 2.4, in this context it is defined as 

{ } { }
2expFEk

R λλ −=  (2.86) 

where { }
kFEλ  are the six values of system eigenvalue at the thk  updating iteration.  The 

residual is therefore an indication of the extent to which the updated model matches the 

experimental data.  The least successful updating run is seen to be number 7, the large 

error arises since it is does not attempt to minimise the difference between experimental 

and finite element predictions of modes 4, 5 and 6.  Updating run 8 on the other hand 

which should suffer from the same problem matches all of the frequencies.  While a 

very simple example this is phenomena is likely to occur in practice when only a small 

number of modes are available.  Of the sample of measured resonances those occuring 

at higher frequencies are seen to be much more useful in making changes to the finite 

element model than the lower order modes. 

The choice of updating parameters is also seen to be important in reducing the residual.  

The under-determined runs 4 to 7 which alter 8 elemental stiffnesses using the six 

resonant frequencies are successful as is run 8 which only alters modes 3, 5 and 7 using 

modes 4, 5 and 6.  The latter result suggests that attempting to minimise the difference 

between the FE and experimental predictions of higher order modes is more useful than 

using all of the modes. 

A range of updating parameters arise from the eight runs and are displayed in figure 2.6 

with the target value of stiffness shown as a dashed line.  The updated parameter values 

are seen to vary widely. 

The variation of experimental data is seen not to affect the converged solution for the 

overdetermined cases (1 to 3) although the final parameter values in the other cases are 

seen to alter dramatically as a result of data variation. 

One might argue that the variation in updated parameter values is to be expected from 

altering a parameter which was not thought to be in error.  This problem with the initial 
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FE model being artificially damaged is completely analogous to the problems 

encountered in reality.  If the stiffness of one element of the beam had indeed been mis-

estimated the insight into the level of correctness of the initial FE model would not be 

available. 

On a more positive note, most of the updating runs successfully identified the location 

of error in the initial finite element model with the overdetermined data producing the 

consistently better results 

2.8 Concluding Remarks 

The background to the generation of finite elements using the displacement method 

based on the theory of minimum displacement has been set out.  It has been argued that 

an understanding of the construction of elements from first principles is vital.  The 

method of estimating stress at locations about a structure from elemental displacements 

has been demonstrated and will be employed to useful effect in the following chapter. 

The transformation of elements from local to global co-ordinates has been set out.  The 

application of this simple congruent transformation can account for structural 

deformations and this transformation is considered as an updating parameter in chapter 

5. 

The reasons for variability in observed experimental data have been discussed.  

Literature on the subject has been reviewed and a number of approaches to 

quantification of test-to-test error have been described.  The review of the field of 

variability of experimental data reveals that a methodical approach to the consideration 

of the factors which cause sets of data from nominally similar structures to differ will 

continue to provide a very fruitful line of research. 

The development of model updating techniques has been briefly reviewed.  Emphasis 

has been placed on sensitivity methods with the eigenvalue sensitivity method and the 

response function method outlined in detail.  The use of Singular Value Decomposition 
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to solve the equation relating small changes in observed dynamic behaviour to changes 

in updating parameter has been advocated and described. 

The selection of updating parameters is considered in some detail.  There has been some 

conservatism in the choice of updating parameters.  Recent methods which update 

geometric parameters appear to offer a more versatile method of changing finite 

element models, particularly in specific regions such as joints.  This versatility comes at 

the expense of considerable engineering judgement being required to assess the number, 

location and type of updating parameters to use on a case-by-case basis. 

A review of the application of automatic model updating methods to practical real-life 

situations has been presented.  It has been observed that practitioners have generally 

been able to alter FE models such that they bring FE predictions of dynamic behaviour 

into close agreement with observed behaviour.  However, the updated solutions have 

been seen to be far from unique.  Disparity between sets of experimentally collected 

data from nominally identical structures has been observed.  In addition a discussion of 

the difficulty in discerning which amongst a large population of sets of parameter 

values make the best changes to the finite element model has been included.  This leads 

to the conclusion that the updated models are rather arbitrary and may only fare better 

than the original model in matching the observed dynamic data. 

Some studies which test the usefulness of the updated model by using tests which are 

independent of the updating process have been reported.  These give rise to optimism 

that the wealth of experience in developing finite element updating techniques can 

eventually be successfully be translated into the practical arena. 

A practical case study has allowed some of the issues related to applying updating 

procedures to measured experimental data to be examined.  By creating a known error 

in the initial finite element model, it has been possible to show that experimental data 

can be used to correctly make alterations to the finite element model.  It was shown 

however that the nature of the updated model is very sensitive to the updating 

parameters chosen. 
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Variation in experimental data is seen not to decrease the chance of obtaining a 

converged and plausible updated model.  The variability, choice of updating parameter 

and number of modes all appear to have a similar effect in leading to non-uniqueness of 

the solution. 

Higher order modes have been seen in the experimental case to provide the most useful 

information in updating elemental stiffness parameters. 
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Figure 2.1 – Beam Under Axial Load 
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Figure 2.2 – Beam Under Shear and Rotational Loading 
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Figure 2.3 – Transformation of Axes 



Chapter 2 – Finite Element Model Updating Using Experimental Data 56 

 

 

Flow of Information

Laser Vibrom eter

Force Transducer Shaker

Spectrum Analyser
Personal
Computer

 

Figure 2.4 – Schematic of Experimental Arrangement; Testing of Narrow Plate 
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Figure 2.5 – Residual Values 
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Figure 2.6 – Updated Parameter Sets 
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CHAPTER 3 
MODELLING OF THE DYNAMIC BEHAVIOUR OF LOADED STRUCTURES 

3.1 Introduction 

Structures by their very nature are likely to experience a variety of loading conditions 

during their service lifetimes.  The effect of static or quasi-static10 loading upon a 

structure will at the very least alter the magnitude and direction of internal stresses as 

well as causing deflection.  Since a structure’s dynamic behaviour is a function of these 

characteristics it will be dependant on the loading conditions.  It is therefore commonly 

understood that structures undergoing loading will experience changes to their dynamic 

behaviour.  This very phenomenon is exploited when tuning a stringed instrument for 

example, as the pitch of a tensioned wire is observed to change with its axial loading. 

The common practice of modal testing of structures in unconfined ‘free-free’ conditions 

minimises the interaction of structural components with the outside world.  The 

consequence is that the dynamic behaviour of the test structure itself can be considered 

in isolation.  The result of this approach is that the effect of load-dependence of 

dynamic behaviour upon validation and updating of finite element models has been 

largely overlooked.  Given that structures are likely to experience a range of loading, we 

take as premises that: 

(a) loading can effect dynamic readings; and 

(b) the structural changes which result from loading can be accounted for 

in a finite element model. 

                                                 
10 This implies that while loading might change during time, the rate of change is sufficiently small that 
inertial forces need not be taken into account when considering equilibrium.  This definition applies 
whenever static loading is referred to later. 
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Thus, it is incumbent upon the engineer to investigate the possibility of altering finite 

element models to reflect the loading conditions. 

Two principal factors altering the dynamic response of loaded structures will be 

considered in this chapter, they both fall under the general heading of geometric 

nonlinearities.  The first is stress (or geometric) stiffening in which axial load in slender 

beams and membrane forces in thin plates or shells interact with small out of plane 

deflections.  The second concerns11 a structure’s form while under static loading which 

will deflect and hence alter the response.  While it is not inconceivable that static 

loading will affect the dynamic response of a structure in other ways - for instance the 

damping at joints - these are less easily defined and modelled and will not be considered 

in this thesis. 

It is important to note that although the consideration of large displacements falls into 

the category of nonlinear geometry, this term refers to the overall relationship between 

force and displacement.  The solution method itself involves approximating the 

nonlinear relationship by a number of linear steps.  The validity of performing an 

eigenvalue analysis upon a structure which has been altered in the nonlinear sense still 

holds.  Figure 3.1 shows schematically that for levels of dynamic loading which are 

small compared with the static loading, the stiffness of the structure can accurately be 

represented by the tangent stiffness.  In the experimental studies in the following 

chapers the amplitude of the dynamic load is of the order of 0.1% of the static loading. 

Both stress stiffening and large deformation can be accounted for in finite element 

analyses.  They each require at least a single reformulation of the finite element 

structural matrices.  For large load levels, flexible structures, or if high solution 

accuracy is required, the structural matrices might require reformulation a large number 

                                                 
11 A third factor concerning the ‘bowing’ of structural members (or finite elements) completes a trio of 
factors quoted by most authors, and is investigated in detail in [64].  This deformity necessarily involves 
large elemental strains.  In the context of finite element modelling this effect is an extension to 
discretisation inaccuracies and thus while its effect is noted it is regarded as being insignificant compared 
to stress stiffening and geometry changes. 
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of times.  Each of these actions potentially increases the cost of performing the analysis.  

It is interesting to note that in the field of validating and updating finite element models 

using dynamic data, facilities for including the effects of nonlinear geometry in modal 

analyses offered by most commercial finite element packages are rarely12, if ever, used. 

As the previous chapters have discussed, finite element model updating seeks to make 

changes to a finite element model.  These result in the finite element model not only 

producing a closer dynamic response to the measured behaviour but being a closer 

facsimile of the structure itself.  More specifically, the types of updating parameters 

which can be changed by finite element updating schemes have evolved to address the 

supposed sources of error in the FE model (see chapter 2).  This chapter investigates the 

changes in FE models required to account for loading so that they can be included in the 

arsenal of updating parameters.  The implementation of alterations to finite element 

models to account for loading upon a practical experimental example is described in 

chapter 4. 

The phenomena of stress stiffening and large deflections are described in detail in the 

following sections.  The derivation of the finite element formulation of each effect is 

demonstrated and their interdependence is described.  The remainder of the chapter 

discusses the influence of these effects on dynamic modelling of structures and the 

practicalities of their inclusion in validation and updating procedures. 

3.2 Stress Stiffening 

Stress stiffening arises due to the interaction of an axial load on a thin structural 

member13 with transverse motion.  Lateral deflections are assumed to be sufficiently 

small that the axial load can be regarded as constant throughout the transverse motion.  

The influence of stress stiffening in the area of stability analysis of columns and shells 

                                                 
12 The author has been unable to find references for instances where the finite element model of a 
structure is altered prior to dynamic validation. 
13 Generally applicable to beams and plates.  In the latter case it is a membrane load which interacts with 
transverse movement. 
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as well as the vibration of slender structures is well established.  Euler [65] took an 

interest in the subject in the mid eighteenth century; the ultimate load sustainable by a 

perfect slender column which bears his name results from a consideration of stress 

stiffening.  The formulation is a function of the geometry of the slender structure and of 

the axial/membrane force itself but not of the elastic properties of the structure. 

The importance of the phenomenon in a structural dynamics context is also well known.  

Lurie [66], for instance, explored the relationship between lateral vibration and the 

elastic stability of beams and plates in 1952.  The relationship between frequency and 

end load were investigated experimentally on both struts and plates.  In the former case 

the behaviour of two simple frameworks were examined. 

The use of vibration data to assess the loading conditions and fixity of columns has 

been of perennial interest to engineers. Stephens [67] appears to be the first to consider 

the problem presenting a paper which claims that both parameters can be identified 

from the first resonant frequency although some corrections to Stephen’s work were 

made some years later by Lurie [68].  Closer to the present day Plaut and Virgin [69] 

consider the steady state linear response to transverse harmonically varying load.  The 

influence of an axial load specifically on the response is investigated for several 

boundary conditions. 

The work of Lurie and others pre-dated the widespread use of the matrix methods in 

structural analysis and in particular finite element methods.  Therefore, the complexity 

and range of structures which were amenable to analysis using simplified governing 

differential equations of motion were rather limited.  The widespread implementation of 

the finite element method has revolutionised the size of problems upon which the 

effects of stress stiffening can be determined.  As the following sections (principally 

section 3.2.2) will show, stress stiffening can be incorporated in the finite element 

method by the addition of extra terms to elemental stiffness matrices. 

The following sections firstly derive the influence of axial loading on the closed form 

solution.  This is followed by a description of the technique that implements the effect 
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in the finite element method.  In common with previous and subsequent chapters both 

methods will be illustrated by means of the Euler-Bernoulli beam. 

3.2.1 Closed Form Solution 

Before investigating how stress stiffening effects are accounted for in the finite element 

method it is instructive to demonstrate how the effect can be included in closed form 

solutions.  Note that the range of structural forms whose behaviour can be modelled 

using closed form differential equations is limited.  The following relates to the 

development of the Euler-Bernoulli beam. 

The basic governing equation for a beam can be found for instance in [70].  The loads 

acting on a small section of beam of length dx  are shown in figure 3.2.  Taking 

moments about the point marked P gives 
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where S  is the shear force and M  the bending moment.  This leads to 
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Continuing by resolving vertically yields 
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Also recall that a simplified relationship14 between bending moment and curvature can 

be expressed as 
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14 This formulation neglects the influence of shear strain, the result being the so called Euler-Bernoulli 
beam model.  If more accuracy is required an approach which considers the shear strain results in the 
Timoshenko beam formulation. 
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Combining (3.2), (3.3) and (3.4) leads to the familiar partial differential equation 

describing the dynamic behaviour of a straight two dimensional beam without external 

loading. 
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For a uniform beam this can be further simplified to 
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This can be solved for various boundary conditions.  Substituting ),( txv  as the product 

of shape )(xV  and harmonic component )sin( αω +t  gives 

)sin()(),( αω += txVtxv  (3.7) 

substituting (3.7) in (3.6) leads to 
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Substituting  

xBeV 0λ=  (3.9) 

provides a suitable solution for (3.8) if 
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which has the four roots λλ ±=0  and λλ i±=0  where 
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The general equation of motion is therefore 

xBxBxBxBV λλλλ coshsinhcossin 4321 +++=  (3.13) 
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The unknowns, 41 ,..., BB , can be determined by applying the boundary condition 

constraints. 

Equation (3.2) can be modified relatively simply to take account of the effect of a time 

invariant axial load, N shown in figure 3.3.  This assumes that the transverse deflections 

during vibration are small enough that no time varying axial load needs to be 

considered: 
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Using this modified version of shear force we obtain a new partial differential equation 

describing the motion of a bar experiencing an axial load: 
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Exact solutions are only available for certain end conditions.  If, for instance, the ends 

of the beam are considered as being pinned then 
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is a solution to (3.15) provided 
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The ability of the time dependent term in equation (3.16) to satisfy the modified 

differential equation of motion shows that the axial load does not affect the simple 

harmonic nature of the solution.  However, the natural frequencies are altered with the 
thn  resonant frequency being given by 
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The resonant frequencies are seen to be a function of the axial load N.  Substituting the 

well-known Euler buckling load 
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leads to 
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The relationship between transverse vibration and elastic stability becomes very clear.  

It is seen that 

Nn ∝2ω . (3.21) 

The mode shapes can also be shown to be affected by stress stiffening.  Experimental 

results by Lurie [66] show close results for tests on beams.  For a plate15 he finds 

significant nonlinearity which he surmises is a result of initial curvature of the test 

specimen16. Massonnet [71] experienced similar results when considering the effect of 

circumferential loading of circular plates.  He concludes that the perturbation to 

resonant frequencies are influenced by initial deformation. 

Many authors consider only the change in the first resonant frequency with a view to 

studying the stability of the structure.  Indeed the literature related to estimation of 

buckling load from frequency characteristics appears to concentrate exclusively upon 

the first mode of vibration.  To the modern structural dynamicist, perturbations to any 

frequencies are of importance.  The observation that all of the flexural modes will be 

affected by axial load as shown in (3.21) bodes well for including loading effects in 

updating procedures. 

                                                 
15 This need not apply to exclusively to plates, a 3D beam with low second moment of area in one axis 
would demonstrate the same behaviour. 
16 The initial out-of-shape of structures is considered in a practical sense in chapter 4. 
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3.2.2 Finite Element Formulation 

The closed form solution described in the previous section provides great insight into 

the influence of axial load upon simple structures.  The inclusion of these effects into 

matrix methods of structural analysis allows stress stiffening effects to be considered for 

much more complex structures. 

The application of the phenomenon described in the previous section was applied to the 

matrix method of structural analysis of both plates and beams by Gallagher and Padlog 

[72].  Continuing to consider the example of beam-type elements, a method for 

determining the stress stiffening effects on finite beam elements is described in [25].  

The strain of a beam in bending, with only the normal stresses taken as contributing to 

the energy stored is given by 
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where 0u  is the axial change in length, )(xv  is the transverse displacement and y  is the 

distance from the neutral axis.  The first term of (3.22) is the axial strain term, the 

second term is familiar from beam theory relating to the energy stored in the beam in 

curvature while the third term expresses the lengthening of the beam element due to its 

rigid body rotation. 

The strain energy is given by 
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Substituting (3.22) into (3.23) leads to 

dV
x
vy

x
v

x
uEU

v
i

22

2

2
0

2
1

2 ∫
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+
∂
∂

−
∂

∂
= . (3.24) 

For constant cross sectional area, A , expanding and omitting higher order terms gives 
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Recalling the relationship between general lateral displacement, v, and end 

displacements from equations (2.16) - (2.19) 
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differentiating with respect to x gives 
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and further 
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Substituting (3.27) and (3.28) into (3.25) and minimising the total potential energy with 

respect to the nodal displacements leads to the elemental beam stiffness previously 

derived in chapter 2 – equation (2.23) - plus the stress stiffness matrix 

[ ]

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−−
−

=

15
2

105
6

301015
2

105
6

105
6

2

22

000
0
0

000000

L

L

LLL

LL

ss
e

sym
L
FK , (3.29) 

where F  is the axial load.  Like the formulation for the 2D beam element derived in the 

previous chapter, the formulation is not a unique representation of the effect of stress 

stiffening but is commonly used in commercial FE software. 

If torsional stress stiffening is ignored, a similar expression can be gained for the 

modification to a three dimensional beam element using a symmetry argument. 
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3.2.3 Implementation of Stress Stiffening 

Most commercial packages allow the implementation of stress stiffening although it is 

not generally applied by default since modification to the stiffness matrix after at least 

one initial load step is required to determine axial loading.  The perturbation of natural 

frequencies can easily be determined by modifying elemental stiffnesses by the 

expressions such as those given in equations (3.29) and (3.30), for a 2D and 3D beam 

respectively. 

There is no limit to the range of loading to which the technique accurately applies 

although the derivation holds only for small rotations from the original element shape.  

For situations where significant elemental rotation occurs the change in geometry of the 

structure must be taken into account; this is investigated in section 3.3. 

The question of whether the extra processing time and hence expense involved in 

including stress stiffening effects has occupied a number of authors.  Ryu et al. [73] 

reviewed methods for determining whether stress stiffening effects should be included 

in dynamic simulations of rotating multi-body structures.  The method proposed was 

intended for assessing whether stress stiffening reaches levels where static buckling is 

likely and is therefore not sensitive enough for assessing slight frequency perturbations. 
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Finite element model updating is a computationally intensive procedure.  Therefore the 

extra cost in performing a loading step and subsequent eigenvalue analysis does not 

represent a significant extra cost and is an effective and useful exercise.  This is 

particularly true in situations where dynamic data from a loaded structure are used to 

validate or update an FE model. 

The engineer must consider all possibilities of loading to the structure including thermal 

effects.17  The application of the worst case of loading (as one would perform in the 

design process) should include stress stiffening effects.  The resulting system matrices 

would lead to an eigen-solution to determine the dynamic behaviour.  This will enable 

the sensitivity of frequency response with respect to loading conditioning to be 

reasonable easily assessed.  This information allows the engineer to discern whether the 

perturbations to resonant frequencies are of a scale which might affect a subsequent 

validation exercise.  If the resonant frequencies are found to be sensitive to the loading 

level then the analyst must consider how best to monitor the load on a structure.  This 

enables the effect of load to be taken into account.  Issues relating to the identification 

of loading and the sensitivity of resonant frequencies to load are investigated in the 

following chapter. 

3.2.4 Updating of Stress Stiffening Effects Using Conventional Parameters 

As the term stress stiffening implies, the effect of an axial load is to change apparent 

transverse stiffness.  The changes to structural matrices required to model the stress 

stiffening effects correctly cannot be accounted for by conventional finite element 

updating parameters.  Therefore, the updated model may exhibit the correct modal and 

response properties, but on a physically unjustifiable basis [74]. 

                                                 
17 If the structure being tested is likely to experience a range of temperatures then the thermal expansion 
coefficient for all structural materials should be determined and included in the structure’s properties in 
the finite element model. 
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A simple case study allows the effect of stress stiffening on conventional model 

updating procedures to be investigated.  Consider the beam structure shown in figure 

3.4 consisting of 13 elements modelled with simple 2D beam elements.  The section and 

material properties are the same as the narrow plate structure described in the previous 

chapter (section 2.7).  The structure has fixed ends and the whole beam is subjected to 

an axial load of 5kN18.  The first four bending resonant frequencies of the beam 

predicted by finite element modelling are shown in table 3.1 along with the 

corresponding frequencies from an unloaded beam. 

 

Unloaded Resonant 
Frequencies (Hz) 

5kN Load Resonant 
Frequencies (Hz) 

Absolute 
Decrease (Hz) 

Percentage 
Decrease 

63.1 55.1 8.0 12.7 

173.9 163.4 10.4 6.0 

340.9 329.6 11.3 3.3 

563.7 552.0 11.7 2.1 

Table 3.1 – Change in Resonant Frequency Under Loading 

The bending frequencies are seen to be shifted by the approximately the same absolute 

value.  It is well known that altering the overall structural stiffness on the other hand 

increases (or decreases) all frequencies by a common factor. 

A rudimentary model update using the sensitivity of the first resonant frequency to the 

overall stiffness leads to the observation that the stiffness of the initial finite element 

model needs to be decreased by around 25% (or the mass increased by 25%).  Figure 

3.5 shows the point receptances (the excitation point being shown in figure 3.4) arising 

from matching the first resonant frequency of the updated structure with the 

“experimental” counterpart.  It is very clear that the updated model - while meeting the 

single criterion set out in the updating procedure - is a significantly worse dynamic 

representation of the structure than the original finite element model.  This is the “worst 

                                                 
18 The Euler buckling load in this case is 20.5kN. 
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case scenario” and the inconsistency of the updated dynamic behaviour with the higher 

experimentally observed frequencies would be noted.  If the first four frequencies are 

used to update the overall stiffness a reduction of 5% is reported, the resulting 

receptance is shown in figure 3.6. 

In practice if more than one frequency is used to update the overall mass or stiffness of 

the structure, a poor final residual value should indicate that the observed frequency 

perturbations do not derive from mis-modelled overall stiffness. 

3.3 Large Deformations 

When structural loading is sufficiently large (or the structure particularly flexible) that 

the geometry of the structure changes during the load step, the stress stiffening 

approximation to the structures loaded characteristics may not be sufficient.  To account 

for the deformity, equilibrium equations must be written with respect to the deformed 

geometry which is not known in advance.  Although it is assumed that no components 

of structures undergoing modal testing will stray into plastic ranges, the solution 

procedure for geometric nonlinearities shares some similarities with the treatment of 

material nonlinearity. 

Commonly the structural deflection is determined in a single step from the structural 

matrices and loading.  The stiffness matrix - which was constructed from the initial 

estimates of geometry and material properties - is assumed to describe adequately the 

stiffness distribution representative of the structure for the entire load step.  Cases exist 

where combinations of large loading and structural flexibility make it difficult to 

determine the deflected geometry particularly accurately.  In instances such as these the 

assumption that the stiffness remains constant throughout the load step might be 

inadequate. 

An important concept is introduced at this point.  The displacements experienced by an 

element can be split into those which cause straining of the element and those which 

cause rigid body motion of the element.  That is 
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{ } { } { }strainrigidtotal uuu += . (3.31) 

This is a simple yet important relationship.  The rigid body displacement { }rigidu  of any 

finite element consists of both translation and rotation components although only the 

latter has any effect on the elemental matrices.  Therefore, the geometry for each 

element is a relatively simple rotational transformation.  Figure 3.7 shows the rigid 

body and straining deformations for a two dimensional beam where the accurate 

determination of the rigid body rotation rθ  is the most important term since it defines 

the deformed shape and thus the dynamic response. 

Most commercial finite element packages allow the implementation of both material 

and geometric nonlinear techniques.  Indeed some packages, for instance ANSYS [16], 

have developed code to address this problem. 

3.3.1 Finite Element Formulation 

The simplest way to model the nonlinearity resulting from static loading is to discretise 

into a number of linear steps.  This involves recalculation of the structural matrix at 

each point as suggested by Turner et al. [75].  The displacement at the ( )thn 1+  load 

step is given by 
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The effect of loading upon an element can be included after the first load step and thus 

the effect of stress stiffening can be included in the nonlinear analysis.  Improved 

results can be obtained by increasing the number of load steps.  An example of this 

approach for a single degree of freedom system is shown in figure 3.8 where the upper 

dotted line shows the result of recalculating the stiffness parameter at several discrete 

points.  It is clear that a purely iterative approach can lead to a relationship between 

stiffness and deflection which diverges from the ‘true’ relationship.  As the size of the 

load step decreases towards zero however the predicted line will converge upon the true 

one. 
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Another approach which is set out by Jennings [76] is to combine the previously 

described incremental approach with a series of equilibrium iterations. 

A very large amount of literature is published on the subject.  Much of this - [77] being 

a good example - is related to determining accurately the force displacement 

relationship for very large elemental rotations.  This situation is most likely to occur 

near collapse.  As far as the current discussion is concerned, the interest is not in 

extreme deformations but small deformations to which the dynamic behaviour of the 

structure can be sensitive.  In this case elemental rotations while needing to be 

determined accurately are not of a large magnitude. 

For illustrative purposes, a method for establishing the nonlinear relationship between 

load and displacement will be described.  The method is an iterative solution and 

involves moving co-ordinates.  It is clearly set out by means of an example in [26]. 

Considering a structure exhibiting small deflections under the action of small loads 

[ ]{ } { }FXK ∆=∆ , (3.33) 

where { }X∆  are sufficiently small changes in deflection that [ ]K  is linear.  The forces 

comprise the specified loading plus loading applied at nodes by elemental distortion.  

For equilibrium we must achieve 

{ } 0=∆F . (3.34) 

At this point, the example of stiffness changes to a 2D beam will be considered in 

detail; note however that the method is general.  The straining displacement of such a 

2D beam can be described by two end rotations and an axial displacement relative to 

suitable local axes 

{ } { }Tstrain eu 21 000 θθ=  (3.35) 

where definitions of 1θ  and 2θ  are shown in figure 3.7.  The loading upon a single 

element resulting from the deformations are found to be 
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{ } [ ] { }xKf e−= . (3.36) 

Summing over all elements and substituting into (3.32) to find the global displacements 

gives 

{ } [ ] { } [ ] { } ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=∆ ∑

=

−
+

elems

j

n

j
jeii xKFKX

1

1
1 , (3.37) 

where ∑
=

elemsn

j 1
represents matrix building of elemsn  elements rather than straight summation 

and { }F  is the external static loading on the structure.  The overall structural 

deformations are updated at each step using the relation 

{ } { } { } 1ii1i ∆XXX ++ += . (3.38) 

The most convenient convergence criterion is to consider the incremental 

displacements.  Bergan and Clough [78] recommend that convergence should be based 

on the ratio: 

{ } { }( )ii XXr max∆= , (3.39) 

where { }( )iXmax  is the maximum displacement of the same type as { }iX .  The lower 

this value is set, the tighter the convergence.  The choice of convergence criteria 

requires engineering judgement.  If the deformed structural matrices are to be used to 

perform a subsequent dynamic analysis, then the sensitivity of eigenvalues and possibly 

mode shapes to small changes in structural geometry must be considered. 

Nonlinear geometry methods that take account of large deflections are a superset of 

those described in the previous section.  These account for the stress stiffening effect.  

That is, the stress stiffening elemental stiffness modifications can be included in the 

iterative procedure.  These account for the transverse lack of stiffening affecting both 

the static solution and the subsequent resonant frequency. 
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3.3.2 Effect of Boundary Conditions 

The influence of deformation of structural members upon vibration characteristics is 

itself very strongly influenced by the boundary conditions.  This can be demonstrated 

by means of a simple simulation based on a real situation.  A plate such as the one 

described in section 2.6 was ordered from a standard supplier and found to contain a 

noticeable camber arising from the manufacturing process.  The plate deflection is 

plotted with equally scaled axes in figure 3.9.  It can be seen that while discernible, the 

camber is far from spectacular.  The maximum deflection is 4mm over the span of 

850mm. 

The plate was modelled using seventeen 2D beam elements as described in chapter 2, 

with and without the deformation included and with clamped and free boundary 

conditions.  The results are shown in table 3.2 from which it can be seen that there is no 

difference to the frequency perturbation for the free plate but a considerable (33%) 

increase in the fundamental resonant frequency for the completely fixed situation.  The 

increase in the first natural frequency with amount of deformation is shown in figure 

3.10. 

 

Fundamental Natural 
Frequency (Hz) 

 

Flat  Deformed 

Free-Free 36.88 36.87 

Clamped-Clamped 36.88 47.94 

Table 3.2 – Interaction of Boundary Conditions and Deformity 

The observation ties in with early analytical work on the vibration of curved bars 

[79,80] showing that for a beam with symmetrical curvature the first mode of vibration 

is most strongly altered. 

This observation has interesting and significant repercussions on the process of 

validation of finite element models of substructures.  If the plate is tested independently 

of a structure into which it will eventually form a part, the response of the deformed 
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plate will be indiscernible from that of the straight structure.  However, if the deformity 

of the plate exists when assembled into the superstructure, the stiffness of its constraints 

will affect its dynamic response considerably. 

Generalising from this simple case by considering a more complex structure containing 

components which are deformed.  The deformation could be the result of any one of a 

number of factors such as manufacturing imperfections or simply in response to in-

service static loading.  The dynamic behaviour is likely to be altered but unlike the 

simple beam example described above whose first mode is sensitive to the deformation, 

a wider range of modes are likely to experience perturbations.  This hypothesis is tested 

by means of an experimental case study in the following chapter (section 4.3). 

3.4 Effect Upon Validation / Updating 

As the foregoing discussion has shown, the effect of stress stiffening upon structures is 

to alter the apparent transverse stiffness of structures subject to axial loading.  The 

result is that all of the flexural resonant frequencies are shifted in the same direction 

while extensional frequencies are not altered. 

The changes to elemental matrices to account for the change in behaviour derived in 

section 3.2.2 cannot be included in an updated finite element model using any 

conventional updating parameter.  Limiting the modifications to elemental stiffness, 

density, or cross sectional area is inadequate. 

The highly underdetermined nature of updating parameters is such that a huge number 

of sensible changes to arbitrary sets of updating parameters will result in an apparently 

successfully updated model.  However, if loading is present in a structure then 

modifying its dynamic behaviour through a model update is invalid.  The stress 

stiffening matrix alterations necessary for making justifiable changes to the original 

finite element model are omitted. 

The same observation can be made for the transformation resulting from the large-

deflection transformation.  In this case the transformation consists of a rigid body 



Chapter 3 – Modelling of the Dynamic Behaviour of Loaded Structures 77 

 

rotation.  To take account of the changes to an elemental matrix caused by loading in an 

updating procedure the updated matrix would take the form 

[ ] [ ] [ ] [ ]{ }[ ]TKKTK ss
ee

Tu
e += , (3.40) 

where [ ]T  is a rotational transformation of the type described in chapter 2.  The 

simplicity of this relationship belies the computational effort which is required to derive 

[ ]T  and [ ]ss
eK .  This is significant and the relationship is exploited in chapter 5 which 

considers the use of these quantities as updating parameters.  

3.5 Concluding Remarks 

The factors which are responsible for changes to dynamic behaviour of structures have 

been set out.  Methods for incorporating these techniques into finite element models 

have been outlined.  The specific case of the 2D beam element is considered in some 

detail. 

The relative importance of two phenomena, namely stress stiffening and structural 

deformity, in altering dynamic behaviour of structures has been investigated. 

The apparent stiffness of boundary conditions are shown to be crucial in influencing the 

extent to which the dynamic behaviour of a deformed structural component is altered.  It 

is shown that the a deformed component tested in free-free condition displays much the 

same dynamic characteristics as its undeformed counterpart. 

The phenomena which result in changes to dynamic behaviour under loading have been 

shown to be encapsulated by relatively simple alterations to finite element structural 

matrices.  Conventional model updating techniques using elemental mass and stiffness 

used to update loaded structures are invalid. 
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Figure 3.1 – Tangent Stiffness 
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Figure 3.2 – Forces Acting on A Small Portion of Beam 
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Figure 3.3– Lateral Movement of Small Beam Element Under Constant Axial 
Load 
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Figure 3.4 – Fixed-Fixed 13 Element Beam 
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Figure 3.5 – Updating Overall Stiffness of Loaded Beam Using First Eigenvalue 
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Figure 3.6 – Updating Overall Stiffness of Loaded Beam Using Four Eigenvalues 
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Figure 3.7 – Rigid Body and Straining Displacements of 2D beam 
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Figure 3.8 – Iterative vs. Incremental Tangent Stiffness Calculation 
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Figure 3.9 – Measured Deflection of Plate 
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Figure 3.10 – Change in Natural Frequency Magnitude of Deformation 
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CHAPTER 4 

EXPERIMENTAL STUDY OF THE DYNAMIC BEHAVIOUR OF LOADED 

STRUCTURES 

4.1 Introduction 

The previous chapters have discussed how changes to dynamic behaviour resulting from 

loading to structures can occur.  Finite element techniques for taking account of the 

changes to structures due to loading have been developed.  To assess the validity of 

finite element models which have been altered in this way, some practical validation of 

the “statically updated” finite element model is required.  To this end, this chapter 

presents two experimental case studies in which the dynamic behaviour of structures 

subjected to controlled loading is investigated.  The results are compared with the FE 

modelling techniques described in the previous chapter. 

The first case involves the consideration of a slender structure whose state of loading 

can be altered due to its inclusion in a relatively substantial testing structure.  This 

arrangement is directly analogous to the situation where a structural component – or 

substructure19 - is tested and its FE model validated in free-free conditions before being 

included in a larger assembly. 

The direct identification of static loading to a structure is likely to be impractical in a 

real-life situation.  This is because the loading can arise as a result of such wide range of 

factors.  The experimental study describes a method of identifying load indirectly from 

surface mounted strain gauges.  The example shares clear similarities with methods 

which measure bridge strain using optical fibres [81]. 

                                                 
19 A sub-structure is a constituent part of a larger structure some of whose properties are determined 
independently of its parent structure. 
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The second experimental example allows the influence of loading to be investigated in 

isolation.  The acquisition of spatial data enables some conclusions to be drawn about 

the influence of the loading on mode shapes.  Direct identification of loading is possible 

in the second experimental set-up. 

4.2 Test on Narrow Steel Plate 

A test rig was designed and constructed [82] to apply loads to certain simple structures.  

This section considers the behaviour of a narrow steel plate under loading.  The free-

free behaviour of the plate has previously been studied in chapter 2, being mild steel 

and measuring 100mm wide by 5mm deep and 850mm long.  The shape was chosen 

such that the structure could reasonably be modelled using either plate or more 

elementary beam finite elements. 

The narrow plate underwent dynamic testing under several static loading regimes.  The 

test allowed some of the issues related to the determination of loading in real structures 

to be investigated.  The study demonstrates why the resulting changes to the structure 

should be accounted for in a subsequent dynamic analysis. 

4.2.1 Application and Identification of Loading 

A schematic of the experimental arrangement is shown in figure 4.1.  Loads are induced 

in the test structure by changing the position of the end masses relative to the 

adjustment bars by means of nuts on the threaded ends of these bars.  The 100mm at 

each end of the plate were clamped within the two large masses which comprise the test 

rig producing an encastré connection.  The test rig was designed to be sufficiently stiff 

that the test specimen experienced boundary conditions approaching fixity.  The two 

end masses weigh 100kg each and the adjustment bars are solid and measure 40mm in 

diameter.  

As in most situations where direct experimental determination of loading onto 

individual components is impractical or impossible, the loading on the structure within 
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the testing rig needs to be determined indirectly.  To this end, small single-element 

electrical resistance strain gauges were placed at a number of locations along either side 

of the plate.  These allowed the longitudinal strain - and hence stress - distribution on 

each surface of the structure to be assessed.  This in turn permitted identification of 

loading applied to the plate relative to an initial set of conditions.  The strain gauges and 

associated wiring were sufficiently unobtrusive to have little effect on the plate’s 

stiffness.  As chapter 1 has outlined, this type of instrumentation strategy would offer a 

versatile method of instrumenting pre-existing structures to help to characterise their 

loading regimes through time.  More specifically, substructures tested with free-free 

boundary conditions could be instrumented to determine loading introduced though 

boundary conditions.  The measured loads could then be used for dynamic validation of 

the in-situ finite element model. 

Figure 4.2 shows the location of the strain gauges along the plate.  It also indicates the 

co-ordinate system and the single point at which excitation was applied and dynamic 

response was measured.  The strain gauges were placed in pairs on opposite sides of the 

plate.  Strain readings were logged continuously throughout the testing programme, 

beginning with the plate “resting” in an entirely unconfined state and ending in the same 

condition.  Four different load regimes were introduced in to the specimen by adjusting 

the length of the bars joining the masses.  The four load cases will henceforth be 

referred to as cases A, B, C and D.  Note that case A was intended to represent the plate 

with zero loading.  The discrete points in figure 4.3 show the measured stress 

distribution along the top and bottom of the plate in each of the four load cases 

assuming a linear relationship between stress and strain. 

Identification of the loading applied to the plate from a knowledge of the stress 

distribution is not a trivial task.  The strong nonlinearity of the stress distributions raises 

some doubt about whether the use of a simple linear model to estimate the stress - from 

bending moment and axial load - would produce a sufficiently accurate prediction of 

loading.  The most rigorous method available using the finite element method is to 
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determine the deflected shape of the plate accurately using a nonlinear geometric 

techniques described in the chapter 3.  The consideration of less computationally 

intensive methods of determining loads from the measured stress distribution are 

described at the end of this section. 

The plate was modelled in MATLAB [14] using a finite element toolbox - CALFEM 

[15] - with thirteen 2D Euler-Bernoulli beam elements (described in chapter 2).  

Elemental stress is determined from the displacements of the nodes of each beam 

element.  The relationship is set out in equation (2.29) 

[ ]{ }yBEflexural ∆=σ , (4.1) 

where E is the Young’s modulus of the material, [ ]B  is the strain displacement matrix, 

{ }∆  are the nodal shearing and rotational displacements and y is the distance from the 

neutral axis at which the stress is required. 

Recall that one of the premises of the finite element method is that the stress is assumed 

to vary linearly between elemental nodes.  For the two dimensional beam element the 

flexural stresses are given by 
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Rotation of the central axis of the beam allows the flexural stress to be cast entirely in 

terms of two rotations 
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where the rotations are now relative to the local axis passing though both ends of the 

deformed element.  The local rotations 1θ  and 2θ  can be seen in figure 3.7 from the 

previous chapter.  The longitudinal axial stress resulting from the x-direction 

displacements of the ends of the element is known to be given by 
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u
L

AE
axial ∆=σ  (4.4) 

where 

12 uuu −=∆ . (4.5) 

Since the estimation of stress is not absolute20, any attempt to determine loading and 

resulting deflected shape of the structure will also be non-absolute.  To establish an 

estimate of the absolute loading and hence the structure’s dynamic behaviour some 

extra information is required.  This would then enable identification of the deflected 

shape Using only static observations two possibilities presented themselves; the first is 

to regard case A - where the test rig was adjusted so that the end blocks were parallel 

and thus the plate was close to being flat - as the datum.  The alternative was to take 

readings relative to the entirely unconfined plate.  The unexpectedly large loading 

observed in case A (top graph in figure 4.3) led to the adoption of the latter scheme. 

The magnitude of the initial deflection was surveyed and found to be a smooth but non-

symmetrical curve with maximum eccentricity of 2.4mm.  The measured shape of the 

plate was included in an initial FE model which then corresponded closely to the state 

of the plate at the point of assumed zero strain.  A Nelder-Mead21 simplex direct search 

method [83] was used to vary two bending moments M1 and M2 and the axial load Faxial 

- shown in figure 4.4 - applied to the ends of the FE model.  The minimisation was 

applied to the difference between analytical and experimental stresses.  The objective 

function was taken as the 2-norm of the vectorised difference 

{ } { }
2expFE σσσ −=∆ , (4.6) 

                                                 
20 The strain gauges can only give an indication of the change in strain relative to the condition of the 
gauges point when monitoring begins. 
21 Different optimisation routines are not discussed herein since it is generally accepted that the 
conditioning of the problem - and clearly the number of parameters - are more important influences on 
the speed of convergence than the choice of optimisation routine chosen. 
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where { }FEσ  and { }expσ  are the finite element and experimental stress distributions.  

These were defined at n  corresponding positions so that 
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The iterative approach to determining the effects of large deformations described in 

chapter 3 was used with the displacement convergence (equation (3.39)) set at 1×10-6.  

The result is a close match of the stress plots for each case.  The longitudinal stress 

distributions of along the length of the top and bottom of the plate arise from the 

identified loading regimes.  These are shown as lines in figure 4.3 with the experimental 

readings appearing as discrete points.  The closeness of the agreement gives much 

confidence in the validity of the identified loads.  This observation takes on particular 

importance when considering the comparison of the FE prediction of loaded dynamic 

behaviour with experimental observations.  The end moments (M1 and M2) and axial 

load (Faxial) giving rise to these distributions are shown in table 4.1, below. 

 

 Case A Case B Case C Case D 

M1 (Nm) 5.8 -26.2 -41.4 -16.9 

M2 (Nm) -9.6 -26.7 -33.3 3.5 

Faxial (N) -7700 -5700 -12800 -7200 

Table 4.1 – Identified Loading 

The maximum overall deflections are determined by the nonlinear finite element 

analysis to be 1, 3, 5 and 6mm respectively.  The greatest of these is a mere 1% of the 

overall length of the narrow plate specimen which is likely to be well within the 

serviceability tolerance of most structures. 

While producing coherent estimates of loading, the method of indirect determination is 

far from efficient and probably not practical for application on real structures.  Several 

simpler methods of deriving stress distributions from loading provide different 
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estimates of the loading.  The simplest route is via consideration of a linear stress 

distribution.  Considering the plate specimen as a single beam finite element, the 

bending load and the axial load become uncoupled.  A more involved method is to use 

the full finite element model.  This is achieved by applying the bending moments and 

subsequently the axial load, with the finite element model being reformulated after each 

step but without considering equilibrium iterations.  This will be referred to as the two 

step approach.  Note that both methods are special cases of the nonlinear geometrical 

method described previously.  The loads identified by application of these two schemes 

to the data from case B are set out in table 4.2.  The last two columns show the effect of 

not including the knowledge of the initial deformity of the plate. 

The number of individual arithmetic operations required for the identification of loading 

by each scheme are also shown to give some comparison of the relative computational 

efficiency.  Whilst noting that the number of operations is a function of the starting 

point of the minimisation process it is clear that a vast increase in computing power is 

required to implement the more accurate schemes.  The resonant frequencies which 

would arise from each set of identified loads are calculated using the full nonlinear 

analysis with tight convergence criteria and are also presented in table 4.2. 

 

   Include Initial Shape Omit Initial Shape 

  Original Simple Two Steps Full 
Equilibrium Two Steps Full 

Equilibrium

Flops: - O(105) O(107) O(109) O(107) O(109) 

M1 (Nm) - -26.0 -25.6 -26.2 -25.7 -27.8 

M2 (Nm) - -27.0 -26.5 -26.7 -26.6 -24.7 

Lo
ad

in
g 

Faxial (N) - -5100 -6940 -5600 -6830 -6000 

1 (Hz) 63.0 65.0 64.2 65.2 64.2 69.5 

2 (Hz) 173.9 166.3 162.6 165.4 162.8 164.6 

B
en

di
ng

 
M

od
es

 

3 (Hz) 340.9 329.6 325.4 328.5 325.6 327.7 

Table 4.2 – Identified Loading and Resonant Frequency Predictions for Case B 
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There is certainly some variation in the prediction of loading which in turn results in 

some inaccuracy in the prediction of resonant frequency.  However, from these 

observations and from the resulting stress distributions which are shown in figure 4.5, it 

is clear that - for this particular specimen - the expense of matching the stress to a large 

amount of accuracy is not justifiable. 

The results indicate that a rudimentary match of strain is required.  Once loading is 

identified the accuracy of the statically updated finite element model should be 

calculated to as much accuracy as can be afforded.  It is particularly important to note 

that the spatial distribution of strain gauges is a crucial factor in allowing the stress 

distribution to be characterised accurately. 

4.2.2 Modal Analysis of Plate Specimen 

Excitation was applied normal to the plane of the plate at the point shown in figure 4.2 

by a small electro-magnetic shaker resting on a foam foundation.  The response for each 

of the four cases was measured at the same point in the same direction by means of a 

laser velocimeter.  It was not the intention to consider changes to mode shape resulting 

from loading in this instance22.  Figure 4.6 shows the FRFs in the form of point 

receptances, 

)(
)()(

fF
fxf =α , (4.8) 

taken from the plate under the four loading conditions. 

The H1 FRF estimator was used to experimentally determine mobility.  As a result some 

definition is lost at resonance.  Some evidence of interaction of the specimen with the 

mechanical shaker is also evident.  Considering only the four clear resonances, the first 

corresponds to the first bending mode while following modes are the second bending, 

                                                 
22 Recent work by Link [84] lends weight to the view that mode shapes cannot be identified consistently 
accurately enough to be considered as representative of a structure. 



Chapter 4 – Experimental Study of the Dynamic Behaviour of Loaded Structures 91 

 

first torsion and third bending modes respectively.  For comparison with the natural 

frequencies predicted by the loadable two dimensional beam model, only the bending 

modes are examined in the following discussions.  A single input single output (SISO) 

line fitting modal identification algorithm [59] was used to determine the bending 

resonant frequencies.  The results of the analysis are set out in table 4.3. 

 

Resonance Frequencies (Hz) Resonant 
Bending Modes Case A Case B Case C Case D 

1 47 58 63 76 

2 153 159 154 155 

3 312 318 307 315 

Table 4.3 – Experimental Resonant Frequencies 

There is clearly a large amount of variation in the measured responses resulting from 

the loading process, particularly of the lowest natural frequency. 

The choice of a method for comparing the sets of data is not a simple one, insufficient 

spatial data exists to enable consideration of the variation in Modal Assurance Criterion 

(MAC) [57] values between these sets of data.  However, an alternative criterion, the 

Frequency Response Assurance Criterion FRAC [85], has been suggested as a means of 

assessing the similitude of the data by comparing frequency domain responses.  The 

FRAC formulation is analogous to the MAC and has similarities to the COMAC [86] in 

that each value compares co-ordinate response.  It is given by 
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where the superscripts p  and q  refer to two response functions defined at frequencies 

iω .  The star symbol ( * ) represents the conjugate transpose.  While the receptances 

( )iωα  in (4.9) are single row (or column) complex quantities it is suggested in [85] that 

it might be necessary to replace these quantities with their absolute values. 
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It is suggested that a factor on either set of frequencies, β , can be included to account 

for a systematic mis-estimation of stiffness in an analytical prediction of ( )p
iωα .  The 

modified FRAC becomes 
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Figure 4.7 shows the result of applying different values of β  to the FRAC between 

receptances from case 1 and case 2, formulating the FRAC using both the complex 

receptances and absolute values.  The observation that an overall change in stiffness is 

required to maximise the level of FRAC is counter intuitive and arises since the 

magnitude of the response of the first mode dominates the formulation.  Figure 4.8 

indicates this clearly on a plot of the absolute values of point receptance for cases A and 

B against a linear scale.  If the factor is included the responses can be clearly seen to be 

very different.  However, it is noticeable that the first mode of the stiffened response 

converges on the mode of the response to which it is being compared (figure 4.9 and 

figure 4.10). 

This observation has some repercussions upon updating methods which use the 

difference between response data (chapter 2 section 2.3.2.2).  If the first mode of a real 

structure – a bridge for instance – was to experience frequency shifts under loading then 

a dilemma arises: if the differences in low order responses are included then there is a 

risk of erroneously stiffening the entire structure.  However, if they are ignored the 

effect of loading will not be included in the updated finite element model. 

Formulating the FRAC with a logarithm of the response leads to a value of 1=β  as one 

would expect (figure 4.11).  The result of using the familiar representation of the 

receptance in decibel units is that the FRAC in all cases is very close to unity as table 

4.4 clearly shows.  The FRAC values are shown as percentages of unity for clarity. 
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Load Case  

A B C D 

A 100.0 99.8 99.4 99.2 

B 99.8 100.0 99.6 99.4 

C 99.4 99.6 100.0 99.6 

Lo
ad

 C
as

e 
D 99.2 99.4 99.6 100.0 

Table 4.4 – % FRAC Values Based on dB Receptance 

Table 4.5 shows the corresponding FRAC values for the absolute values of the 

receptances from the four load cases. 

 

Load Case  

A B C D 

A 100.0 47.6 24.7 15.9 

B 47.6 100.0 40.8 25.2 

C 24.7 40.8 100.0 36.0 

Lo
ad

 C
as

e 

D 15.9 25.2 36.0 100.0 

Table 4.5 – % FRAC Values Based on Absolute Receptance 

Given the experience with determination of the stiffness factor, it is understood that the 

first mode contributes heavily to the low level of agreement between the pairs of 

responses from different load cases.  In such cases the use of FRAC values should be 

treated with extreme caution. 

The preceding paragraphs effectively demonstrate some of the problems which arise 

when attempting to compare response data from nominally identical structures.  A 

comparison of resonant frequencies represents an alternative comparison.  Accordingly 

the implementation of methods which compare sets of identified resonant frequencies 

are investigated in the following sections - principally in section 4.2.4. 
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4.2.3 Comparison of Measured Dynamic Behaviour with FE Modelling 

The loads identified in section 4.2.1 (see table 4.2) were applied to the 2D beam 

representation of the narrow plate using the nonlinear geometric approach described in 

chapter 3.  An eigen-solution of the resulting set of transformed structural matrices 

results in a set of resonant frequency predictions which are shown in table 4.6 along 

with the experimental measurements. 

 

Frequencies (Hz) 

Case A Case B Case C Case D 
Resonance 

Bending 
Modes FE Exp FE Exp FE Exp FE Exp 

1 51 47 65 58 78 63 100 76 

2 157 153 165 159 162 154 160 155 

3 323 312 328 318 317 307 327 315 

Table 4.6 – Analytical Predictions and Experimental Observations of Resonant 
Bending Frequencies 

It is noted that the finite element predictions consistently overestimate the experimental 

data.  Several factors are likely to result in the differences between the predicted and 

observed resonances.  The first is the effect of the discretised nature of the finite 

element model which has been discussed previously.  Additionally the lack of complete 

fixity provided by the experimental supporting structure will have a significant effect on 

the experimental resonances.  These effects make it more difficult to assess to what 

extent the changes to the analytical model reproduce the experimental behaviour. 

It is clear however, that a similarly large amount of variation is manifest in the finite 

element prediction as was measured experimentally.  The following section develops a 

method which facilitates an easier comparison between the sets of data.  

4.2.4 Identification of Zero-Load Resonant Frequencies 

An understandable comparison of experimental and analytical results can be ascertained 

if the experimental dynamic behaviour of the unloaded structure is available.  For this 
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experimental case - as with many industrial cases - it is almost impossible to recreate 

the situation corresponding to the unloaded FE model.  For the narrow plate currently 

under consideration this would involve end constraints which straighten out the initial 

deformity in the plate without introducing axial load. 

This section sets out a technique for estimating the zero-load experimental load from 

the FE model of the structure and several sets dynamic measurements under various 

loading conditions. 

If the thi  experimental resonant frequency from the thj  loading case is written ji E  and 

the corresponding analytical prediction ji A  then the increase in the thp  identified 

resonant frequency from the thq  load case over the corresponding mode in the unloaded 

case is given by 

ppq EE 0−  (4.11) 

with a similar expression for the analytical case 

ppq AA 0− , (4.12) 

where the 0  subscript refers to the zero load case.  It is common to consider percentage 

increases between corresponding resonant frequencies.  Therefore, the normalised 

experimental frequency increase can be considered.  This is 

p

ppq

E
EE

0

0−
. (4.13) 

For a given frequency from a single load case, a prediction of the corresponding zero-

load resonant frequency can be found by minimising the differences between the 
normalised increases with respect to pE0  

p

ppq

p

ppq

A
AA

E
EE

0

0

0

0 −
−

−
. (4.14) 

For a set of loadsn  load cases the pth zero-load resonant frequency can be found by 

minimising 
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with respect to pE0  where freqsnp ...1= .  This can be performed on each frequency in 

turn or the global sum over all freqsn  measured identified frequencies 

∑ ∑
= =
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. (4.16) 

Using this method with all four sets of data yields predictions of bending resonant 

frequencies shown in table 4.7 along with their FE counterparts.  The result of 

minimising absolute frequency differences is also tabulated but can be seen not to be 

significantly different. 

 

Unloaded Resonant Frequencies (Hz) Resonant 
Bending 
Modes 

FE Exp (norm) Exp (abs) 

1 63 52 51 

2 174 167 168 

3 340 329 330 

Table 4.7 - Estimated Experimental Resonant Frequencies 

The percentage increase of each natural frequency relative to the unloaded values are 

displayed in figure 4.12.  The minimisation procedure described above ascribes equal 

importance to the perturbation of all of the modes.  The results indicate that the zero-

load resonant frequencies are estimated so that the perturbation to the higher order 

modes most accurately matches the finite element model prediction.  This phenomenon 

is understandable in light of the observation that the first mode is most sensitive to 

slight alterations in loading.  Hence the prediction of this mode would be expected to be 

less accurate.  Other factors which lead to lack of agreement between dynamic and 

experimental measurements and finite elements predictions are described in the 

following section. 
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The technique presented here - while simple - has considerable practical appeal.  Given 

knowledge or possibly estimation of structural loading at the time of several runs of 

modal testing, it is possible to estimate the set of resonant frequencies which uniquely 

represent the loaded structure.  These are referred to as the zero-load resonant 

frequencies in forthcoming chapters. 

4.2.5 Investigation of FE – Experimental Mismatch 

The previous sections give confidence that the loading upon the plate is the primary 

factor in causing the observed perturbations to resonant frequencies.  Several other 

factors whose influence causes inconsistency between the experimental and FE models 

must also be addressed. 

Firstly, as the previous sections have acknowledged, the test rig not being infinitely 

massive will interact with the plate to some degree.  To investigate the influence of the 

test rig on the dynamic behaviour of the plate, a simplified finite element model was 

used with each the end blocks represented by four solid “brick” finite elements.  The 

plate specimen and each of the adjustments bars were modelled with 5 3D beam 

elements. 

As one would expect, the loss in apparent23 stiffness at the supports results in lower 

predictions of resonant frequency.  Table 4.8 shows that the effect upon the first three 

bending modes. 

 

Bending Resonant 
Frequencies 

Fixed 
Plate 

Plate in 
Test Rig 

Estimated 
Zero-load 
Measure 

1 63.1 58.2 52 

2 174.4 161.7 167 

3 343.9 320.0 329 

Table 4.8 – Experimental Modes Identified 

                                                 
23 This refers to the stiffness of supports “perceived” by the plate specimen. 
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While the result is a closer agreement between the analytical and experimentally 

determined values of resonant frequency at zero load, some disagreement between the 

measured zero-load resonant frequencies and the FE predictions is still evident.  Several 

other factors seem likely to be to blame. 

The previous sections have assumed that the loading applied to the plate consists of 

only axial and bending loads.  While this was the intention during testing, the design of 

the rig makes it difficult to prevent some component of torsional loading to be 

experienced by the specimen. 

A further source of error will arise from the stiffness of the physical connection between 

the plate and the large restraining blocks. 

4.3 Small Framework 

To address some of the issues raised by the initial experimental investigation and to 

circumvent some of its shortcomings, a second test was devised involving a cross 

braced frame structure.  The structure was supported in free-free conditions for dynamic 

testing thus obviating the requirement of accounting for potentially complex interaction 

with boundary conditions.  An adjustable strut in the framework allowed loading to be 

introduced into the structure in a controlled and directly measurable manner. 

The following sections present several sets of dynamic readings taken from the 

framework under different load levels and investigate some of the aspects of the 

changes in dynamic characteristics.  A more comprehensive study of three nominally 

identical frameworks is undertaken in chapter 6.  At this stage the use of model 

updating strategies to alter the finite element model of the structure will be studied. 

4.3.1 Arrangement of Framework 

An exploded view of the truss is shown in figure 4.13; the overall dimensions (between 

joint centres) are 300mm by 500mm.  The truss was constructed from 6 × 15mm mild 
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steel section spars which were bolted at their joints.  Figure 4.14 shows the points at 

which the structure was tested as well as the numbering and co-ordinate system.  Three 

strain gauging locations (also shown in figure 4.14) were used with the instruments 

positioned in pairs on either side of the spars.  These gauges were oriented to measure 

the longitudinal strain.  The framework was supported from two flexible strings to 

minimise interaction of the test structure with the supporting structure. 

The framework was deliberately designed to contain a single redundancy if considered 

as a two dimensional pinned structure.  However, it was anticipated that the non-

coincidence of the centre lines of the constituent spars would result in bending moments 

being transmitted at the joints.  This leads to the requirement that the structure be 

modelled in three dimensions.  The practical observation was that tension induced in the 

adjustable spar led readily to noticeable deflection of spars 1, 2, 3 and 4, allowing the 

effects of deformity in addition to axial spar loads to be investigated. 

4.3.2 Experimental Results 

Four sets of dynamic readings were taken in the out-of-plane z-direction at different 

levels of loading.  Strain gauges on spar 5 adjacent to the turnbuckle indicated that axial 

load in this strut were 440N, 820N and 1230N relative to the initial case.  These load 

cases will be referred to as cases 1, 2 and 3 with the zero-load initial conditions being 

case 0.  Experience gained in the previous experimental investigation (section 4.2.1) has 

shown that difficulties can arise from judging an initial load case to represent zero 

loading.  In this situation the turnbuckle slackened noticeably when no load was 

induced in the axial member.  The strain gauges were zeroed with the turnbuckle in this 

state.  The bolted nature of the joints did not preclude the possibility of some loading 

and deformity being locked into the structures.  However, this was thought not to be 

significant compared to the known loading levels applied with the turnbuckle. 

Broadband random excitation was applied to node 26 – shown in figure 4.15 - in the z-

direction with a small electro-dynamic shaker via a flexible rod or stinger and a force 



Chapter 4 – Experimental Study of the Dynamic Behaviour of Loaded Structures 100 

 

transducer.  Response (mobility) was measured in the same direction at the 24 points 

shown in figure 4.14 in the 0-400Hz range. 

Modal analysis was performed using the MODENT program within the ICATS [87] 

suite of software.  The global method [58] of analysing multiple frequency response 

functions was used to extract natural frequency and mode shape estimates. 

Figure 4.16 shows the point receptances measured from the extremal load cases 0 and 3. 

The dynamic behaviour of the frame is seen to change dramatically under the loading.  

The identified resonant frequencies from all of the load cases are shown in table 4.9.  

Note however that the rows of the table do not necessarily imply correspondence of 

modes.  The identified modes shown in the table are the result of an extensive 

examination of the sets of responses.  It was observed that the “prominence” of modes 

altered noticeably with the level of loading.  Two of the modes, shaded in table 4.9, 

were particularly difficult to identify in the unloaded case. 

 

Resonant Frequencies (Hz) Mode 
Number Case 0 Case 1 Case 2 Case 3 

1 44.3 42.0 40.6 40.1 

2 70.5 82.7 87.3 91.3 

3 90.6 92.0 93.3 94.4 

4 123.4 119.7 115.0 111.5 

5 133.4 141.8 147.4 154.6 

6 178.2 178.1 179.6 177.9 

7 186.5 185.3 183.8 182.3 

8 210.7 224.6 230.2 233.6 

9 229.2 233.2 234.5 236.4 

10 249.3 247.8 245.6 243.7 

11 309.9 306.1 302.8 298.8 

12 347.3 342.8 338.8 334.9 

Table 4.9 – Experimental Modes Identified 

A graphical representation of these results is given in figure 4.17.  This shows each of 

the rows of table 4.9 as a line against the values of identified load in the adjustment bar.  
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The graph gives some confidence in the table’s rows representing correlated modes. Of 

most significance is that all of the resonant frequencies of the structure identified in the 

0-400Hz range are perturbed a great deal, by different amounts and in different 

directions.  The pairs of modes two and three as well as eight and nine are observed to 

be converging upon one another.  Also of interest is the observation that the scale of the 

perturbation in absolute terms for each identified resonant frequency is of a similar 

order.  This observation is borne out in table 4.10 which shows the absolute and 

percentage difference in the identified value of each mode between load cases 0 and 3. 

 

Case 0 
Abs 

Increase 
(Hz) 

% 
Increase

1 -4.2 -9.4 

2 20.8 29.4 

3 3.9 4.3 

4 -11.9 -9.7 

5 21.2 15.9 

6 -0.3 -0.2 

7 -4.2 -2.3 

8 22.9 10.9 

9 7.1 3.1 

10 -5.6 -2.3 

11 -11.1 -3.6 

12 -12.4 -3.6 

Table 4.10 – Differences Between Identified Frequencies - Case 0 and Case 3 

The mode shapes corresponding to each of the resonant frequencies are shown in figure 

4.18.  As one would expect some modes - for instance two and three - are dominated by 

resonance of a subset of the total number of members.  Others represent more global 

displacement patterns, for example modes one and six.  Employing the modal assurance 

criterion to compare the sets of experimental data yields interesting results.  Figure 4.19 

shows the MAC of the mode shapes identified in case 0 with those in case 3 and 

indicates that there is good correlation between the pairs of modes numbered one to five 



Chapter 4 – Experimental Study of the Dynamic Behaviour of Loaded Structures 102 

 

and ten to twelve.  The correspondence between pairs six and seven and particularly 

eight and nine show less clear correlation.  This observation suggests that the 

deformities to the structure and the state of internal stress resulting from loading can 

have a considerable effect on some of the mode shapes.  The following sections allow 

the phenomena to be investigated in more detail with reference to the finite element 

model of the structure. 

4.3.3 Finite Element Modelling 

The framework was modelled using the ANSYS [16] commercial finite element 

package.  Three dimensional cubic beam elements were used exclusively to model the 

structure.  The model consists of a total of 34 elements and 192 degrees of freedom.  

Soft grounded springs were ‘attached’ to the top corners of the framework to prevent 

numerical instability arising from calculation of eigenvalues corresponding to rigid 

body modes of vibration.  The node points at each of which there are six degrees of 

freedom are shown in figure 4.15. 

As the exploded view of the framework in figure 4.13 clearly shows, the struts which 

constitute the truss lie in several layers.  The co-ordinate system is shown in figure 4.15, 

the z axis has its zero value at the mid-depth of back-most spar, 6.  Table 4.11 

summarises the relative location of all of the spars. 

 

Spar z (mm) 

1 6 

2 18 

3 6 

4 18 

5 12 

6 0 

Table 4.11– Relative Depth of Spar Elements 
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This non-coincidence of the lines of action of the spars under loading was accounted for 

by including stiff beams with axes parallel to the global z axes. 

An eigen-solution of the finite element model results in fifteen resonant frequencies in 

the range 0-400Hz whose values are shown in table 4.12. 

 

Mode 
Number 

Frequency 
(Hz) 

1 46.69 

2 87.50 

3 95.21 

4 130.29 

5 140.34 

6 185.74 

7 199.52 

8 212.73 

9 226.42 

10 239.65 

11 246.01 

12 270.99 

13 301.55 

14 331.91 

15 368.91 

Table 4.12 – Resonant Frequencies Predicted By FE Model (Zero Load) 

The mode shapes corresponding to these modes are shown in figure 4.20.   

The mode shapes predicted by the FE model were compared with the experimentally 

determined values from case 0 using the MAC.  The results of this standard procedure 

are shown in figure 4.21.  The results show that while for some of the modes at each 

end of the frequency range of interest show good agreement, several modes around 180-

220Hz do not agree with one another with any certainty.  Figure 4.22 shows the 

agreement of modes between the case 0 readings and the FE prediction in terms of 

MAC values above 0.9, above 0.7 and above 0.5.  Only seven of the twelve identified 
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modes can be readily matched with analytically derived mode shapes leaving 

considerable uncertainty about the correlation of the remaining five modes. 

Some insight into the poorly correlating modes is afforded by considering the auto-

MAC24 of the FE mode shapes.  The results shown in figure 4.23, indicate that there is a 

great deal of similarity between the very modes which had previously failed to correlate 

well with experimental data.  Figure 4.24 illustrates the auto-MAC more clearly, 

showing the locations of MAC values greater that 0.8 with the shaded points indicating 

multiple mode correspondence.  It is seen that the mode shapes of modes 6 and 9 are 

both of a similar form to mode 7; additionally modes 8 and 12 are seen to be much 

alike. 

While the behaviour of the closely correlating modes is a matter of some interest, for 

the purposes of using dynamic data to characterise a structure, the modes which 

correspond to FE modes 6, 7, 8, 9 and 12 can be justifiably overlooked.  For the 

purposes of the current study, the closely correlating modes 1 through 5 will be 

considered in isolation. 

The loading upon the structure was applied to the ANSYS model with both the stress 

stiffening and large-deformation effects described in chapter 3 taken into account.  The 

effect of loading the frame by shortening spar 5 was accounted for in ANSYS in two 

stages as shown in figure 4.25.  Spar 5 was loaded in tension separately from the rest of 

the frame with the load resulting from the shortening of this spar being applied to the 

frame independently of the spar itself.  The elemental stiffness and mass matrices from 

the two sub-models were output from ANSYS and combined in the MATLAB 

environment. 

Loads from 0 to 1200N were applied to the finite element model in this way.  The 

variation of the first five resonant frequencies for which good correlation between finite 

                                                 
24 The auto-MAC is the special instance of the MAC where two identical sets of mode shapes are 
compared and is thus symmetrical. 
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element and experimental modes exists are shown in figure 4.26 along with the 

experimental readings.  The trends in both sets of data appear to be qualitatively similar 

which inspires confidence that the changes to the structure caused by the loading are 

accounted for by the changes to the finite element model resulting from the nonlinear 

analysis. 

To allow the accuracy of the finite element model to be determined, pairs of 

corresponding modes from the zero load case experimental readings and the finite 

element model are set out in table 4.13.  These lower order modes conform to the 

expectation that the finite element model discretisation will lead to over-estimates of 

resonant frequency.  The larger error observed in the prediction of mode two is 

explained by the fact that this mode consists predominantly of flexure of the adjustable 

spar which contains the turnbuckle device whose characteristics were not included in 

the simple model. 

 

Case 0 
Modes 

Frequency 
(Hz) 

FE 
Modes 

Frequency 
(Hz) 

% 
Increase 

1 44.3 1 46.7 5.4 

2 70.5 2 87.2 24.1 

3 90.6 3 95.2 5.1 

4 123.4 4 130.3 5.6 

5 133.4 5 140.3 5.2 

Table 4.13 – Corresponding Modes Zero Loading 

While giving encouraging agreement with the experimental data qualitatively, there is 

clearly some error between the zero-load FE model and experimental measurements 

whose causes must be investigated.  The framework example is revisited in chapter 6 

where the techniques described in chapters 3 and 4 are joined by a dynamic updating 

technique to account for the effects of loading in the structure. 
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4.4 Concluding Remarks 

The state of loading in two experimental case studies has been found to alter 

significantly the dynamical behaviour of the structures.  The techniques described in 

chapter 3 account for both the deformation and stress stiffening resulting from loading.  

These produced perturbations to predicted resonant frequencies consistent with 

observed values. 

An instance which demonstrates the indirect identification of loading using strain 

gauges has been investigated.  Several methods of employing the a priori finite element 

model of a substructure to help to identify loading from discrete strain measurements 

have been investigated.  Deformations which are likely to give rise to changes in 

dynamic readings have been seen to lead to nonlinear stress distributions.  Therefore, an 

appropriately large number of strain gauges must be used to characterise this type of 

stress distribution. 

The problem of determining the dynamic behaviour characteristics of the unloaded state 

of a structure has been investigated.  This scenario could quite plausibly be encountered 

in a real-life situation.  A new method for identifying the zero-load dynamic behaviour 

of a structure has been introduced.  The technique uses several sets “loaded” data and 

allows the identification of loading using a finite element model of the structure. 

The sensitivity of mode shapes to static loading has been studied in a specific 

experimental case study.  The a priori finite element model allows the vibration modes 

with sensitive mode shapes to be excluded from validation exercises. 
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Figure 4.1 - Experimental Arrangement 
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Figure 4.2 - Co-ordinate System and Strain Gauge Locations on Plate 
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Figure 4.3 - Observed Stresses Distributions on Plate – Cases A to D 
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Figure 4.4 – Application of Load to Finite Element Model 
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Figure 4.5 – Stress Distributions from Different Stress Models 
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Figure 4.6 - Point Receptances from Narrow Plate Under Varying Loading 
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Figure 4.7 – FRAC Between Load Cases 1 and 2 Varying β 
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Figure 4.8 – Linear Receptance Case A and Case B 
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Figure 4.9 – Frequency Shifted Receptances 0-800Hz 
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Figure 4.10 – Frequency Shifted Receptances, First Mode 
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Figure 4.11 – Effect of β on FRAC of Case A and Case B Using Log Receptance 
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Figure 4.12 - Percentage Increase From Nominal Zero Load 
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Figure 4.13 - Exploded View of Frame 

 

Spar 6 Spar 5

Spar 3

Spar 2

Spar 1

x

y

Strain
Gauge Pair

Measurement
Position

Spar 4

 

Figure 4.14 – Front View of Redundant Frame Showing Measurement Points 
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Figure 4.15 – Finite Element Model of Framework 
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Figure 4.16 – Point Receptance Load Cases 0 & 3 
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Figure 4.17 – Perturbation of Resonant Frequencies Experimental Observations 
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Figure 4.18 – Experimentally Identified Mode Shapes 
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Figure 4.19 – MAC Between Experimental Load Cases 0 and 3 

 



Chapter 4 – Experimental Study of the Dynamic Behaviour of Loaded Structures 119 

 

 

 
Mode 1 − 46.6Hz Mode 2 − 87.2Hz Mode 3 − 94.9Hz

Mode 4 − 129.9Hz Mode 5 − 140Hz Mode 6 − 186.1Hz

Mode 7 − 199.5Hz Mode 8 − 213.1Hz Mode 9 − 226.8Hz

Mode 10 − 239Hz Mode 11 − 245.5Hz Mode 12 − 271.1Hz

Mode 13 − 302.3Hz Mode 14 − 331Hz Mode 15 − 368Hz

 

Figure 4.20 - Finite Element Mode Shapes 
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Figure 4.21 - MAC Between Experimental Case 0 Modes and FE Prediction 
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Figure 4.22 – Correspondence of Modes Between Case 0 and FE Models 
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Figure 4.23 – Auto-MAC of FE prediction of First Fifteen Modes of Vibration 
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Figure 4.24 – Closely Correlating Modes (MAC > 0.8) in FE Model 
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Figure 4.25 - Construction of FE Model 
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Figure 4.26 – Experimental And Analytical Relationship Between Load and 
Resonant Frequency 
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CHAPTER 5 

MODEL UPDATING OF LOAD-DEPENDENT STRUCTURAL PROPERTIES 

5.1 Introduction 

Chapters 3 and 4 have dealt with the theory underlying the changes to structural 

matrices resulting from structural loading.  In addition the practical aspects of 

identifying axial load distribution and making changes to structural matrices from 

essentially static data have been investigated.  It is observed that resonance frequencies 

are liable to change as a result of loading and that some success can be gained in 

matching the dynamic response of loaded structures from static load identification using 

traditional techniques.  The earlier chapters introduce a static updating step prior to 

dynamic testing.  The approach is to alter element structural matrices to be a close 

representation of the structure undergoing subsequent dynamic testing. 

In particular, chapter 3 shows how the changes to structural matrices resulting from 

static nonlinear geometry effects are taken into account by relatively simple changes to 

structural matrices at an elemental level.  Stress stiffening is effectively included by the 

addition to the elemental structural matrices of a term which is a function of both the 

geometry of the element and the axial25 force.  Deformation effects manifest themselves 

in the form of elemental rigid body rotations. 

The initial static updating step is effective in cases where it is possible either to 

determine the loading point(s) and magnitude(s) directly, or decide whether enough 

information is available to infer these parameters.  In practice it is likely that structural 

loading cannot be easily directly determined.  Motivated by a need to address this 

difficulty, this chapter explores the possibility of casting the stress stiffening and 

                                                 
25 Membrane forces in the case of stress stiffened plates. 
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element rotation terms as updating parameters.  The goal is to include the deformed 

characteristics of the structure under test which could be encapsulated in a finite 

element model directly using dynamic measurements.  These quantities will be 

henceforth referred to as load-dependent updating parameters.  The load-dependent 

parameters could further be included with the updating parameters which might be 

chosen in a typical updating procedure.  This approach opens the possibility of 

including both transient and permanent differences between the finite element model 

and the prototype structure in a single step.  Figure 5.1 compares the two approaches to 

the inclusion of load dependent effects graphically. 

The two new updating parameters namely the elemental stress stiffening and elemental 

rigid body rotation are considered separately in the two following sections (5.2 and 5.3).  

The practicality of implementing each type of updating parameter is examined with 

respect to the eigenvalue sensitivity approach to model updating described in chapter 2.  

Section 5.4 compares the load-dependent updating parameters to currently popular 

updating parameters and in particular so-called generic parameters which can be 

thought of as allowing the most general possible representation of a particular element 

type. 

Note that the application of the updating parameters is explained and demonstrated in 

terms of beam type elements.  Their usefulness is examined with respect to sensitivity 

methods of model updating.  Where appropriate the possibility of applying the 

techniques to different element types and other model updating strategies are referred to 

in the discussion. 

5.2 Updating of Stress Stiffening Effects 

It has already been shown in chapter 3 that stress stiffening effects can be included in 

finite element models by the addition of extra components to elemental stiffness 

matrices.  This occurs in situations where elements form part of a structure which is 

sufficiently slender that axial load may effect the vibration characteristics.  It has further 
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been seen that stress stiffening effects the stability and dynamic behaviour of 

elementary structures.  This is well known and exploited.  However, the relationship 

between loading and dynamic behaviour in more complex structures is less easily 

characterised without turning to finite element modelling.  This method is effective in 

allowing changes in dynamic behaviour of structures as a result of loading to be 

ascertained (see chapters 3 and 4).  Performing the reverse process of assessing 

structural loading from dynamic frequency shifts in complex structures however, has 

hitherto only been possible in the most elementary of cases.  This section investigates 

the formulation of a relationship between changes in stress stiffening of individual 

elements and changes in resonant frequency.  From this basis stress stiffening can be 

calculated from the modal properties by an iterative process. 

5.2.1 Theory 

Starting with the premise that the correct (updated) structural stiffness26 matrix can be 

constructed in terms of the a priori model by 

[ ] [ ] [ ]KKK AU ∆+= . (5.1) 

where the superscripts U  and A  represent the updated and initial (a priori) stiffness 

matrices respectively.  The usual assumption that the updated stiffness matrix is a 

function of a set of updating parameters 
pnppp ,...,, 21  is adopted here.  This can 

further be expressed as a Taylor expansion about the initial stiffness matrix in powers of 

p .  The updated stiffness to the first order is given by 

[ ] [ ] [ ] [ ] [ ] ( )2
j

j

A

j
j

AAU pOK
p

pKKKK +
∂
∂

+=∆+= ∑δ . (5.2) 

If the a priori stiffness matrix is considered as being built from a set of both unloaded 

and loaded component elemental matrices it can be expressed as 

                                                 
26 A similar derivation can be constructed for the mass matrix, in this case however only changes to the 
stiffness matrix are required. 
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[ ] [ ] [ ]( )∑
=
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jj

n

j

ss
e

z
e

A KKK
1

, (5.3) 

where the superscripts z  and ss  refer to the original/zero load elemental matrices and 

stress stiffened matrices respectively.  This requires that the axial load present in an 

element - which is implicit in the stress stiffening term - is available.  Recasting the 

original stiffness matrix in terms of a set of factors 
elemsnppp ,...,, 21  upon the stress 

stiffening terms results in a stiffness matrix given by 

[ ] [ ] [ ]( )∑
=

+=
elems

jj

n

j

ss
ej

z
e

A KpKK
1

. (5.4) 

Differentiating with respect to jp  gives 

[ ] [ ]ss
e

j

A

j
K

p
K

=
∂

∂ . (5.5) 

from which it can be seen that the second and higher derivatives are zero. 

The similarity of the choice of the stress stiffening component of the stiffness matrix of 

a loaded structure with the use of elemental stiffness is thus evident.  As with using the 

overall elemental stiffness as an updating parameter comparing equations (5.2) and 

(5.4)it is seen that the relationship between the updated structural matrix and the 

updating parameter becomes exact 

[ ] [ ]∑=∆
j

ss
ej j

KpK δ . (5.6) 

Noting that the stress stiffness matrix has axial load as a factor and defining [ ]ss

eK̂  as the 

normalised stress stiffness.  Substituting in equation (5.4) leads to the parameter jp  

correctly representing the value of load, that is 

[ ] [ ] [ ]∑
=

⎟
⎠
⎞⎜

⎝
⎛ +=

elems

jj

n

j

ss

ej
z
e KpKK

1

ˆ . (5.7) 

Recalling that the sensitivity of a system eigenvalue iλ  to changes in an updating 

parameter jp  set out chapter 2 (equation (2.49)) is given by 
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substituting (5.5) into (5.8) leads to 

{ } [ ] { }i
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e

T
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j

i
j

K
p

φφ
λ

=
∂
∂

 (5.9) 

where { }iφ  is the mass normalised mode shape (eigenvector) of the thi  mode.  The 

sensitivity of modesn  eigenvalues to pn  parameter values can be expressed as 
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 (5.10) 

or in matrix, vector form as 

[ ]{ } { }δλδ =pS  (5.11) 

where the rows of [ ]S  and { }δλ  should provide sufficient information to produce a 

good estimate of the unknown changes in updating parameter { }pδ .  The pseudo-inverse 

of the sensitivity matrix can be determined in a least-square sense using singular value 

decomposition (see section 2.4 in chapter 2).  In addition the changes in parameter value 

can be ascertained by pre-multiplying the right hand side of (5.11) by the pseudo 

inverse of the sensitivity matrix 

{ } [ ] { }δλδ += Sp . (5.12) 

A useful result of using SVD is that the Frobenius norm of the residual 

{ } [ ]{ }pSR δδλ −=  (5.13) 
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is minimised.  The best estimate of the { }pδ  for the given { }δλ  are gained by an 

iterative process described in chapter 2, where the ( )thk 1+  set of updating parameter 

are given by 

{ } { } { }kkk ppp δ+=+1 . (5.14) 

The magnitude of the changes in parameter  

{ }pmag δ=  (5.15) 

at a particular step in the updating iterations is used to measure convergence.  

Convergence occurs when this value falls below a defined threshold.  Given that the 

updating parameters here are closely related to structural loading, the choice of 

threshold becomes one of setting the accuracy to which loads must be determined. 

From equation (5.9) it is seen that the terms of the sensitivity matrix need to be updated 

for each iteration.  Only the mode shape terms { }φ  are changed at each iteration, the 

stress stiffening term [ ]ssK , itself not being a function of any of the updating parameters 

{ }p .  This implies the a priori finite element model requires changes to only stress 

stiffening parameters to bring it into agreement with experimental data, if the variation 

between the changes in values of { }φ  prevent updating from occurring in a single step.  

This further suggests that the mode shapes of the small framework of chapter 4 which 

were found to vary considerably under loading would produce less robust convergence 

upon correctly identified stress stiffening parameters. 

In chapter 3 it was shown that stress stiffening has the effect of perturbing resonant 

frequencies by linear quantities rather than factoring them.  Thus, the sensitivity of 

eigenvalues to stress-stiffening updating parameters will not increase with each mode, 

instead the terms of the sensitivity matrix will be of the same order.  The result is a set 

of well conditioned equations where the higher resonant frequencies will not necessarily 

dominate the updating problem.  Conversely, if other sources of error in the initial FE 

model of a structure cause increasingly large perturbations to higher order resonant 

frequencies but are not update-able, alterations to elemental loads are unlikely to be 
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able to reconcile analytical predictions of dynamic behaviour with the dynamic 

measurements. 

Note that the method described for assessing the effects of load in a structure strives to 

estimate the set of loads which best match observed experimental dynamic data.  This 

does not necessarily lead to a set of loads that are physically realistic.  Exactly the same 

problem faces any choice of updating parameters.  This is a criticism often levelled at 

model updating since it is often very difficult to verify whether the changes suggested 

are valid.  In the case of loading, however, the physical relevance of the updating 

parameter allows the engineer more insight into veracity of the updated model. 

While the stress stiffening technique offers the prospect of identifying axial loads 

present in slender elements, a formulation of the stress stiffening matrix for the element 

must be obtainable.  As the introductory chapter indicates, this thesis concentrates upon 

the example of two and three dimensional beams for which the stress stiffening matrix 

is readily available.  These element types are heavily used in modelling engineering 

structures and exclusively in the case of structural frameworks.  Note that the technique 

is applicable to any other element for which a stress stiffening matrix can be derived. 

5.2.2 Practical Application of Stress Stiffening Updating 

The theory outlined in the previous section is of considerable practical significance.  It 

offers the prospect of identifying axial loads in framed structures under arbitrary 

loading conditions from dynamic measurements.  The usefulness of this technique is 

investigated in the following sections by means of two case studies. 

5.2.2.1 Identification of Force Magnitude in Axially Loaded Beam 

Consider in the first instance the narrow plate model which has already been thoroughly 

investigated throughout this thesis.  The task of identifying an unknown axial load from 

experimental dynamic observations - while trivial - is a useful starting point.  The case 

study is similar to that described in section 3.2.4 of chapter 3, the configuration of the 
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simulated experiment is shown in figure 5.2.  Since all elements are identical and the 

beam experiences only axial load, a single updating parameter is required to account for 

the stress stiffening effects.  The overall stiffness is included as a second updating 

parameter with which to compare the new parameter.  The experimental data were 

synthesised without any other sources of error between the FE and “experimental” data.  

The stiffness of the experimental model was set at 20% greater than the original FE 

model and an axial load of 5kN was applied.  Figure 5.3 shows the receptance of both 

sets of data up to 400Hz, which contains all of the hallmarks of two structures with 

different stiffnesses.  Commencing from the finite element model without stress 

stiffening effects included, the sensitivities of the first two eigenvalues lead to the 

following expression from which the two parameter values can be ascertained 

⎭
⎬
⎫

⎩
⎨
⎧

×
×−

=
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⎫

⎩
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⎥
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⎤
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⎡

×
×

5
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5

1035.1
1017.1

78.21019.1
42.71057.1

ss

k

p
p

, (5.16) 

where the updating parameters are defined as27 

[ ] ( )[ ] [ ]ss

ss
z

kU KpKpK ˆ1 ++= . (5.17) 

This two degree of freedom configuration affords some insight into the applicability of 

stress stiffening.  Figure 5.4 shows the two linear equations of (5.16) as lines which 

meet at the solution point for kp  and ssp .  This approach to demonstrating conditioning 

of sets of equations in two unknowns was previously used by Waters [54].  The 

conditioning of sets of equations is analogous to the angle between the sets of lines, 

improving as the lines become perpendicular.  Based on this criterion it is observed that 

the conditioning of the equations enables an accurate solution to be obtained.  The 

conditioning of the sets of equations deteriorate with higher order modes.  In other 

words it is more difficult to determine accurately both stress stiffening and overall 

stiffening effects using high order frequencies.  This is explained in light of the fact that 

changing the overall stiffening of the bar results in increasingly large perturbations to 

                                                 
27 The stress stiffening matrix is formulated for a unit load and is thus normalised; represented with a hat. 
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resonant frequencies which will dominate when compared to the perturbations caused 

by stress stiffening effects.  This observation implies that where changes to elemental 

stiffening (or density) are likely to require inclusion in a sensitivity based updating 

procedure, the information from the lower order modes should be used primarily to 

update the stress stiffening effects. 

From equation (5.16) it can also be seen that the sensitivities associated with the overall 

stiffness are a number of orders of magnitude greater than those associated with the 

stress stiffening updating parameter.  The problem of ill-conditioning arising from the 

size of sensitivity terms can be alleviated by factoring the stress-stiffening matrix.  This 

is achieved by a scaling factor which essentially represents an estimation of the order of 

magnitude of the force to be identified.  In this case if the updating parameters are 

defined as  

K p K p KU k
z

ss

ss
= +1000 $ , (5.18) 

the second column of the sensitivity matrix in equation (5.16) is factored by the same 

amount and the conditioning of the problem is thus improved.  In physical terms this 

process is the same as estimating the initial load in a structure.  If more than one stress-

stiffening updating parameter is used, any set of initial parameter (element load) values 

can be chosen to assist with the conditioning of the problem. 

To assess the effect of noise28 and choice of frequencies for updating, multiple updating 

runs were performed with artificial errors of up to 5% imposed upon the experimental 

eigenvalues.  The pertubation to eigenvalues used to simulate experimental data are 

employed to test the resilience of the updating procedure to noise.  In practice noise will 

largely arise from innacuracies in recorded time series data as well as errors arising 

from the modal identification process. 

                                                 
28 Noise is defined in this thesis so as to include all effects which result in the data from an experimental 
test not agreeing with the predictions of a finite element model which are not accounted for when altering 
the finite element model to match the experimental data. 
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Three sets of simulations were defined by the number of modes used to update the FE 

model and comprised respectively; the first two, four and eight modes.  The results from 

the three sets are shown as differently shaded circles in figure 5.5.  As one would expect 

all of the results are distributed about the correct result, but the more modes used to in 

the updating process, the less accurate the estimation of the loading parameter.  The 

level of accuracy in estimation of the stiffness updating parameter does not seem to be 

affected by the number of modes used to update the finite element model.  At first sight 

this result might seem counter-intuitive.  It is usually the maxim that the more 

information about structural dynamics i.e. modes available, the better the chances of 

success in performing a model update.  The reason for the decrease in effectiveness of 

the updating process to identify the loading in the beam with number of modes 

introduced can be explained by the choice of the noise model.  Multiplying the correct 

values of resonant frequencies by a factor of up to 5% causes increasingly large 

absolute shifts in frequency.  It is the experience of the author that noise introduced due 

to errors in signal processing etc. does not exhibit this phenomena.  This assertion is 

backed up by results presented in the chapter 6.  If instead a random absolute value is 

applied to the system eigenvectors the result is very different.  Figure 5.6 shows the 

result perturbing the experimental eigenvalues by adding random values, the magnitude 

of the added value was chosen such that the perturbation to the first eigenvalue was up 

to 5% as before, corresponding to a shift of up to 14Hz on the resonant frequencies.  It 

is seen that the convergence upon the correct parameter values is excellent and 

moreover that using higher order modes improves the ability of the updating scheme to 

identify these points. 

To summarise, the likelihood of success in using stress-stiffening as an updating 

parameter appears to lie in the amount of divergence of modal perturbation with 

frequency.  An additional factor is the extent to which this perturbation is caused by 

parameters which can be changed in the updating process.  An initial survey of the data 
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available from a test structure will quickly allow an engineer to assess the likelihood of 

success of updating the stress-stiffening parameters. 

If experimentally identified resonant frequencies from a loaded structure are found to 

diverge from the unloaded finite element model but experimentally identified resonant 

frequencies are available for a different load step, there is a likelihood that the 

experimental frequency perturbation can be used to identify relative load levels. 

5.2.2.2 Identification of Loads in Small Framework 

The framework structure introduced in the previous chapter allows the usefulness of the 

load identification method to be ascertained in a situation where the relationship 

between structural loading and perturbation to resonant frequencies is not intuitive. 

The finite element model of the framework (see figure 4.14) consists of 34 elements, 26 

of which represent the 6×15mm spars which make up the framework with the remaining 

8 representing the non-coincidence of the 6 spars of the framework.  If modesn  resonant 

frequencies are identified and we wish to identify loadsn  elemental axial loads starting 

with an initial load distribution defined by 
loadsnppp ,...,, 21  the following equation is 

solved iteratively 

[ ] { } { }
modesloadsloadsmodes nnnn pS δλδ =× . (5.19) 

It is both sensible and reasonable to decrease the number of ipδ  to identify by assuming 

that the load in certain sets of elements or substructures will be the same.  In this case 

equation (5.19) is reduced to 

{ } { }{ }[ ] { }λ∆=
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
∆
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++
M

KK 2spar

spar1

1b1a p
p

SS , (5.20) 

where the subscripts ...1b,1a,  for instance refer to the elements which constitute spar 

1.  The same procedure is undertaken for all six spars of the framework leading to six 
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independent loading-related parameters to be identified.  The numbering scheme is 

reproduced in figure 5.7. 

It is intuitive that the best initial estimation of load within a structure will lead to the 

best likelihood of convergence on the correct loading values.  At the other extreme most 

flexibility would be offered if very little information about the load state is required 

beforehand.  The importance of the initial estimate of the loading is investigated by 

means of the framework case study. 

In the following simulations the “experimental” eigenvalues are simulated using the 

finite element model described in chapter 4 with the axial load in each spar given in 

table 5.1, the loads were chosen to represent the load present in a 2D, pinned 

idealisation of the framework where a tensile load of 1kN is imposed on one of the 

diagonal members. 

 

Spar Load (N) 

1 -515 

2 -857 

3 -515 

4 -857 

5 1000 

6 1000 

Table 5.1 – “Experimental” Force Distribution 

The stress stiffening components were incorporated directly into the finite element 

model outside of the finite element package allowing the effect of structural deformity 

arising from loading to be ignored for the time being.  The first 15 non-rigid body 

resonant frequencies for this case are shown in table 5.2 with the absolute and 

percentage frequency shift also presented. 
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Frequency (Hz)  

Unloaded Loaded 
Absolute 
Increase 

(Hz) 

Percentage 
Increase 

46.6 39.3 -7.3 -15.6 

87.2 96.5 9.3 10.6 

94.9 98.7 3.7 3.9 

129.9 120.3 -9.6 -7.4 

140.0 138.2 -1.9 -1.3 

186.1 186.7 0.6 0.3 

199.5 197.2 -2.3 -1.2 

213.1 210.0 -3.1 -1.4 

226.8 230.2 3.4 1.5 

239.0 249.3 10.2 4.3 

245.5 254.8 9.3 3.8 

271.1 264.6 -6.5 -2.4 

302.3 299.2 -3.1 -1.0 

331.0 321.7 -9.3 -2.8 

368.0 359.1 -9.0 -2.4 

Table 5.2 – Change in Natural Frequencies Due to Loading 

The perturbations to natural frequencies are seen not to show any systematic trends.  It 

is further observed that the frequency shifts are in both directions.  While there is much 

similarity between some of the mode shapes (see chapter 4), the mode pairs shown in 

table 5.2 are known to correlate with each other. 

Taking the entirely unloaded structure as the initial model, the first set of stress-

stiffening parameters are thus set to zero.  The sensitivity matrix of the 15 natural 

frequencies shown above to the six updating parameters evaluated about the zero-load 

case is shown graphically in figure 5.8.  The sensitivity of higher order modes to 

changes in load in the six spars are seen to be larger than their lower order counterparts, 

but not dramatically so.  Comparing the sensitivity matrix and the finite element mode 

shapes shown in figure 4.22 confirms that the distribution of strain energy in each mode 

shape relates clearly to the sensitivity of the associated resonance to the added stiffness 
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in that area.  For instance the flexure of spar 5 is characterised by mode 2.  This 

manifests itself as a high sensitivity of mode 2 to changes in the stress stiffening of that 

particular spar. 

The values of the six updating parameters after 10 iterations of the updating process are 

shown in table 5.3.  The tension loads are seen to have been exactly identified and the 

loads in the compression members are estimated to within approximately 10% of the 

target value.  Figure 5.9 shows the identified loads are converging upon their 

“experimental” counterparts. 

 

Spar Theoretical 
Load (N) 

Identified 
Load (N) 

1 -515 -475 

2 -857 -902 

3 -515 -579 

4 -857 -800 

5 1000 1000 

6 1000 1000 

Table 5.3 – Identified Load After Ten Iterations, No Initial Knowledge of Loading 

The correct value of the loads in the diagonal are quickly converged upon which can be 

explained by the preponderance of modes which are sensitive to these particular 

parameters.  The first step of the iteration of the updating process is seen to 

overestimate three of the spar loads substantially with subsequent steps producing 

convergence upon the correct values. 

Applying the additive noise perturbation model described in the previous section 

whereby a random value between –10 and 10 Hz is applied to each frequency point 

yields a reasonably good estimation of the loading present in the structure.  Twenty 

different target sets of data with different noise models were prepared as the 

experimental data and the updating procedure was invoked with no initial knowledge of 

load.  Fifteen natural frequencies were used to characterise the loaded structure.  Ten 

iterations of the updating process were performed and the twenty sets of identified loads 
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are shown in figure 5.10.  Clearly the load in the diagonal members are updated most 

robustly with useful estimates of the loading in the vertical and horizontal members also 

gained. 

The preceding discussion has assumed that no initial knowledge of the loading is 

available.  In practical situations while fully instrumenting a structure might prove 

impractical, some estimation of the loading might be possible.  If for instance, the stress 

in one or more members of the framework is available then two benefits will arise: 

(i) reduction in number of unknowns to identify; and 

(ii) more insight into the correct solution will lead to an improved chance 

of identifying the correct loading. 

As we might expect from the previous results, the most valuable contribution to the 

conditioning of the updating problem is made by a knowledge of the loads upon which 

convergence is slowest.  Figure 5.11 shows the result of performing the load 

identification four times with known loading in respectively members 1, 2 and 5 

compared to the zero initial load situation, the loads in members 3, 4 and 6 converge in 

the same manner as their counterparts, their omission from figure 5.11 is only to aid 

clarity.  As anticipated, a knowledge of either of the compression loads is seen to 

dramatically improve the convergence upon the target loads. 

The significance of this observation is that a formulation of the sensitivity of 

eigenvalues to elemental axial load gives insight into which member should be 

instrumented to enable the most successful identification of loading.  A simulated study 

would allow this information to be gained.  However, this is a somewhat involved not to 

mention computationally expensive procedure.  A more rapid estimate of which 

elements should have their loading identified experimentally can be gained from a 

consideration of the pseudo-inverse of the sensitivity matrix.  The magnitude of the 

terms in the rows in this matrix give an indication of the ‘lack of sensitivity’ of elements 

to modal changes.  Hence elements giving rise to large values of the “Element-wise 
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inverse sensitivity magnitude” or EISM provide the best candidates for determination of 

loading by other means.  Figure 5.12 shows the value of the EISM for each of the six 

spars of the current case study for the sensitivity matrix constructed for {p}=0.  The 

spars experiencing compression are seen to exhibit much higher values than spars 5 and 

6 indicating that independently identified loading in these members would be most 

helpful. 

5.2.3 Implementation Using Commercial Software 

The finite element modelling, eigen-solutions and subsequent analysis for the two brief 

case studies (in sections 5.2.2.1 and 5.2.2.2) were performed entirely in the MATLAB 

[14] environment.  This offers the ideal conditions for investigating and developing 

updating techniques.  In practice however, a specialist commercial finite element 

package would be used to generate the initial finite element model. 

The method lends itself well to implementation in “real life” provided that the following 

information is available from the finite element software and can be exported to third 

party software: 

(a) elemental structural matrices; 

(b) location of elements in global matrices; and 

(c) stress stiffening modification to elemental matrices. 

The method proceeds in exactly the same way as the overall elemental mass and 

stiffness would be updated.  The modification to the approach is that the elemental 

stress stiffening matrices are required instead of the elemental mass and stiffness 

matrices. 

5.3 Updating of Deformation Properties 

In some circumstances, load induced alterations to dynamic behaviour can be taken into 

account largely or entirely by the stress stiffening effects described in the previous 
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section.  The preceding chapters have shown, however, that structural deformity also 

plays a role in altering resonant frequencies.  Chapter 3 and 4 indicate that in terms of 

the finite element model, changes to geometry can be accounted for by rigid body 

rotation of individual finite elements.  The transformation from the unloaded and 

undeformed finite element structural model to the deformed model is an involved 

process even if the location and magnitude of structural loading is known.  If the 

loading - and hence deformations - must be inferred indirectly, the process can be very 

computationally intensive.  This is particularly relevant for elements with more degrees 

of freedom than the 2D beam.  There is the additionally onerous requirement that a wide 

range of static measurements are required. 

The motivation therefore for a method of identifying structural deformations from 

dynamic measurements is very clear.  To this end a method is presented whereby the 

sensitivity of measured dynamic data to changes in elemental rotation are derived.  The 

method is validated using the simple narrow plate example which has been used 

frequently in this thesis. 

An extension to this procedure whereby groups of elemental rotations whose inter-

relationship is known is developed and tested by means of a simulated case study. 

The introduction of rigid body rotation updating parameters has been motivated by the 

requirement to model the effects of loading to structures.  However, it is important to 

note that the methods introduced in the following sections can be used to update 

structural deformity arising from any source.  In other words, these parameters allow 

the possibility that the finite element model can be released from the constraints of the 

initial spatial choice of node points. 

5.3.1 Eigenvalue Sensitivity to Rigid Body Rotation 

The transformation which rotates the structural matrices of a two dimensional beam 

element while conserving length and other properties is given by 
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The notation ( )[ ]jG θ  will be used to represent the rotation of the jth element.  The 

superscripts on the elemental stiffness matrices represent the matrices before and after 

rotation.  The initial matrix given the superscript z  need not represent the basic 

elemental formulation, this represents any element in an a priori finite element model. 

The transformation is, of course, the same as that which converts elemental to global 

co-ordinates described in chapter 2 and is implicit in finite element coding.  Note that 

only a single parameter is required to facilitate the transformation in two dimensions.  A 

further two parameters are required in three dimensions. 

To enable the use of the elemental rotation as a (dynamic) updating parameter it is 

necessary to establish a relationship between the rotation of one or more elements and 

some measurable dynamic properties of a structure.  The crucial stage in the use of both 

the eigenvalue and response function sensitivity methods is to establish the rate of 

change of the stiffness and mass matrices with respect to an updating parameter jp , 

that is 

[ ]K
p j∂
∂  (5.24) 

and 
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If a set of parameters jθ  upon which the formulation of the global stiffness and mass 

matrices depend are defined as the update-able parameters, the global mass and stiffness 

matrices are constructed from the transformed elemental matrices thus 
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and 
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where pn  is the number of elements to update and en  is the total number of elements.  

The second summation in each case represents the contribution of elements which are 

not rotated by any of the jθ . 

Differentiating the expression for the transformed stiffness matrix of equation (5.26) 

with respect to the thj  elemental rotation leads to 
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where the dependence of [ ]G  upon jθ  is omitted for the sake of brevity.  To simplify 

this expression the substitution 
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is made, from which it can easily be demonstrated that 
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Substituting (5.29) and (5.30) into (5.28) and further noting that the basic stiffness 

matrix [ ]eK  is not itself a function of the rotation jθ  gives 
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A similar relationship is derived for the transformation of the mass matrix 
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Substituting (5.31) and (5.32) into (5.8) gives 
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which is the sensitivity of the thi  eigenvalue to the rotation of the thj  element.  Given 

that this expression can be evaluated for some initial value of jθ , the familiar iterative 

approach to estimating the overall changes in a number of such parameters can be 

embarked upon. 

As with the stress stiffening updating procedure described above, information in 

addition to the elemental matrices is required.  In this case the rotational transformation 

matrix [ ]G  and its derivative [ ]H  are required for as many elements as one wishes to 

alter the rigid body rotations.  Note however that the transformation matrices are 

general quantities and that the actual rotations of elements relative to some axis are not 

required. 

For the two dimensional beam the transformation matrix [ ]H  in (5.33) can be found to 

be 
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As the previous example of updating stress stiffening parameters has suggested, in 

addition to the information furnished by dynamic measurements a great deal more 
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information about possible patterns of elemental rotations can be input from a 

knowledge of the structure.  To this end a technique is described in section 5.3.3 which 

paves the way for updating of groups of elements whose rigid body rotations obey some 

pre-defined relationship. 

5.3.2 Implementation of Elemental Rotation Updating 

To investigate the usefulness of the rotational updating parameter, the 650mm long 

100mm wide x 5mm deep beam is once again investigated.  The validity and some of 

the aspects of the method are first studied by considering a single updating parameter 

namely the rotation, ξ, of the sixth of the thirteen two dimensional beam elements 

shown in figure 5.13.  While a very simple transformation, the finite element model thus 

altered is a reasonable representation of a beam whose ends have been translated.  The 

rotation of this element causes varying amounts of perturbations to the resonant 

frequencies, the first six of which are shown in figure 5.14.  The effect of both positive 

and negative rotation are seen to be identical which is understandable given the 

symmetrical nature of the structure’s geometry.  Accordingly the sensitivity of all of the 

natural frequencies to the change in rotation, which is the gradient of any of the lines 

shown in figure 5.14, passes through the origin at zero rotation.  The perturbation to the 

first six frequencies of the structure due to a rotation of this element of 2° is shown in 

table 5.4.  As with the perturbations to resonant frequencies caused by variations in 

elemental stress stiffening, the modal shifts do not appear to obey any systematic trends.  

Principally there does not seem to be a trend for the absolute increase in resonant 

frequency to grow with the order of the identified resonances. 
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Frequency (Hz)  

Straight Deformed 
Absolute 
Increase 

(Hz) 

Percentage 
Increase 

62.9 63.3 0.3 0.6 

173.5 176.4 2.8 1.6 

340.4 342.6 2.2 0.6 

563.1 563.9 0.8 0.1 

842.4 845.6 3.3 0.4 

1179.0 1179.1 0.0 0.0 

1574.6 1577.3 2.7 0.2 

Table 5.4 – Perturbation to Natural Frequency By Rotating Single Element 

Taking the FE model of the straight beam as the initial estimate, so that 0=ξ , leads to 

zero sensitivity values.  No estimate of an improved estimation of the updating 

parameter can therefore be made.  If instead, a non-zero value of jθ  is chosen which 

essentially implies that the initial FE model includes a deformation then it is possible to 

converge upon an estimate for the rotation of the element which represents the 

"experimental" data. 

Continuing with the example of the beam and formulating the updating sensitivity 

problem to discover the rotation ξ of the sixth element of the beam from dynamic 

measurements.  The experimental data in the first instance is derived from the case 

ξ=2°, shown in the second column of table 5.4.  Four modes are used to estimate the 

value of the elemental rotation.  As the previous discussion has indicated, a value of ξ = 

0 leads to a null sensitivity matrix therefore some initial value is required to solve the 

equation 

{ } { }δλδξ =S . (5.35) 

It is intuitive that an initial guess at the value of ξ should be of the same order as the 

expected alteration.  Figure 5.15 shows how the sensitivity of the first four modes to the 

value of ξ vary.  While there do appear to be optimal values for each mode, the choice 
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of initial parameter does not appear to affect the conditioning of the problem 

excessively.  Commencing with an initial rotation of the sixth element of 5°, the correct 

value is converged upon quickly as shown in figure 5.16. 

An interesting insight into the possibility of correctly identifying shape changes from 

dynamic data is gained by attempting to update the rotation of two independent 

elements.  Considering the rotations of the fifth and sixth elements of the beam - ξ5 and 

ξ6 - as the update-able parameters and setting the target values as 0° and 2°, and starting 

with a number of initial values of ξ5 and ξ6 leads to four possible solutions.  Two of 

these correspond to the target / experimental value and its symmetrical counterpart 

while the others correspond to another configuration of the two elemental angles.  The 

two possible positive solutions are shown in table 5.5.  Given the proximity of the 

second choice of update-able element to the first, it is not a surprise that similar 

frequency perturbations will be observed by rotating the adjacent element.  The values 

of updating parameter which are converged upon depend on the initially chosen values 

of ξ5 and ξ6.  Figure 5.17 shows a large range of starting points on the ξ5 - ξ6  plane as 

well as the four pairs of values which match the data closely.   

 

Updating Parameter Correct Incorrect 

ξ5 0.00 1.53 

ξ6 2.00 0.05 

Table 5.5 – Possible Solutions For Two Elemental Rotations 

If more than two updating parameters are chosen, the number of possible solutions 

increases accordingly.  This example graphically demonstrates that if the rotations of 

individual elements are to be updated, the number and location of elements must be 

carefully limited to avoid the possibility of many competing solutions whose alteration 

to the structural form is very similar.  An extension from single element transformation 

to alteration of profiles which mitigates against this limitation is described in the 

following section. 
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5.3.3 Updating of Deflection Profile Magnitudes 

The sensitivity of natural frequencies to rotations of individual elements has been 

shown to work via a simulated case study which has allowed some of the characteristics 

of this approach to be investigated.  The restricted amount of information available from 

a comparison of dynamic data limits the number of independent parameters which can 

be realistically updated.  Therefore, with the exception of cases where the orientation of 

a small number of elements can be seen to characterise structural deformation, the 

requirement to consolidate elemental deformations into fewer parameters which have a 

global effect is pressing. 

At this point the concept of structural profiles are introduced.  The profiles describe the 

relationship which exists between a number of element rigid body rotations such that 

they can be defined by a single parameter.  The magnitude of the profile term is 

arbitrary, the entire profile being factored by a scalar which gives the set of elemental 

rotations some physical relevance.  The rotations of ηn  elements, the thk  of which is kθ  

can be written 
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where 
η

ηηη n..., 21  define the profile and p  scales the profile to a useful value.  The 

structural finite element is recast to be a function of the profile 
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where the second summation represents the set of elements whose rotation is not 

affected by the profile. 

The values of the kθ  for the half period sinusoidal deflection of a beam such as that 

shown in figure 5.18 and consisting of n  elements for example can be determined  from 
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In terms of the notation used in (5.36) 

L
dp =  (5.39) 

and the profile of the thk  element is given by 

( )
⎟
⎠
⎞

⎜
⎝
⎛ −

=
n

k
k 2

12cos ππη     ηnk ...,2,1= . (5.40) 

It should be noted that no functional relationship need exist between the values of kη ; if 

necessary the values can be defined explicitly.  The example of the beam displacing 

with the sinusoidal characteristic represents the buckled shape of a perfect pin-jointed 

strut as well as the mode shape corresponding to the first mode of vibration. This is 

considered in the case study in the following section along with the shape 

corresponding to the second buckling/vibration mode. 

It is clear from (5.36) that p  can be considered as an update-able parameter.  So for the 

beam example, if the values of kη  are chosen according to (5.40) and the length of the 

beam is necessarily considered constant then the central deflection of the beam will 

essentially be the updating parameter. 

A value of 0=p  implies no change to the finite element model as before.  Moreover as 

with the single element rotation described in section 5.3.1 the symmetrical nature of the 

profile of rotations implies that the derivative of the system eigenvalues with respect to 

p  evaluated at 0=p  will also be equal to zero.  That is 
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For this reason a realistic but non-zero value of the updating must be chosen initially.  

Given the physical relevance of the parameter it is an easy task to choose this initial 

value. 

Now differentiating equation (5.37) with respect to p  gives 
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Differentiating [ ]K  with respect to pkη  as above in equation (5.31) 
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As before the same procedure must be applied to the mass matrix. 

The expression for the sensitivity of the thi  resonant frequency to the thj  profile 

updating parameter is given by given by the usual relationship 
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Clearly the same reasoning can be applied to any set of elements whose rigid body 

rotations form a relationship which approximates to a realistic displacement.  Further, 

any number of parameters which define profiles can be used as updating parameters. 

Another issue which must be addressed before this technique can be implemented 

practically is that of symmetry.  It is clear that there can exist multiple states of 

symmetrical displacements which will achieve the same frequency perturbation.  If it is 

important to identify the correct displacement from the set of possible values, several 

possible avenues are available.  The initial values of profile magnitude will influence 

which solution is converged upon therefore the initial values are chosen such that the 

shape of the initial finite element model29 matches the shape if not the magnitude of the 

observed displacements.  In this case then it is likely that the solution will converge 

upon the correct value.  Alternatively the updating process could be started from 

arbitrary parameter values.  The sign of the values are subsequently altered to match 

known characteristics of the structural displacement. 

                                                 
29 This term relates to the finite element model constructed according to the initial updating parameter 
values. 
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5.3.4 Implementation of Profile Updating Method 

The process of updating the magnitude of pre-defined structural deformations appears to 

offer a method of taking account of deformations which cause perturbations to resonant 

frequencies in practice.  Before attempting to use this technique on experimental data it 

is prudent to assess its effectiveness via a carefully controllable case study.  As a first 

step the method will attempt to determine deflection characteristics of the clamped 

beam described above. 

To add an element of realism, the measured initial deformity of the thin plate will be 

used to generate the “experimental” data.  The plate is therefore being assumed to adopt 

its naturally cambered state even when clamped.  The measured deflection of the plate 

has been described in section 4.2.1 having a maximum deflection of 2.4mm and being 

neither symmetrical nor sinusoidal.  At this stage the deformity of the plate is 

considered independently of loading i.e. the camber in the plate would still exist if the 

plate was released from its fixed supports. 

If the rotation of the thirteen elements of the initial 13 2D beam element FE model of 

the thin plate are related by the sinusoid relationship given in equation (5.38) the 

variation of the first five natural frequencies of the plate with d are shown in figure 

5.19.  Note that the value of the parameter represents the deflection of the plate in 

metres.  As the previous chapters have led one to expect, the effect of this type of 

deflected shape strongly influences the first mode of vibration.  Note however that if the 

beam was a part of a larger assembly the effects of this deflection would be more 

widespread. 

This elementary case study allows one important note of caution to be struck.  At a 

certain level of deflection shown clearly in figure 5.20 (approximately 12mm in this 

situation) the symmetrical mode of vibration which occurs at the lowest frequency in 

the straight beam increases to exceed the resonant frequency of the first anti-symmetric 

mode of vibration.  The sensitivity of the “new” first modes drops dramatically at this 
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point.  The result of choosing as an initial parameter for beam deflection a point beyond 

this limit leads to unrealistic beam deflection profiles, an example of which is shown in 

figure 5.21.  This extreme updated solution would of course be rejected, but it serves as 

a reminder that the physical relevance of updated structural deflections allows the 

veracity of updated solutions to be determined with some confidence. 

Using as an initial estimate of the deflection of the beam any point below the 12mm 

limit leads quickly to an estimation of the sinusoidal shape which most closely matches 

the dynamic properties of the deflected experimental the plate.  Figure 5.22 shows that 

the identified sinusoidal shape is a close representation of the measured deflection.  

Additionally it is seen that convergence upon this solution occurs after around 3 

iterations of the updating procedure.   

 

Natural Frequencies (Hz) 

Straight Target Updated

62.95 69.53 69.59 

173.55 173.84 173.54 

340.38 341.01 340.40 

563.12 563.13 563.12 

842.37 842.48 842.37 

Table 5.6 – Natural Frequencies of Updated Model Compared With Target 

Table 5.6 above shows the natural frequencies of the updated model compared to those 

of the target model from which it can be seen that the first mode of vibration of the 

updated finite element model is a much closer match of the experimental target data. 

It is clear that considering the perturbation to the lowest resonant frequency provides 

the most useful information with which to identify this type of deflection of the beam.  

Note however that the same result can be gained from using any combination of modes 

although in some cases convergence will be extremely slow.  The use of an SVD 

solution to determine the deflection from a number of modes would allow the equation 

involving the first natural frequency to dominate. 
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If instead of the profile approach, the standard technique of updating elemental mass or 

stiffness factors the result would be much the same as the case study presented in 

chapter 2 section 2.6.  Many solutions would be possible depending on the choice of 

elements to update, but none would be physically justifiable. 

The consideration of a second updating parameter to allow the updated model to contain 

a linear combination of two profiles is now introduced.  In the current context the most 

logical choice of shape is that of a sinusoid of half the period of the previous example.  

The profile is defined by 

( )
⎟
⎠
⎞

⎜
⎝
⎛ −

=
n

k
k

ππη 12cos2     ηnk ...,2,1= , (5.45) 

where once again the updating parameter is takes on the value 

L
dp = . (5.46) 

Using two updating parameters 1p  and 2p  relating to the maximum deflections of the 

two profiles, a slightly improved match to the target dynamic data and the deformed 

shape is achieved.  This is shown in figure 5.23 along with the convergence of the two 

updating parameters upon their final values.  Table 5.7 shows that the prediction of the 

natural frequency of the second mode - which is most sensitive to the second profile 

chosen - is improved by incorporating the second profile updating parameter. 

 

Resonant Frequencies (Hz) 

Straight Target Updated 
p1 

Updated 
p2 

62.95 69.53 69.59 69.53 

173.55 173.84 173.54 173.84 

340.38 341.01 340.40 340.40 

563.12 563.13 563.12 563.12 

842.37 842.48 842.37 842.37 

Table 5.7 – Improvement to Prediction of Resonant Frequency From Using Two 
Profiles 
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Clearly the choice of profiles to update shares some similarities with the Fourier 

transform, indeed if the beam was modelled with an infinite number of elements, the 

more profiles chosen by halving the period of the previous profile would allow 

convergence upon any continuous deflected shape. 

The relationship between the initial values of the updating parameters and the final 

values for the two profile parameter case is shown in figure 5.24.  As with the case of 

two single element rotations, there are four possible solutions.  The small dots show 

initial conditions which do not lead quickly to convergence.  The two bands of non-

converging points relate to structural configurations in which the modes do not share a 

direct correlation with the correct model due to mode swapping.  As the previous 

section has outlined, the physical relevance of the updated parameters allows a good 

estimate of the initial parameters. 

5.4 Comparison With Established Updating Parameters 

The evolution of different types of updating parameters has been thoroughly set out in 

chapter 2.  The diversity of updating parameters is somewhat curtailed by the lack of 

information available from experimental observations.  The under-determination of the 

updating problem partly explains the continued popularity of updating elemental 

stiffness and mass values. 

The introduction by Gladwell and Ahmadian [42] of the concept of generic elements 

offers the opportunity of updating generalised elemental parameters such that the 

updated element is a member of a family of physically realistic elements.  To establish 

the credentials of the updating parameters proposed in this chapter it is prudent at this 

stage to consider whether they themselves are members of the their “generic” element 

family.  The generic element method will firstly be set out in some detail. 

In terms of the changes which must be made to an elemental stiffness or mass matrix to 

model the prototype model correctly, a priori elements are split into two categories: 

those whose formulation does not include certain important ‘effects’ and those where all 
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‘relevant effects’ are included but their numerical results may be inaccurate.  The latter 

problem is likely to benefit from more accurate changes in conventional updating 

process.  However this level of accuracy in the original FE model somewhat blunts the 

effectiveness of updating methods. 

The generic element method takes a different view.  Instead of seeking to change 

individual elemental parameters to minimise some objective function, the overall 

elemental form is potentially altered to meet the optimal requirements.  Essentially the 

mode shapes of individual elements are altered used as updating parameters. 

The changes to a 2D beam to update load effects as described in the previous sections 

can be shown not to be a members of the generic 2D beam family.  Considering firstly 

the effect of adding a stress stiffening matrix at the elemental level given by 
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Considering values of the parameters E, I and F as unity, the elemental matrix can 

quickly be determined to have rank 3.  This in turn implies three straining modes.  An 

element undergoing rigid body rotation in an updating procedure can be quickly shown 

not to be a member of the family of elements.  The rotation of the element will 

introduce apparent coupling between axial loads and transverse motion with respect to 

the element’s original local axes. 

5.5 Concluding Remarks 

Based upon experience gained from the previous chapters, two new types of updating 

parameters have been introduced.  The parameters allow the aspects of the finite 

element which are known to be altered during loading to be included as parameters in a 

model updating procedure. 
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A stress stiffening parameter has been shown to provide a means of identifying axial 

loads in beam elements from the dynamic characteristics of the structure in loaded and 

unloaded states.  The prediction of unloaded behaviour is generated by a finite element 

model and the identification of elemental loads is performed as part of a more general 

identification of mis-modelled structural properties. 

The validity of the method has been demonstrated by means of two examples based 

upon beam elements.  The likelihood of identification of structural loading is shown not 

be sensitive to the addition of realistic levels of noise.  Divergence of successive 

differences in resonant frequencies such as would be expected from a mis-modelling of 

structural mass or stiffness leads to a dominance of the higher order modes and hence a 

likelihood of poor identification of loading.  To this end it is advised that stiffness and 

mass parameters are included in the updating process and that where identification of 

loading is of primary importance, lower order modes are given prominence in the 

solution of the updating equation. 

Some independent static measurement of the load within a structure is shown to 

improve the chance of successfully identifying elemental loading.  The choice of 

location at which loading is specified is shown to be significant in determining the 

speed and accuracy of the dynamic load identification.  A method is presented which 

indicates the locations at which a knowledge of structural loading are most beneficial to 

the dynamic load identification method. 

Sensitivity of dynamic behaviour to rigid body rotation of individual elements has been 

investigated.  A method for updating individual elemental rotations to change the 

geometry of a structure effectively has been presented and shown to work in a simulated 

case study.  An attractive extension to this technique has been set out whereby the 

magnitudes of sets of pre-defined structural deflections can be updated. 

The danger of modes “swapping” as a result of parametric changes has been 

encountered.  A case study has shown that swapping of FE modes which are compared 

with experimental values can have a deleterious effect on the likelihood of updating 
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success.  This issue is not isolated to rigid-body rotation elements.  The ability of FE 

updating techniques to cope with mode swapping is an area for urgent further work. 

The changes made to individual beam elements have been shown not to be members of 

the family of generic beam elements.  Thus while offering an attractive means of 

updating finite elements, it is not possible to take account of load-induced effects using 

the generic updating parameters.  Conversely the updating of generic parameters cannot 

account for stress stiffening effects and structural deformations. 

Broadly the two new types of updating parameters are philosophically different from 

previous updating parameters and allow the effects of loading to be encapsulated in a 

finite element model. 

The use of rigid body updating parameters in particular offers a new dimension to the 

attributes of an initial finite element model which can be updated.  The use of updating 

profiles potentially allows changes to the geometry of any or all of the FE model of the 

test structure.  This approach appears to offer a great deal of potential and should be the 

subject of future work. 
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Figure 5.1 – Static vs. Dynamic Approaches to Updating  
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Figure 5.2 - Fixed-Fixed 13 Element Beam 
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Figure 5.3 – Receptance of “Experiment” from FE Model 
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Figure 5.4 – Identification of Stiffness and Stress Stiffening Using Two Modes 
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Figure 5.5 – Effect of Multiplicative Noise & Eigenvalue Choice on Updating  
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Figure 5.6 – Effect of Additive Noise and Eigenvalue Selection on Updating Success 
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Figure 5.7 – Numbering System for Framework Spars 
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Figure 5.8 – Sensitivity Matrix, {p} =0 
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Figure 5.9 – Identified Loads From No Initial Knowledge of Loading 
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Figure 5.10 – Loads Identified From Noisy Experimental Data 
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Figure 5.11 – Load Identification With Various Initial Condition 
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Figure 5.12 – EISM to Estimate Spar For Static Load Determination 
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Figure 5.13 - Rotation of Single Beam Element 
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Figure 5.14 - Perturbations to Resonant Frequencies 
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Figure 5.15 - Sensitivity of Four Resonant Frequencies to Rotation of Element Six 
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Figure 5.16 – Convergence Of Element Rotation on “Experimental” Value 
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Figure 5.17 – Four Possible Solutions to Two Parameter System 
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Figure 5.18 – Relationship Between Element Rotations and Central Displacement 
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Figure 5.19 – Effect of Sinusoidal Static Displacement on Resonant Frequency 
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Figure 5.20 – Mode Swapping With Large Displacement 
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Figure 5.21 – Updated Solution θinitial=0.02 
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Figure 5.22 – Convergence Upon “Best Fit” Solution 
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Figure 5.23 - Converged Solution Using Two Profile Updating Parameters 



Chapter 5 – Model Updating Of Load-Dependent Structural Properties 169 

 

 

 

 

-0.01 0 0.01
-0.01

0

0.01

p1

p 2

NO CONVERGENCE

NO CONVERGENCE

 

Figure 5.24 - Updated Solution Using Two Profile Parameters; Various Initial 
Deflections 
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CHAPTER 6 

EXPERIMENTAL UPDATING OF LOADED STRUCTURE 

6.1 Introduction 

A good deal of background to the area of identification of structural loading and the 

issues related to inclusion of these effects in finite element models has been covered in 

the foregoing discussion.  The previous chapter has specifically investigated methods 

whereby load dependent updating parameters allow structures to be updated to account 

for loading.  This potentially allows the possibility of identifying loading levels from 

dynamic behaviour.  However, the practicalities of using these parameters can only be 

adequately tested using a practical test case. 

Chapter 2 has reviewed a number of reported cases of updating techniques having been 

applied to real experimental situations.  The observation was that success has been in 

quite short supply.  Given the extensive literature devoted to finite element model 

updating, the amount of effort expended in applying the techniques to real experimental 

data has until recently been relatively low.  This chapter intends to redress the balance 

by presenting the results of tests upon an experimental structure.  Three identical 

structures have been tested extensively in different load conditions. This has led to a 

large amount of information from which conclusions can be drawn about the certainty 

with which the dynamic behaviour can be characterised.  The experimental data are 

augmented by a new finite element model built “from scratch” whose material 

properties have been validated at several stages of its construction. 

Both dynamic and static load measurements have been taken from the set of test 

structures under several sets of loading.  These allow the predictive accuracy of a 

statically updated finite element model to be determined. 
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The effectiveness of dynamically updating the model using parameters set out in the 

previous chapter is finally investigated.  The large amount of information about the 

structure which is available makes it possible to draw conclusions about the correctness 

of the updated model.  The availability of data from several identical structures allows 

some insight into the effect of variability in construction. 

6.2 Experimental Details 

The test structures consist of three frames similar in nearly all respects to the one 

described in chapter 4.  The experimental procedure for testing the three new 

frameworks is broadly similar to that set out in chapter 4 to which the reader is referred 

for further details. 

6.2.1 Description of Test Specimen 

The new frames differed from the previously described frame in two important respects.  

Firstly the new frames employed a different - slightly more slender - design of 

turnbuckle.  Secondly, and more importantly, the corners of the frame were spot 

welded; effectively fixing the joints.  Experience from the first frame suggested that the 

level of torqueing of the bolts of the first frame introduced some uncertainty concerning 

the fixity of the frame in terms of the static load.  To improve the chance of successfully 

modelling the structure under static loading this unknown was effectively removed. 

The new frames were labelled B, C and D.  The original frame, where necessary, is 

referred to as frame A. 

6.2.2 Testing Procedure 

Each of the frames B, C and D were tested under 4 levels of loading.  The first loading 

regime in each case was intended to relate to the zero-load state.  The loading instances 

will be referred to as cases 0, 1, 2 and 3.  Cases 1, 2 and 3 were induced by shortening 

the adjustable spar number 5 (shown in figure 6.1) using the turnbuckle.  The load 
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increments were intended to be approximately equal.  The tests reported on frames B, C 

and D were conducted under identical experimental conditions. 

At each level of loading, mobility measurements30 were determined between the 

excitation point at node 26 – shown on figure 6.1 - and the response of each of the other 

visible points in the out of plane direction.  All other experimental details are identical 

to those described in section 4.3.2. 

6.3 Measured Loading on Three Frames 

The strain gauging positions for frames B, C and D are shown in figure 6.2.  Frame B 

was extensively gauged to help to compare the loading present in the structure with that 

predicted by finite element modelling.  The measured axial load in the adjustment spar 

for each frame and each load case are shown in table 6.1.  As with the tests on frame A 

described in chapter 4, the zero-load case is defined by a noticeable slacking in the 

turnbuckle.  The load steps are seen to be approximately 500N. 

 

Force (N) 
Load Case 

Frame B Frame C Frame D 

0 0 0 0 

1 449 514 616 

2 1135 1066 1161 

3 1618 1488 1604 

Table 6.1 – Identified Load in Adjustment Spar 

Frame B boasts some twenty four strain gauges and allows the distribution of load in 

the structure to be determined.  Figure 6.3 shows the axial load identified in each 

gauging point upon frame B for load case 2.  The data are compared to a simple 

resolution of forces resulting from a tensile load of 1135N acting along the centre line 

                                                 
30 Recall that all responses in this thesis are presented as receptance. 
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of the adjustable spar.  Despite the fact that the connections of the frame have been 

effectively fixed and the structure is not strictly planar, the results give a good match. 

The strain gauges upon frame B also allow the bending moment at several discrete 

locations around the frame to be determined.  From figure 6.4 it is seen that a significant 

bending moment is developed in each of the spars with the exception of the adjustable 

spar.  The data further shows that the structure acts symmetrically in that pairs of 

similar spars display closely matching behaviour.  This observation is exploited in 

section 6.8 when choosing load-dependent parameters to update.  The choice of location 

of strain gauges allows the bending in the principal axis of the spar section to be 

determined.  The fixed nature of the joints of the framework implies that the spars are 

likely to experience other components of bending as well as torsional loading.  Figure 

6.5 for instance shows the distribution of bending moments of spars 1 and 2 from which 

it can be seen that large proportions of the maximum moments are carried at the 

corners. 

During static loading, spars 2 and 4 are observed to deflect most significantly with spar 

6 also experiencing a noticeable bow.  A highly exaggerated view of the deflected shape 

under loading via shortening of spar 5 is shown in figure 6.6 from which spars 2, 4 and 

6 are seen to deflect in the positive z-direction with spars 1 and 2 deflecting by a small 

amount in the opposite direction.  The deflections of each of the spars were measured 

manually relative to a straight edge run between the corners of the frame under a load in 

spar 5 of 1930N (corresponding to two complete revolutions of the turnbuckle), the 

results are set out in table 6.2. 
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Spar 
Central 

Deflection 
(mm) 

1 -1 

2 9 

3 -1 

4 10 

5 0 

6 9 

Table 6.2 – Measured Frame Deflections Under 1930N Load 

While this method for determining deflected shape is rather crude – accuracy is 

certainly no better than the nearest millimetre – an outline knowledge of relationship 

between load and deflection is useful in the validation of the finite element model of the 

structure (section 6.7.1). 

6.4 Modal Analysis 

Modal analysis was once again performed on all of the sets of data using the global 

method [58] implemented in the ICATS [87] suite of modal analysis software.  The data 

was processed by the author and, for comparison, independently by an experienced 

modal analyst. 

6.4.1 Mode Identification 

Since the ANSYS finite element model developed in chapter 4 indicated 15 modes in 

the 0-400Hz range compared with 12 that had been identified in the modal analysis of 

frame A, a much more rigorous search for resonant frequencies was performed.  The 

result of this strategy was that up to fourteen modes were identified.  As before, the 

level of loading was found to influence significantly the contribution of certain modes 

to the response. 
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The twelve sets of data arising from the four load cases upon three structures were 

independently analysed by an experienced modal analysist.  He found consistently 

fewer modes than the author as well as different numbers of modes from the same 

structure in different load cases.  Table 6.3 shows the number of modes identified by the 

author and the independent analyst. 

 

  Load Case 

 Frame 0 1 2 3 

B 13 12 14 13 

C 10 12 12 13 

A
ut

ho
r 

D 10 12 12 11 

B 10 9 10 11 

C 9 11 11 11 

A
na

ly
st

 

D 9 9 12 12 

Table 6.3 - Number of Modes Identified 

The modes identified independently represent a good estimate of the number of modes 

which would have been identified without the insight provided by the previous analysis 

and testing described in chapter 4. 

Several trends become apparent through analysing the large volume of data available.  

For instance the second identifiable mode becomes easier to identify with large loading.  

Conversely the fourth mode is observed to become less easy to identify with increasing 

load.  As with the tests on frame A described in chapter 4, modes 2 and 3 converge 

upon one another in terms of both frequency and mode shape at higher loading levels. 

It is observed that sets of tests on the three frames under four different levels of loading 

reveal a total of around 50 modes.  Given that similarity between about half of the 

identified modes is strongly influenced by the loading, the task of correlating all of the 

modes is an extremely onerous one!  To compare every mode shape with every other 

shape for each of the tests would require in excess of 50 MAC [57] calculations each of 

which produces a matrix containing over 100 elements. 
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Some more insight into the nature of the dynamic behaviour is given by figure 6.7.  This 

shows the complete set of receptances taken for load case 2 of frame B, the frequencies 

at which resonance was identified are shown as vertical dotted lines.  It is seen that 

while many of the modes are dominant system modes, others are local to only a 

proportion of the responses. 

The complete set of mode shapes and resonant frequencies for frame 2, load case B 

which yielded the most information are shown in figure 6.8.  A set of tables containing 

the full set of resonant frequencies identified by the author are presented in appendix B. 

By comparing each of the sets of experimental modes with each other using the MAC, a 

subset of the modes are found to have both been identified in each load case and to 

correlate with each other and the ANSYS FE model of the structure.  Figure 6.9 shows 

for example, the values of the MAC between the experimental readings from load case 

2 of frame B and the initial ANSYS FE model that exceed 0.9.  The seven ever-present 

“consistent” modes common to all of the experimental data and for which mode shapes 

do not change excessively are shown as shaded.  These are seen to correspond to modes 

1 to 5 and modes 14 & 15 of the original ANSYS FE model.  This “consistent” set of 

modes are identified to reduce the confusion which has been seen to arise from the 

modes shapes being sensitive to load.  This in turn allows concise comparison between 

each set of experimental data and the finite element model. 

The remainder of the experimentally identified modes and the other eight modes 

predicted by the finite element model whose correspondence is less clear are 

nonetheless important characteristics of the system.  As such these should clearly not be 

overlooked.  Further insight into the nature of the “inconsistent” modes is gained by 

comparison with a statically updated finite element model described in section 6.7.3. 

6.4.2 Perturbation to Resonant Frequencies Under Loading 

The relationship between the “consistent” modes identified previously and loading for 

each of the three frames is shown in figure 6.10, from which several interesting 
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observations can be made.  The response to loading for each framework appears to be 

very similar.  Several modes are systematically different from the corresponding modes 

on the other frames. Mode 5 of frame B for instance is approximately 4Hz lower than 

the response of frames C and D.  The offset is almost certainly due to permanent 

differences between the two structures a factor which must be accounted for by 

conventional permanent updating parameters. 

The absolute and percentage increase in resonant frequency from the zero loading to the 

maximum loading upon each of the three frames for the seven consistent modes are 

shown in table 6.4.   

 

 Frame B – 1618N Frame C – 1488N Frame D – 1604N 

FE 
Mode 

Abs 
Increase 

(Hz) 

% 
Increase 

Abs 
Increase 

(Hz) 

% 
Increase 

Abs 
Increase 

(Hz) 

% 
Increase 

1 -8.73 -19.14 -7.06 -16.00 -8.37 -18.54 

2 25.66 37.19 23.13 32.53 22.74 31.41 

3 3.94 4.27 4.13 4.53 5.00 5.43 

4 -14.21 -11.35 -13.07 -10.34 -15.25 -12.15 

5 19.96 15.37 21.42 15.99 24.09 18.13 

14 -9.50 -3.02 -9.32 -2.93 -8.93 -2.84 

15 -18.55 -5.24 -11.09 -3.20 -14.57 -4.15 

Table 6.4 – Absolute and Percentage Increase in Experimentally Identified 
Resonance Frequencies 

The resonance frequencies as before are seen to shift significantly in both absolute and 

percentage terms.  An attempt to validate a finite element of a structure against these 

data is clearly folly unless the temporary effects of the loading upon the structure are 

taken into account. 

6.4.3 Variability of Results 

The construction of 3 identical frames allows some insight into the variability of results 

arising from differences in construction.  Figure 6.11 shows the receptances 
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corresponding to the point mobilities taken from frames B, C and D under zero-loading.  

It is seen that there is generally good agreement especially of the lower order modes.  

Table 6.5 shows the resonant frequencies of the seven “consistent” modes identified 

from all four frames with zero load induced in the frame. The bracketed values indicate 

the result of independently applying the modal identification procedure. 

 

 Frequency (Hz) 

FE Mode Frame A Frame B Frame C Frame D Max Abs. 
Difference 

1 44.3 45.6 (45.4) 44.1 (44.1) 45.1 (45.1) 1.5 

2 70.5 69.0  73.3 70.0 4.3 

3 90.6 92.2 (92.1) 91.2 (91.2) 92.1 (92.4) 1 

4 123.4 125.3 (126.1) 126.4 (126.4) 125.5 (125.6) 1.1 

5 133.4 129.9 (130.1) 134.0 (133.9) 132.9 (133.1) 4.1 

14 309.9 315.0 (315.1) 318.4 (318.3) 314.0 (314.2) 8.5 

15 347.3 353.8 (353.8) 346.5 (346.5) 350.7 (350.7) 7.3 

Table 6.5 - Comparison of Resonance Frequencies Between Unloaded Frames 

The prediction of these seven modes are seen to be reasonably consistent.  The results 

from frame A contribute most to the spread of results.  The influence of the variety of 

identified values shown in table 6.5 on finite element model updating are investigated in 

section 6.8.3. 

6.5 Construction and Validation of MATLAB FE Model 

The interest in updating parameters of the model indicates the utility of modelling the 

structure independently of a commercial FE package.  In this way a great deal more 

flexibility over manipulation of the structural elemental matrices is possible.  With this 

in mind, a new model of the structure was built in MATLAB [14]. 

The intention was to attempt to use experimental data to compare with the finite 

element model predictions of the frame structures in some detail.  Therefore, it is 

important to have confidence in the parameters chosen for the finite element model.  
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While model updating is itself intended to correct mistakes made in the model, it is 

generally accepted that as close agreement between the initial set of data as possible 

must be sought before embarking upon further refinements. 

To establish the dynamic behaviour of the material without the complications of joints 

etc., a piece of the 6mm by 15mm material constituting the framework was tested in 

free-free conditions.  The specimen was 400mm long and from the same batch of 

material which was used to construct the test frames. 

The beam was also modelled in MATLAB using 3D beam elements using the 

parameters set out in table 6.6.  The dimensions of the structure were measured 

accurately and the structure weighed to estimate the density.  Text book values were 

taken for Young’s elastic modulus and the shear modulus [88].  The local axes for the 

beam are defined in figure 6.12.  The measured mass of the force transducer (20 grams) 

was placed at the excitation point. 

 

Parameter 

Label Name 
Value Directly 

Measured ? 

E Young’s Modulus 2.11x1011 Nm-2 r 

ρ Density 7770 kgm-3 a 

A Cross Section Area 8.895x10-4 m2 a 

Izz 
Second Moment of 
Area About z-axis 2.7x10-10 m4 a 

Iyy 
Second Moment of 
Area About y-axis 1.69x10-10 m4 a 

J Polar Moment of 
Area 8.084x1010 m4 a 

G Shear Modulus 8.1x1010 Nm-2 r 

Table 6.6 – Parameters Used in Finite Element Modelling of Frames 

The identified values of the three bending frequencies shown are set out in table 6.7.  

The second column shows the frequencies predicted by using elements of length 

100mm with the following column showing the results of modelling the beam with 

double the number of elements.  The last two columns show the result of modelling the 
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beam without the transducer mass and the classical closed form solution for vibrations 

of a free-free regular beam.  It is seen that these are very close and that the second and 

third bending modes are sensitive to the added mass. 

 

 Frequency (Hz) 

Measured FE 4 elements FE 8 elements FE 4elements 
no added mass Closed Form 

194 199.1 198.9 199.3 200.8 

527 530.1 527.6 552.1 553.7 

1030 1040.5 1035.0 1083.5 1085 

Table 6.7 – Identified and Analytical Bending Frequency Estimates 

In the light of these observations, it seems reasonable to accept that the parameters 

chosen are close enough.  The remaining error is likely to derive from the interaction of 

the structure with the shaker mechanism. 

6.6 Initial Correlation 

The previous ANSYS FE model of the framework structure helped to establish that 

changes made by a finite element model to account for loading.  This enabled the 

dynamic properties of loaded structures to be modelled qualitatively.  Some mismatch 

was seen to exist between the finite element model and the zero-load experimental data.  

While building an improved FE model the opportunity was taken to consider the 

reasons for the mismatch between zero-load experimental readings and the initial FE 

model. 

Table 6.8 shows the initial FE estimate from the new model31 of the seven consistent 

modes.  The results from frame B, zero-loading are also shown as well as the absolute 

and percentage difference between the experimental and analytical results. 

                                                 
31 This almost identical to the predictions of the original ANSYS model.  The only differences arise from 
geometric properties having been measured with more accuracy in the second case. 
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FE Mode  FE (Hz) Experimental 
Frame B (Hz) % Increase Abs Increase 

(Hz) 

1 46.59 45.60 -2.1 -1.0 

2 87.24 69.01 -20.9 -18.2 

3 94.94 92.17 -2.9 -2.8 

4 129.88 125.3 -3.6 -4.6 

5 140.05 129.9 -7.3 -10.2 

14 331.04 315.0 -4.8 -16.0 

15 368.03 353.8 -3.9 -14.2 

Table 6.8 – Comparison of Zero-Load Resonant Frequencies; FE and Frame B 

The finite element prediction is an overestimate in all cases one might expect and arises 

as a result of the discretised nature of the finite element approximation to the prototype 

structure.  There are however several parameters which were chosen somewhat 

arbitrarily during the construction of the finite element model.  The variation in their 

value is likely to influence the prediction of dynamic behaviour. 

One such parameter is the spacer element chosen to represent the non-coincidence of 

the structural spars.  This is likely to have a large effect on the dynamic behaviour of the 

frameworks.  Given that the spacer is modelled as a short beam, the radius of the beam 

appears the most suitable parameter to change. 

The turnbuckle in spar 5 has hitherto not been explicitly modelled.  However, as 

increased accuracy is required of the finite element model, this area of the structure 

stands out as a likely source of error in the finite element model.  This view is lent more 

weight by the relatively inaccurate prediction of the resonant frequency of mode 2 

which consists predominantly of bending of spar 5 (see figure 4.20). 

Since the turnbuckle is a relatively complex part of the structure, it is difficult to be 

certain about how to account for its effect.  The solution chosen was firstly to change 

the location of node points on the adjustment spar so that one element represented the 

turnbuckle.  The turnbuckle was then modelled as a beam with circular cross section 

which allowed the radius of the section to be chosen as a variable parameter. 
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It is a simple task for a model of this size to alter these two parameters in an iterative 

fashion to assess the likelihood that they are the chief causes of error between the finite 

element model and the experimental observations.  The values of the two radii 

producing the closest match with the experimental data were found to be 2.5mm and 

10.8mm for the turnbuckle and spacer respectively.  Table 6.9 shows the seven 

consistent natural frequencies predicted by the new model compared to both the original 

ANSYS model and the experimental results.  As previously described the modes were 

paired using the MAC.  The fit with the experimental data is much better with the 

biggest error in mode two which might be expected since the representation of the 

turnbuckle while optimised is still heavily simplified. 

 

FE Mode Experimental ANSYS Abs 
Increase 

MATLAB 
FE 

Abs 
Incease 

1 45.60 46.59 -1.0 44.35 -1.25 

2 69.01 87.24 -18.2 76.55 7.55 

3 92.17 94.94 -2.8 92.99 0.82 

4 125.27 129.88 -4.6 124.54 -0.73 

5 129.87 140.05 -10.2 127.21 -2.66 

14 315.04 331.04 -16.0 318.69 3.65 

15 353.82 368.03 -14.2 350.96 -2.86 

Table 6.9 – Effect of Optimising Spacer and Turnbuckle Characteristics 

The manually adjusted MATLAB finite element model is seen to show a closer match 

with experimentally determined data and this model was used in the subsequent analysis 

described in the following sections. 

6.7 Static Updating of Load Dependent Properties 

The process of static updating has been described in the previous chapters.  The 

approach involves the identification of loading from static measurements such that its 

effect upon dynamic behaviour can be accounted for in a finite element model.  As with 

the example of the thin plate described in chapter 4, the direct identification of the 



Chapter 6 – Experimental Updating of Loaded Structure 183 

 

applied loading is not necessarily possible.  An initial step is required to identify the 

loads which should be applied to the finite element model.  In the case of the small 

framework, however, the source of the loading is known and only the magnitude 

remains to be identified.  The loading is induced into the frame by shortening spar five 

which contains a turnbuckle device.  Strain gauges were used to identify the loading in 

this spar.  The use of the directly identified load to alter the finite element model is 

investigated in this section. 

The MATLAB FE model which benefited from the improvements described in the 

previous section was taken as the initial model.  There are a number of levels of 

complexity to which already known loads can be applied, these have been covered in 

chapter 3 and consist of: 

(a) applying loading in a single static step and rebuilding the structure 

using the deflected shape; 

(b) as (a) but include stress stiffening effects; 

(c) apply load in a number of steps, at each stage including the stress 

stiffening component from the previous stage; and 

(d) use a ‘Full’ nonlinear geometrical analysis such that the stress 

stiffening component and the deformity are updated a number of 

times32. 

These approaches are set out more clearly in table 6.10. 

                                                 
32 This can be achieved by an incremental approach in which large number of small steps are used or by 
an iterative scheme where equilibrium of external and internal loading is achieved at each level of 
loading, the results will converge upon the same correct solution although the iterative approach is likely 
to less computationally intensive. 
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Analysis Stress 
Stiffening 

Deformation 
Effects 

Fast / 
Innacucurate 

Slow / 
Accurate 

(a)  a a  

(b) a a a  

(c) a   a 

(d) a a  a 

Table 6.10 – Four Approaches to Static Updating 

Analysis (d) is the most accurate analysis which includes both stress stiffening and large 

deformation effects.  At the other extreme analysis (b) takes account of both effects but 

in the quickest but least accurate way possible.  Analysis (a) allows the effect of only 

deformation effects to be considered.  Analysis (c) allows a comparison with (d) to be 

drawn to assess the relative influence of stress stiffening and large deflection. 

6.7.1 Verification of Measured Displacement 

Section 6.3 has set out the measured deflection of frame B under a measured applied 

load of 1930N.  A useful first step in choosing which load model to employ is to 

compare the predicted deflections with the measured ones.  It is seen that the deflections 

predicted by using analyses (a) and (b) will be similar and equal to the deflection 

yielded by solving for displacements in a single static step.  The results of this analysis 

are shown in table 6.2. 

 

Central Deflection (mm) 
Spar 

measured (a),(b) (c) (d) 

1 -1 -0.3 -0.4 -0.6 

2 9 6.4 7.6 8.7 

3 -1 -0.3 -0.4 -0.6 

4 10 6.4 7.6 8.7 

5 0 0.0 0.0 0.0 

6 9 8.3 8.1 7.8 

Table 6.11 – Measured Frame Deflections 



Chapter 6 – Experimental Updating of Loaded Structure 185 

 

The finite element results which were expected to be the most accurate (analysis (d)) 

agree to a satisfying degree with the measured results especially recalling that the 

measured values were only accurate to within approximately 1mm.  The difference in 

analysis (c) from (b) results from the static effect of the change to the stiffness of the 

structure due to loading. 

The ability to predict static deflection is closely related to the ability to model stress 

effects which can be directly measured.  Where the loaded state of a structure must be 

determined indirectly in this way, several iterations of a nonlinear approach will be 

required.  The number of iterations required depends on the flexibility of the structure 

and the amount of loading. 

6.7.2 Frequency Perturbations From Different Analysis Approaches 

The previous section has shown that the four different levels of accuracy demanded of 

the finite element model result in different predictions of the static structural behaviour 

in the form of the out of plane deflections of the six spars.  The four statically updated 

model types also display different modal properties.  Table 6.12 shows the absolute 

frequency shifts from the zero load resonant frequencies for the seven consistent modes 

under a load of 1kN. 

 

 ∆ frequency (Hz) 

FE Mode (a) (b) (c) (d) (d)-(c) 

1 0.45 -6.17 -6.63 -6.06 0.57 

2 0.63 14.29 13.49 14.35 0.86 

3 -3.45 2.52 2.95 2.46 -0.49 

4 -0.03 -8.15 -8.14 -8.09 0.05 

5 -0.13 9.79 4.08 11.42 7.34 

14 -1.47 -8.66 -7.18 -8.05 -0.87 

15 -0.62 -7.17 -6.56 -7.17 -0.61 

Table 6.12 – Resonant Frequency Shifts Resulting From Four Statically Updated 
Models 
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The clearest observation is that the stress stiffening has the most profound effect upon 

frequency perturbation.  The results from analysis (a) show the frequency shifts 

resulting only from deflection while perceptible are generally far outweighed by the 

stress-stiffening effects.  Analysis (b) is essentially the quickest way of including both 

stress stiffening and deformity effects and is seen to be a reasonable approximation to 

the results of the full analysis (d).  Analysis (c) allows insight into the effect of coupling 

stress-stiffening and large deflection.  The difference between the results produced by 

analyses (c) and (d) – shown in table 6.12 – indicates the effect of the large deflection 

upon the consistent modes.  It is seen that the effect is marginal except in the case of FE 

mode 5 where the perturbation is very much larger. 

A great deal more insight into the interaction of stress stiffening and large deformation 

effects is gained from figure 6.14 which shows the result of using methods (c) and (d) 

over a wide range of loads.  Several of the modes (for instance 1,2,3) where the lines are 

practically overlaid indicate that the stress stiffening effect dominates the frequency 

shift with loading.  Four or five of the modes - most dramatically mode 6 - are seen to 

be very significantly influenced by the large deformation effect. 

The reason for the unexpectedly large influence of deformation effects upon mode 5 

now becomes clear.  The dashed boxes in figure 6.14 shows that in between loads of 0 

and 1kN, the (solid) line which represents the effect of only stress stiffening on mode 6 

has dropped below mode 5.  The correct value for the increase in mode 5 is 11.02. 

This plot along with the experience gained in correlating experimental and FE mode 

shapes leads an important observation.  The modes of vibration which are least affected 

by changes to the deflected shape of the structure are the modes which have already 

been identified as consistent.  This has several repercussions.  Choosing  closely 

correlating FE-experimental mode pairs from loaded structures leads to use of modes 

which are mainly affected by stress stiffening effects.  For this reason, stress stiffening 

updating parameters will be concentrated upon in the experimental updating case study 

in section 6.8.  Additionally, to identify mode shifts which are sensitive to changes in 
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structural deformed shape the MAC appears to be inadequate.  Figure 6.14 clearly 

shows modal trends but the previous experience (mainly in chapter 4) is that mode 

shapes change a great deal over the range of loading shown.  As section 6.4.1 has 

concluded, applying the current practice of identifying correlating mode pairs using the 

modal assurance criterion leads to around half of the identified modes being 

disregarded.  Since the experimental modal information is scarce, not being able to 

make use large portions of it presents a very serious limitation the overall value.  An 

urgent requirement therefore exists to enable correlation of pairs of modes whose mode 

shapes have been affected by loading. 

6.7.3 Comparison of Statically Updated Model With Dynamic Data 

The value of identified consistent experimental frequencies at the measured load levels 

are overlaid upon the full-nonlinear MATLAB FE in figure 6.15.  The prediction of the 

zero-load resonant frequencies as well as the perturbations arising from the loading are 

seen to be better than the previous attempt in chapter 5 (figure 4.26). 

Of the seven modes previously singled out since they appeared to show consistent 

correlation between experimental and finite element modes under loading, six modes (1, 

2, 3, 4, 14 and 15) show very close agreement with their finite element counterparts.  

Indeed the finite element prediction at all load levels lies within the variation observed 

between the nominally identical frames.  This observation gives confidence in the finite 

element model of the structure as well as the changes made to account for the loading.  

Under loading, the fifth experimentally identified mode appears to correspond more 

closely to the sixth FE mode.  This thesis is confirmed by considering the MAC 

between the MATLAB FE modes and the experimental modes.  The result for frame B 

at an applied load of 514N in the region is denoted by the dashed box in figure 6.15.  

This shown in table 6.13 and indicates that the fifth experimental mode correlates with 

the sixth experimental mode. 
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Exp  

4 5 

4 0.98 0.01 

5 0.15 0.74 FE
 

6 0.01 0.97 

Table 6.13 –MAC Between Experimental Frame B and FE Modes Under Applied 
Load of 514N 

The difficulty in correctly correlating modes is illustrated very clearly by considering 

the MAC.  An overhead view is shown in figure 6.16 with closely correlating modes 

identified in figure 6.17.  This has been calculated between the original FE model 

described in chapter 4 and the “improved” finite element model which has benefited 

from the changes described in section 6.6.  The enhancement to the model is principally 

the inclusion of the turnbuckle.  Of most interest is the observation that several of the 

modes in the improved model do not correspond with any from the original model.  

This is a surprising observation given that only relatively minor modifications were 

made to change the finite element model. 

The previous section has outlined that problem that some of the mode shapes are 

susceptible to change under loading.  The MAC has therefore been seen to be 

inadequate in matching some loaded mode shapes with unloaded counterparts.  Another 

route to correlating experimental and finite element modes is in a load-case by load-

case manner.  This strategy uses the mode shapes identified at a certain load level to 

compare with the finite element model subjected to this level of loading.  The MAC 

between the experimental and FE mode shapes of the four load cases of frame B are 

shown in figure 6.18 through figure 6.21.  This approach is seen to allow a better degree 

of insight into modal correlation.  Generally the graphs MAC calculations give the 

highest number of correlated mode pairs with the least ambiguity.  The number of 

closely correlating modes is however seen to vary with loading with the fewest 

correlated mode pairs at the highest level of loading. 
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The results of the MAC calculations between statically updated FE model and 

experimental data are summarised clearly in figure 6.22.  The correlating modes are 

shown as stars and the modes which do not allow correlation are shown as dots.  In the 

cases that correlating modes do not match with the closest line the correspondence is 

shown with an arrow.  The experimental modes corresponding to the FE modes 7 and 8 

are found with some success.  Further work is required to investigate how the FE model 

can better be matched with the remaining modes. 

6.8 Dynamic Updating Of Framework Structure 

The previous section gives considerable insight into the relationship between resonant 

frequencies, stress stiffening and structural deformation resulting from application of 

load to the framework structure.  The changes made to the structure to account for the 

loading effects allow the perturbation of a number of the resonant frequencies to be 

predicted with a good deal of accuracy.  The satisfying level of agreement of the modes 

least affected by deformation gives confidence in going ahead with the reverse process 

of attempting to identify the stress-stiffening properties of the finite element model from 

frequency perturbations. 

Updating of the stress stiffening effects which are seen to be the principal effect in 

altering the dynamic behaviour under loading are is considered in the following 

sections. 

6.8.1 Updating of Stress Stiffening 

The preceding discussion, particularly chapter 3, has shown that to account for load 

effects in a finite element model the structural deformation must be included in the 

model.  It has been seen in section 6.7 that stress stiffening have more effect on the 

modal perturbations in this particular case.  As a first step towards updating of load 

dependent properties using real experimental data, the following sections investigate 
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the possibility of identifying loading by updating parameters related to the stress 

stiffening in individual elements as described in chapter 5. 

Before embarking upon the updating procedure several decisions must be made.  These 

can be summarised as: 

(a) how many parameters are to be updated? i.e. number of independent 

loads to identify; 

(b) how many and which shifts in resonant frequency to use; 

(c) what is the initial value of updating parameter to be used?; and 

(d) what amount of measured load information to be included. 

At first glance, (c) and (d) clearly share some similarity.  The former however is 

required educated guesswork to identify order of magnitude estimation of loading to be 

used as an initial value and the latter relates to the situation where loading in certain 

members may be measured explicitly. 

6.8.1.1 Initial Investigation 

Given that the position of loading is known, it is possible to derive a simple relationship 

between the load in each strut and the applied load.  In the most basic case therefore it is 

possible to summarise the loading in terms of a single parameter.  At the opposite 

extreme, the axial load in each element could be derived.  The latter approach would 

require up to 34 independent parameters to be altered.  This would have to be achieved 

from a maximum of 14 pieces of information offered by the differences in frequency 

between the finite element model and experimental measurements in the frequency 

range 0-400Hz.  Two possible compromise approaches appear to offer the most sensible 

approach.  The first is to attempt to identify the load in each of the six spars separately.  

A slightly simplified approach - given the near symmetry of the frameworks - is to 

attempt to identify the three pairs of identical loads in the vertical, horizontal and 
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diagonal spars.  Given the limited number of correlating modes this approach will be 

used here. 

The experience from the previous section suggests that most information can be gained 

from those corresponding to the FE modes 1, 2, 3, 4, 14 and 15.  This is based upon the 

ability to correlate these modes with the FE model as well as the observation that these 

modes are not affected by deformation effects. 

To reduce the amount of information presented to manageable levels, the identification 

of loading in load case 2 on frame B will be considered.  This is appropriate since the 

dynamic data from this particular configuration has been shown to contain the most 

information. 

Figure 6.23 shows the result of updating the three independent stress stiffness 

parameters using the resonant frequencies from load case 2 on frame B.  The modal data 

corresponds correspond to the finite element modes 1, 2, 3, 4, 14 and 15.  The top plot is 

the residual, R , at each iteration given by 

{ } { }
2expλλ −=

kFER . (6.1) 

where { }
kFEλ  are the eigenvalues arising from the finite element model at the thk  

updating iteration and { }expλ  are the corresponding experimentally-identified 

eigenvalues.  It is recalled that the thi  eigenvalue is related to the corresponding 

observed resonant frequency if  in Hertz by 

( )22 ii fπλ = . (6.2) 

The residual indicates that at each step of the updating process the resonant frequencies 

of the finite element model become a closer match of the experimental model.  The 

updated frequencies are shown in table 6.14 along with the initial FE values and the 

experimental values for the modes which were updated.   
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 Frequency (Hz) ∆ frequency (Hz) 

FE Mode Experimental Initial FE Updated 
FE 

Initial - 
Experimental 

Initial – 
Updated 

1 39.69 44.19 36.18 4.49 -3.51 

2 89.95 76.90 90.00 -13.05 0.05 

3 94.57 92.72 94.31 -1.85 -0.26 

4 115.43 124.11 113.81 8.68 -1.62 

14 308.85 318.17 308.99 9.32 0.14 

15 341.55 349.96 341.72 8.41 0.16 

Table 6.14 – Resonance Frequencies of Updated Model 

The middle plot of figure 6.23 indicates that the changes to perturbations required at 

each step of the updating process converged quickly to zero.  The convergence of each 

updating parameter upon its final value is shown in figure 6.24.  The data raise an 

unusual issue in that the experimental case shows more robust convergence than its 

simulated counterpart described in chapter 5.  This can be seen by comparing figure 

6.24 for example with figure 5.9.  The improved convergence can best be explained by 

the fact that only a subset of the modes is used in the experimental study.  This has been 

based on some insight into their usefulness. 

Moving on to the identified loads, the measured loads in each spar for load case 2 are 

shown in the third plot of figure 6.23 against the identified values.  The identification of 

the load in the compression members (1 through 4) is more successful than that in the 

tension members.  The percentage difference from the measured values are shown in 

table 6.15. 
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Spar Measured 
Axial Load (N) 

Identified 
Axial Load (N) 

% Difference 
(Increase) 

1 -483.24 -511.69 5.89 

2 -891.88 -902.49 1.19 

3 -708.61 -511.69 -27.79 

4 -808.84 -902.49 11.58 

5 1135.59 547.71 -51.77 

6 1007.07 547.71 -45.61 

Table 6.15 – Measured and Identified Axial Load; Frame B, Load Case 2 

While the updated finite element data is not a perfect match with the measured values, 

the updated model is a good deal closer to representing the structure in the loaded 

configuration.  To this extent, the validation and updating procedure described 

previously can be said to have been verified as being successful.  This is a far from 

routine observation in model updating! 

The inaccuracies in the loads identified by the updating process are likely to be due to a 

number of factors.  For instance: 

(1) frequency perturbations caused by mis-modelling of initial finite 

element model; 

(2) not including the correct updating parameters to account for 

permanent errors; 

(3) not including the effects of deformity; and 

(4) insufficient independent stress stiffening updating parameters. 

Despite the great care with which the initial FE model was built, it is the opinion of the 

author that the first two point are the most important factor in influencing the likelihood 

of success in identifying loads.  The two effects are closely inter-related and while 

being almost completely unavoidable, present the biggest obstacle to any model 

updating scheme with any set of updating parameters. 
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In addition the inaccuracy associated in the identification of resonant frequency as well 

as the errors attendant to the measurement of load conspire to bring about difference 

between updated load parameters and measured values. 

6.8.1.2 Updating With Offset 

With the comments of the previous paragraphs in mind a method of decreasing the 

effects of permanent errors in the initial finite element model is presented here.  That is 

to treat the difference between the initial finite element model and the zero load 

experimental resonant frequencies as a permanent offset.  The magnitude of which the 

updating process should not seek to minimise.  In terms of system eigenvectors, the 

offset is given by 

{ } { } { }zz
FE expλλλ −=∆  (6.3) 

where.., the difference in eigenvalue which we hope to minimise is given by 

{ } { } { } { } { }expexp λλλλδλ −+−= zz
FEFEk

 (6.4) 

compared with 

{ } { } { }expλλδλ −=
kFE , (6.5) 

used previously. 

Applying this method with the same data described in section 6.8.1.1 leads to results 

shown in figure 6.25.  Quick convergence is once again achieved.  As one would expect 

the overall residual at the final iteration is rather larger than in the previous step.  This 

comes about since the updating procedure is not allowed to converge as closely on the 

experimental data from the loaded case.  The overall estimation of loading in the spars 

is well within the realms of possibility.  However, it is a rather worse match of the 

measured data than the previous updating scenario.  The percentage differences are 

shown in table 6.16. 
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Spar Measured 
Axial Load (N) 

Identified 
Axial Load (N) 

% Difference 
(Increase) 

1 -483.2 -1967.6 307.2 

2 -891.9 -659.6 -26.1 

3 -708.6 -1967.6 177.7 

4 -808.8 -659.6 -18.5 

5 1135.6 840.1 -26.0 

6 1007.1 840.1 -16.6 

Table 6.16 – Measured and Identified Axial Load Using Frequency Offset Method 

The load in the horizontal and diagonal members have been closely matched but at the 

expense of a heavy overestimation of the load in the vertical spars.  It is still justifiable 

to say that a model updated thus is more useful than the original finite element model 

for predicting the dynamic behaviour of the frame undergoing the specified loading.  

The values of identified load are not better than those predicted by the standard method 

described in the previous section. 

The apparent lack of success of this method is likely to be due to the good quality of the 

initial finite element model.  It is the opinion of the author then that this method should 

reduce some of the problems related to mismatch of the zero-load FE model and 

experimental results in cases where the initial agreement of the FE model and 

experimental data is not perfect. 

6.8.1.3 Effect of Eigenvalue Selection 

The previous two examples give confidence in the usefulness of the method in practice. 

Also they are based on sensible choices of updating parameter and eigenvalue selection.  

They show that the method is sufficiently robust to start from a point of no prior 

knowledge of structural loading.  To allow further insight into the issues relating to 

applying the technique to real data, a large number of case studies have been run with 

different choices of eigenvalue used to characterise the change in dynamic behaviour.  

Once again the experimental data from frame B load case 2 is used for illustrative 
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purposes.  Figure 6.22 reveals that 10 of the experimental modes correlate with the 

finite element model at this level of loading.  However, minimising the difference 

between all ten modes and their finite element counterparts is found to produce a 

prediction of the loading in each spar shown in table 6.17 which while plausible, is not a 

good agreement with the measured data. 

 

Spar Measured Axial 
Load (N) 

Identified 
Axial Load (N) 

1 -483.2 -1336 

2 -891.9 -753 

3 -708.6 -1336 

4 -808.8 -753 

5 1135.6 677 

6 1007.1 677 

Table 6.17 – Measured and Identified Axial Load Using 10 Correlating Modes 

To assess which modes are most useful in producing the correct results based on the 

measured loading in the structure, the updating procedure was implemented 210 times.  

Every combination of four eigenvalues from the possible population of 10 was used to 

provide the target for the updating process.  The three updating parameters related to the 

load in the vertical, horizontal and diagonal members were once again set as the only 

parameters to be updated.  The updating used the experimental data with no initial 

knowledge of the load known.  Of the 210 runs 135 produced converging solutions, the 

criterion being that the residual vector had dropped below 10 within 10 iterations. 

Load sets were defined to be useful if each fell between zero and twice the value of the 

corresponding measured load.  The reasoning was that any change to the stiffness 

matrix corresponding to a set of loads meeting this criterion produces a finite element 

model which is a better representation of the loaded structure than the initial finite 

element model. 

Of the 135 converged sets of loads, 47 solutions proved useful.  Figure 6.26 shows the 

number of times each of the 10 possible modes is a member of the 47 sets of 4 
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eigenvalues which lead to a successful updating outcome.  It is seen that modes 7 and 8 

feature far less often than the remaining 8 modes.  The consistent modes defined in 

section 6.4.1 fare particularly well in addition to FE modes 6 and 10.  Referring back to 

figure 6.14 reveals that all of the modes which lead to the most accurate answers are not 

affected by deformity. 

This observation confirms that if purely stress stiffening effects are to be determined 

from a structure undergoing loading, the modes whose shapes change least should be 

used in preference to those whose shape is changed considerably by the loading effects. 

The use of the 8 modes which have been identified as most useful leads to identified 

loads shown in table 6.18. 

 

Spar Measured Axial 
Load (N) 

Identified 
Axial Load (N) 

1 -483.2  -578 

2 -891.9  -893 

3 -708.6  -578 

4 -808.8  -893 

5 1135.6   577 

6 1007.1   577 

Table 6.18 – Identified Loads Using Best 8 Modes 

The final residual is found to be lower than any of the 210 updating runs which gives 

considerable confidence in the results. 

6.8.2 Updating of Permanent and Transient System Parameters 

The ultimate test of whether it is possible to include the load-dependent properties in 

parallel with other permanent changes is to attempt such a process on experimental data.  

For the current example, the most rigorous test of the method lies in identifying the 

remaining sources of error in the finite element model.  These errors are in addition to 

those not identified in the initial phase of model correction (section 6.6).  While a 
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worthy goal, several factors lead the author to believe that this is not the route to be 

taken in validating the method. The first is the erosion in the amount of useful data 

arising from discounting modes whose inter-correlation varies with loading.  

Additionally a difficulty exists in explicitly identifying further sources of error in the 

finite element model.  This is coupled with the problem of incorporating suitable 

updating parameters into the updating process.  Instead it is proposed that a known error 

be imposed in the initial finite element model  In this way it is possible to assess very 

clearly to what extent the error can be identified simultaneously with the identification 

of the load dependent parameters. 

To this end a mis-estimation of the overall stiffness is introduced into the initial finite 

element model.  The stiffness is decreased to 95% of the value which was used to gain 

reasonably good agreement with experimental results.  The updating process described 

in section 6.8.1.1 was repeated but with an extra updating parameter, kp , introduced to 

factor the initial stiffness such that the updating stiffness matrix is given by 

[ ] [ ]A
k

U KpK = . (6.6) 

Initially no mis-estimation of the stiffness was imposed upon the initial FE model and in 

a second instance the initial stiffness was decreased by 5%.  Table 6.19 shows that the 

updated stiffness is slightly lower (in fact by about 1.5%) than the initially chosen 

value, since the initial value of 2.11×1011 Nm-2 is a text book value, a real value of 

2.08×1011 Nm-2 is well within the realms of possibility.  Referring back to the validation 

of the finite element model in section 6.5, table 6.20 shows the result of setting 

E=2.08×1011 Nm-2. 
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Updated Parameters Measured / 
Known (N) 

Identified 
using pk (N) 

Identified 
without pk (N)

Spar 1 Axial Load -483.24 -273.80 -511.69 

Spar 2 Axial Load -891.88 -720.44 -902.49 

Spar 3 Axial Load -708.61 -273.80 -511.69 

Spar 4 Axial Load -808.84 -720.44 -902.49 

Spar 5 Axial Load 1135.59 546.10 547.71 

Spar 6 Axial Load 1007.07 546.10 547.71 

Stiffness Factor 1 0.99 - 

Table 6.19 – Identified Loading and Stiffness Using Experimental Data 

 

The match of the updated stiffness with the measured values is arguably better than the 

original values.  The “residual”, defined here by 

{ } { }
2FEexpR λλ −=  (6.7) 

of the (higher accuracy) eight element model using the updated stiffness is 2.24×105 

compared to the residual using the original FE model of 4.15×105.  This provides a an 

indication that the updated stiffness is a better representation of the practical stiffness 

than the original value.  This observation gives a strong independent endorsement to the 

value of the updated stiffness. 

Updating of the stiffness results in different values of load in the spars are converged 

upon.  Very little effect on the identified values in the diagonal spars is found while the 

load in the vertical spars (1 and 3) is different from the previously identified value 

shown in column 3 of table 6.19. 
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 E=2.11×1011 Nm-2 E=2.08×1011 Nm-2 

Measured 
Frequency 

(Hz) 

FE 4 elements 
Frequency 

(Hz) 

FE 8 elements 
Frequency 

(Hz) 

FE 4 elements 
Frequency 

(Hz) 

FE 8 elements 
Frequency 

(Hz) 

194 199.1 198.9 197.8 197.5 

527 530.1 527.6 526.3 524.0 

1030 1040.5 1035.0 1033.1 1027.8 

Table 6.20 – Comparison of Updated Stiffness With Validated Result 

Since the results derive from a specific set of experimental readings and are sensitive to 

the eigenvalues compared.  It is impossible to be more general than to say that the 

measured static load data allows the updated model to be a better representation of the 

loaded structure than the original finite element model. 

The deliberate mis-estimation of the stiffness in the initial finite element model allows a 

quantitative judgement of the ability of the set of updating parameters to update 

transient load-dependent parameters.  These have been considered alongside permanent 

errors.  The first column of table 6.21 shows that an increase in stiffness of 4% is 

required.  This, when applied in conjunction with the 1.5% mis-estimation of stiffness 

in the “correct” initial FE model, matches closely with the additional imposed error. 

 

Updated Parameters Identified 
using pk (N) 

Identified 
without pk (N) 

Spar 1 Axial Load -170.94 357.58 

Spar 2 Axial Load -789.23 -378.89 

Spar 3 Axial Load -170.94 357.58 

Spar 4 Axial Load -789.23 -378.89 

Spar 5 Axial Load 531.21 529.46 

Spar 6 Axial Load 531.21 529.46 

Stiffness Factor 1.04 - 

Table 6.21 – Identified Loading and Stiffness Using Experimental Data 95% 
Stiffness 
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Identified axial loads once again differ from previously identified values but continue to 

be a useful estimate of the actual loading.  The second column of table 6.21 shows that 

there is considerable mis-estimation of loads in the vertical spars.  This observation 

lends weight to the advice of chapter 5 that if stiffness properties are in error these must 

be included in an updating procedure for load dependent parameters to be identified 

accurately. 

Also of note in the data presented in this section is that the parameter related to load in 

the vertical spars is most sensitive to mis-estimation of stiffness in the finite element 

model.  Additionally, the identification of load in the diagonal spars is particularly 

robust - as was first predicted in chapter 5. 

6.8.3 Updating Using All Experimental Results 

The previous sections have concentrated on the use of experimentally derived data from 

frame B.  This frame has allowed the initial comparison of measured and predicted 

loads.  Load case 2 was used in particular since it provides most modal information.  

Using the insight gained in these studies, updating was performed using the modal 

information from all twelve experimental cases.  The six modes corresponding to the FE 

modes 1, 2, 3, 4, 14 and 15 were used as the input.  As before three loads corresponding 

to the loads in the vertical, horizontal and diagonal spars were identified. 

Figure 6.27 shows the loads identified for frame B for load cases 1 to 3 as well as the 

corresponding measured values.  The identification of the loads for cases 2 and 3 are 

seen to be qualitatively similar to the measured values with the identified loading of 

case 1 not corresponding well.  A closer examination reveals that the trend in the 

identified data is consistent in each case.  This suggests that the inaccuracy in the 

prediction of load arises from consistent factors.  As the previous sections have 

suggested, the offset upon the load predictions is likely to be due to the mismatch 

between the zero-load experimental and FE data. 
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The identified loads for frames C and D for three load cases are shown in figure 6.28.  

No information was available about the axial load in the horizontal and vertical spars of 

these frames with which to compare the identified values directly.  However recalling  

that the load steps are roughly equal (table 6.1)and that the frames are built to the same 

specification, the load distribution would be expected to be similar to that of frame B. 

The results show similar behaviour to those from frame B.  Once again the loads are 

seen to display a regular trend while an initial offset appears generally to skew the 

predictions.  The effect of the initial offset is to reduce the effectiveness of 

identification especially at low load levels. 

6.9 Concluding Remarks 

This chapter has presented results from a comprehensive modal analysis and FE 

modelling of a small structure.  The various steps undertaken to achieve a successful 

update are shown in full to enable transparency of the procedure. 

The experiment has shown that an identical structure under different loads can display 

sets of dynamic characteristics which are very different from one another.  Different 

numbers of resonant frequencies have been identified from the same structure under 

varying loading.  Certain mode shapes have been found to be altered dramatically under 

loading making the task of correlating modes from loaded structures with the FE model 

arduous. 

A consideration of a subset of the identified modes whose inter-correlation was good 

and which could be matched with FE modes has led to useful results.  These modes 

have been designated as “consistent”.  The consistent modes have been found to include 

the first five fundamental modes of the structure. 

A finite element model of the structure has been built from first principals and 

validated.  This has produced closer agreement with experimental data than the initial 

ANSYS FE model described previously. 
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Static updating of the structure has been carried out using measured loads and taking 

account of both stress stiffening and deformation effects is seen to produce a very close 

agreement with experimental results for the “consistent” modes.  A study of the stress 

stiffening effects separately from large deformation effects has shown that the modes of 

vibration whose resonant frequencies are most affected by large deformation effects 

experience the most dramatic changes to their mode shapes. 

A statically updated finite element model has shown that clear trends in the resonant 

frequency can exist while corresponding mode shapes alter.  The change in mode 

shapes can be sufficient that the MAC deteriorates considerably.  The requirement for a 

new technique which allows modes which correspond under load but whose mode 

shapes alter has been identified.  Such a technique would pave the way for the profile 

updating scheme outline in chapter 5 to be implemented practically. 

The experimental data has been successfully used to update the stress-stiffening of the 

structure.  Levels of structural loading have been identified from measured dynamic 

data.  Static measurement of loading has allowed an independent check upon the 

validity of updating parameters. 

Convergence of the three stress-stiffening updating parameters upon final values has 

been seen to be both quick and robust.  Loads have been successfully identified from no 

a priori knowledge of the structural loading.  This leads to confidence that the technique 

could act as a stand-alone method to identify structural loading from dynamic 

measurements. 

The overall stiffness of the structure has been updated simultaneously with the stress-

stiffening parameters.  A plausible value for the change to the stiffness was found along 

with realistic loading values. 

The initial mismatch between the finite element model and experimental data has been 

seen to affect the identified load values.  The loads identified from the three sets of 

experimental data have demonstrated this phenomenon clearly.  The sets of identified 
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loads from the three experimental frames have been seen to vary linearly with the 

known applied load increments.  The values of the identified load however have shown 

that the changes to stress stiffening are not the only parameters that are in error. 

A technique whereby the initial difference in the FE and experimental modes is 

removed from the overall perturbation under load has been introduced.  For the specific 

experimental case considered the technique did not improve upon the original method.  

However it is the opinion of the author that in the general case this method will allow 

loading to be identified in structures where the initial finite element model does not 

correlate well with the loading. 

The results of performing a great number of updating runs using different experimental 

eigenvalues have been presented.  A large proportion of the runs have been shown to 

produce successful convergence upon a useful result.  While not producing unique 

solutions, the results have been shown to be useful representations of the loaded 

structure. 

The usefulness of each of the correlating modes in identifying stress stiffening 

parameters has been investigated.  The mode shapes identified as not varying 

significantly under loading have been shown to be amongst the most useful.  The use of 

these modes has been shown to produce the most accurate prediction of structural 

loading. 

In summary, the following steps should be taken to identify loading in practice using 

the stress stiffening method: 

(i) ensure that the initial FE model is an accurate representation of the 

structure; 

(ii) include at least one stiffness updating parameter in addition to the 

axial load parameters; 

(iii) use modes whose mode shapes correlate clearly with the initial FE 

model in the updating procedure; 
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(iv) if zero load experimental data are available (or can be derived) the 

offset removal method should be considered; 

(v) provide as much information as possible from static measurements; 

(vi) keep some static load measurements to check the updated solution; 

and 

(vii) minimise the number of parameters to update by exploiting known 

relationships between axial loads. 
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Figure 6.1 – Spar Numbering Convention and Excitation Node 
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Figure 6.2 – Strain Gauge Positions Frames B, C and D 
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Figure 6.3 – Axial Load Distribution in Frame B, Load Case 2 
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Figure 6.4 – Bending Moments at Centre of Six Spars, Frame B 
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Figure 6.5 – Bending Moment Distribution Spars 1 and 2 
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Figure 6.6 – Exaggerated Static Deflected Shape 
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Figure 6.7 – All Measured Responses Frame B, Case 2 
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Figure 6.8 – Fourteen Identified Resonant Frequencies; Frame B Load Case 2 
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Figure 6.9 – MAC > 0.8 Between FE and Experimental Modes, Zero Load 
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Figure 6.10 – Modal Perturbation Under Loading, Three Independent Cases First 

Five Modes 
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Figure 6.11 – Point Receptances From Three Nominally Identical And Unloaded 
Frames 
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Figure 6.12 – Local Axis Definition 
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Figure 6.13 - Modal Perturbations Using Different Loading Models; 1kN Applied 

Load 
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Figure 6.14 –Stress Stiffening and Large Deformation Effect on Resonant 

Frequencies 
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Figure 6.15 – FE and Experimental Load vs., Frequency Relationship 
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Figure 6.16 – MAC Between Original and Improved FE Models 
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Figure 6.17 – MAC Between Original and Improved FE Models 
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Figure 6.18 – MAC Between FE and Frame B; Zero Load 
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Figure 6.19 – MAC Between FE and Frame B; 514N Load 
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Figure 6.20 – MAC Between FE and Frame B; 1135N Load 
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Figure 6.21 – MAC Between FE and Frame B; 1618N Load 
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Figure 6.22 – FE and Frame B; Load vs. Frequency Relationship 
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Figure 6.23 – Updated / Identified Loads 
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Figure 6.24 – Convergence Upon Identified Loading 
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Figure 6.25 – Updated Parameters After Removing Zero Load Offset 
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Figure 6.26 – Utility of Modes in Producing Converged Solution  
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Figure 6.27 – Identified and Measured Loads; Frame B Load Cases 1-3  
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Figure 6.28 – Identified Loads; Frames C and D, Load Cases 1-3  
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CHAPTER 7 

CONCLUSIONS 

7.1 Introduction 

The thesis has chiefly been motivated by the observation that little success has been 

encountered in updating finite element models using experimentally derived data.  More 

specifically this thesis has sought to investigate the effect of loading upon structures and 

to introduce practical measures to allow finite element models to represent loaded 

structures accurately.  This chapter summarises the contributions which this thesis has 

made towards these objectives. 

A number of avenues for future research been opened by this thesis.  These are outlined 

in section 7.6. 

7.2 Literature Review 

A review of literature related to the consideration of variability of experimental modal 

data has been presented.  The received wisdom when comparing finite element 

predictions of dynamic behaviour with experimental observations, all of the error is 

assumed to exist in the former. 

Recent consideration of variations in experimental dynamic observations has 

concentrated upon different behaviour arising from nominally identical structures.  Few, 

if any authors, have studied the factors influencing time variant (transient) changes in 

dynamic behaviour from a single structure. 

In addition to work presented in this thesis, independent observations of time varying 

modal characteristics have been quoted.  The phenomenon has been seen to affect both 
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in-situ structures which are exposed to the elements and uncertain boundary conditions 

as well as carefully controlled laboratory based measurements. 

A review of model updating technologies has been presented.  Particular attention has 

been paid to attempts to use measured experimental data to update an initial finite 

element model of the structure automatically.  Success has been seen to be extremely 

limited.  While convergence upon a plausible updated model has in some cases been 

possible, serious doubts about the justification for and uniqueness of the updated 

solutions remain. 

The evolution in different updating parameter types has been reviewed.  Parameters that 

do not preserve the physical meaning of the initial finite element model have become 

discredited.  Factors upon the mass and stiffness of individual elements or groups of 

elements have been popular for a number of years and continue to be so.  Updating of 

geometric element properties has recently been suggested.  In some cases finite 

elements are customised to model a particular structural component.  The new elements 

are characterised by one or two parameters which can be updated.  The concept of 

generic elements has been introduced in the last few years.  This approach allows a 

great deal of flexibility in elemental changes with relatively few updating parameters.  

However, the constraint exists that the updated element is a member of the same family 

of elements as the initial element. 

7.3 Effect of Load on Structures 

Two case studies have produced results which conform to the expectation that dynamic 

loading is influenced by the level of static load.  The perturbations to resonant 

frequencies under controlled loading are found to be significant.  The extent of changes 

to the dynamic data taken from a loaded structure could result in  erroneous parameter 

changes in a subsequent finite element model validation or updating exercise. 

The effect of load has been shown to affect mode shapes greatly.  This occurs to the 

extent that the modal assurance criterion between the “same” mode from a loaded 
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structure and from loaded experimental data indicates very little or no similarity 

between mode shapes. 

Analysis in this thesis has shown that the resonant frequencies whose mode shapes are 

dramatically altered by loading effects are themselves most affected by deformation 

effects. 

7.4 Static Updating of Loaded Structures 

Static updating of structures has been defined in this thesis as follows:  using measured 

data to characterise loading to a structure to alter the attributes of a finite element 

model.  The goal of this approach is to generate a better representation of the loaded 

structure for dynamic prediction purposes. 

This thesis has advocated the use of existing nonlinear geometric techniques for finite 

model alteration.  The methods have been successfully used to match measured stresses 

closely with nonlinear distributions.  The changes made to finite element models by 

nonlinear geometry techniques have also been used to match dynamic prediction of the 

FE model with experimental values.  The method has produced a very close dynamic 

match of correlating modes in a situation where the load applied to the test structure is 

directly measurable. 

The problem of identifying zero-load experimental dynamic baseline data has been 

introduced.  A simple method to determine an estimate for the zero-load experimental 

data from loaded dynamic and static measurements has been presented.  The technique 

has been shown to give satisfactory results in an experimental case study.  The method 

is particularly suited to situations were static and dynamic measurements from 

structures can be taken routinely.  Since developments in sensor technologies make this 

a likelihood, the method of identifying zero-load experimental dynamic behaviour in 

practice seems to be a strong and useful possibility. 
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7.5 Dynamic Updating of Loaded Structures 

The study of static updating of loaded structures revealed that changes to the finite 

element model to represent loaded behaviour consisted principally of two factors 

namely stress stiffening and deformation.  These can be included at an elemental level 

by addition of a stress stiffening matrix and rigid body elemental rotations. 

This thesis has introduced the two elemental changes as dynamic updating parameters.  

Their inclusion into the sensitivity method of model has been set out.  The parameters 

can be updated alongside traditional parameters to enable the transient effects of loading 

to accounted for in a test structure. 

The usefulness of these parameters has been tested by means of several simulated case 

studies.  Updating of stress stiffening has been shown to be able to identify loading 

successfully from no a priori knowledge of load levels, even under realistic levels of 

(additive) noise.  Statically measured load information is shown to improve the success 

of load identification.  A method has been presented which allows the engineer to 

decide which part(s) of a structure to instrument to provide the most useful information 

for dynamic updating. 

The changes to resonant frequencies arising from stress stiffening effects has been 

shown to cause perturbations of a similar order to all resonant frequencies.  The result is 

that the sensitivity matrix is well conditioned.  It is noted that other factors such as mis-

estimation of overall stiffness can cause increasingly large perturbations to resonant 

frequencies.  To update stress stiffening parameters successfully, these other parameters 

should be also taken into account.  Generally lower order modes have been seen to be 

most useful for updating stress stiffening parameters. 

Updating of rigid body elemental rotations has been introduced.  This technique has 

been shown by means of an experimental case study to correctly identify structural 

deformations.  The method has been shown to require an initial estimate of the 

deformation. 
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An enhancement to the method whereby the rigid body rotation of a number of elements 

is updated has been presented.  Updating of the so-called profiles has been shown to be 

useful in characterising the magnitude of pre-determined deflected shapes.  The method 

shows great promise but further work is required to allow modes affected by 

deformation effects to be correlated satisfactorily. 

An experimental case study has been presented in which stress stiffening parameters are 

updated.  Experimental static load measurements allowed the correctness of identified 

loads to be examined.  As with any updating scheme, the updated solution has been 

found to be a function of the parameters to be updated and the modes of vibration 

considered.  A set of guidelines have been set out for choice of these parameters based 

on the experimental experience.  Following these suggestions useful predictions of the 

level of loading in the experimental structure have been found. 

7.6 Future Work 

All of the methods described in this thesis have been developed, demonstrated and 

tested with respect to beam elements.  The methods are not specific to this type of 

element.  The opportunity exists to test the usefulness of updating load-dependent 

properties on structures consisting of a larger variety of element types. 

The method of updating rigid body rotation profiles represents a general technique to 

modify structural form.  This method offers an exciting new direction for model 

updating and should be pursued. 

Related to this goal is the requirement to correlate resonant frequencies whose mode 

shapes differ greatly under loading.  Finite element modelling of small incremental 

loading allows correlation of modes to be determined analytically but the author knows 

of no method for successfully correlating experimental modes taken at discrete load 

levels. 
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The work in this thesis has concentrated upon using the eigenvalue sensitivity method 

of model updating.  A clear research opportunity exists to investigate the use of the new 

updating parameters with other updating methods. 

7.7 Epilogue 

This thesis has identified the effect of loading upon structures as an important factor 

that influences structural dynamic characteristics.  This effect should be taken into 

account when validating and updating finite element models of structures from 

experimental data. 

Two types of updating parameters which are philosophically different from traditional 

parameters have been introduced.  These parameters both complement and expand the 

scope of existing finite element updating technologies.  It is hoped that the new 

direction offered to model updating will help to improve the success of applying the 

technique to practical situations. 
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APPENDIX A 

FINITE ELEMENT FORMULATION 

A method for deriving elemental stiffness matrices from assumed displacement fields is 

given below, the method described is general for all elements.  While this derivation is 

available in many text books the terminology and nomenclature vary a great deal and a 

concise understanding of the theory underlying the formation of finite element matrices 

is very valuable. 

The displacement at the point 
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where ( )xuu =  etc. 

The six components of strain at some point are given by the vector 
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similarly the vector of stresses is 
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Defining the displacements of n discrete co-ordinates in some direction 
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where the nodal displacements of a single element will be expressed with the subscript e 

{ }e∆ . 

The overall nodal force vector is: 
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the elemental force in local elemental co-ordinates is { }eF , n in this case is the number 

of elemental degrees of freedom. 

The strain energy is given by: 

{ } { }∫ dVσε T  (A.7) 

and force displacement relationship: 

{ } [ ] [ ]e∆ee KF =  (A.8) 

Using a virtual work argument equating work done by external forces { }eF in moving 

virtual displacements { }e∆̂ with its internal work in creating virtual strains { }ε̂  gives 
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The stresses and strains are related by 

[ ] [ ][ ]εEσ = , (A.10) 

where [E] is the material property matrix which for an isotropic material can be shown 

[89] to be 
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where E is the Young’s elastic modulus and γ is Poisson’s ratio both of which are 

properties of the material.  The relationship between strain and displacement is given by 

{ } [ ] { }uε T∂=  (A.12) 

where [∂] is a matrix of differential operators: 
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The elemental stiffness matrix for a particular element is characterised by a shape 

function [N]e. This relates the general displacement to the displacement of elemental 

degrees of freedom. 

{ } [ ] { }eeNu ∆=  (A.14) 

Combining equations (A.8) - (A.13) gives 
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substituting 
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[ ] [ ] [ ]NB T∂=  (A.16) 

where [B] is known as the strain-displacement matrix and recalling that the nodal 

displacements are arbitrary, equation  A.15 gives 

{ } [ ] { }eee KF ∆= , (A.17) 

where [K]e is the elemental stiffness matrix and is hence given by 

[ ] [ ] [ ][ ]( )dVBEBK
V

T
e ∫=  (A.18) 

Elemental strain can be found from (A.12) and (A.14) 

{ } [ ] [ ][ ]( )∆Nε T∂=  (A.19) 

substituting (A.16) into (A.19) 

{ } [ ][ ]∆Bε =  (A.20)
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APPENDIX B 

EXPERIMENTALLY IDENTIFIED MODES 

Tables B.1, B.2 and B.3 show the resonant frequencies identified under different load 

conditions from frameworks B, C and D respectively.  Note that the rows of the tables 

do not necessarily represent correspondence of modes. 

 

 Load Case 

Mode 0 1 2 3 

1 45.60 42.86 39.69 36.87 

2 69.01 81.5 89.95 94.67 

3 92.17 92.99 94.57 96.11 

4 125.27 121.27 115.43 111.05 

5 129.87 136.01 141.78 149.83 

6 179.69 184.59 184.23 182.08 

7 197.41 195.60 192.87 190.05 

8 209.61 221.52 204.22 235.60 

9 231.96 235.19 229.10 240.24 

10 252.71 252.64 238.28 249.66 

11 288.23 286.38 250.85 281.32 

12 315.04 313.42 283.67 305.54 

13 353.82 348.50 308.85 335.27 

14   341.55  

Table B.1 – Identified Resonant Frequencies (Hz); Frame B 
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 Load Case 

Mode 0 1 2 3 

1 44.13 41.96 39.21 37.07 

2 91.18 82.96 89.26 94.24 

3 126.43 91.25 93.01 95.31 

4 133.98 122.33 116.82 113.36 

5 196.30 140.56 147.47 155.40 

6 209.84 184.28 183.92 183.27 

7 230.04 194.42 192.12 189.92 

8 250.80 219.33 225.87 200.93 

9 318.37 233.63 236.55 232.02 

10 346.49 253.36 251.98 239.03 

11  316.57 312.02 251.28 

12  343.71 338.70 309.05 

13    335.40 

Table B.2 – Identified Resonant Frequencies (Hz); Frame C 

 

 Load Case 

Mode 0 1 2 3 

1 45.14 42.06 39.24 36.77 

2 92.14 84.51 90.48 95.15 

3 125.47 93.11 94.72 97.15 

4 132.87 120.54 115.41 156.97 

5 184.04 136.56 148.62 182.54 

6 199.15 141.23 184.21 190.77 

7 234.36 185.74 193.44 237.56 

8 255.40 196.88 230.53 241.43 

9 314.02 237.18 239.52 251.79 

10 350.74 254.94 252.69 305.09 

11  313.03 308.72 336.17 

12  346.17 340.19  

Table B.3 – Identified Resonant Frequencies (Hz); Frame D 
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