Objectives

In this study we will undertake a fundamentally new approach to understanding the hazards presented by CO2 pipelines based on the development of novel mathematical and computational techniques, challenging chemical engineering concepts and innovative experimentation to:
1. Define optimum level of impurities in the CO2 stream based on safety, environmental and economic analysis;
2. Develop a computationally efficient multi-phase heterogeneous outflow model for the accurate prediction of the time variant release rate and the physical state of escaping CO2 following pipeline failure, based on a reliable equation of state for CO2 and CO2 mixtures;
3. Develop multi-state dispersion models for predicting the subsequent concentration of the released CO2 as a function of time and distance from the release, both in terms of a detailed near- and far-field modelling capability;
4. Conduct small and large scale experimental validations of the models developed;
5. Provide a detailed understanding of the hazards presented by CO2 releases through experimentation and, using the data generated, validate the outflow and dispersion models developed;
6. Embody the understanding and predictive capabilities developed in decision support tools, assessing and improving existing safety, risk assessment methods, tools for CO2 pipeline application, and producing refined best practice guidelines;
7. Demonstrate the usefulness of the tools developed through their application to possible CO2 pipeline designs.