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In the past few years, an increasing number of models for tissue development have been published in
the literature. While many of these models studied the features of a tissue with a restricted size, only a
few focused on the properties of the growing tissue.

Directional growth of the tissue plays an important role in the development of the embryo and its
organs. The model tissue in this research is mouse palatal epithelium. Recent finding have revealed
that non-proliferative mechanisms should account for its anteroposterior growth [Unpublished data
from the Green lab].

This research is an attempt to identify the amount of contribution of different growth mechanisms
in directional growth of the tissue. A 2D vertex model of the growing tissue will be developed for this
purpose. This model will then be used to find explanations for the role of different growth mechanisms,
arising from anisotropic tension, in tissue elongation.
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1 Introduction

Epithelial tissue, also known as epithelium, is a structured layer of cells where cells are joined together,
side to side, to form multicellular sheets [2]. It is one of the four major types of animal tissues, which
appears in the lining of all body structures [1, 38]. Acting as a selective barrier, epithelial tissue protects
the underlying cells from injury and damage, exchanges chemicals between them and the body cavity,
and synthesises and releases secretion [26]. During embryonic development, the first tissue to emerge
is epithelial tissue [29], which contributes to the shaping of the embryo and its organs [23].

Considering its various functions and responsibilities, the proper formation and development of ep-
ithelial tissue plays a crucial role throughout animal’s life. For example, it has been proposed that cleft
palate, one of the most popular craniofacial defects in newborns [32], could be the result of improper
development of the palate medial-edge epithelium [31, 32]. In adults, about %90 of all cancers is carci-
nomas, which arises from abnormal growth of epithelial cells, leading to the formation of tumour tissue
[1, 29]. Thus, understanding the mechanisms that direct the tissue development is of high importance,
as it will help us to identify the causes of its abnormal growth.

The model tissue used in this study is mouse palatal epithelium, a flat tissue marked with 8 regularly
spaced ridges, known as ”rugae” [11] (figure 1). There are several reasons to choose this as the model tis-
sue. First, the rugue can be used as landmarks on the tissue, making quantitative analysis of its growth
easier. Second, flatness of this tissue enables us to use two-dimensional models to simulate its growth
and development.

The studies have shown that rugae formation is a sequential process [32]. In fact, the first ruga to appear
during embryonic development is ruga 8. Ruga 2 is the second ruga to appear. Except ruga 1 which
appears out of order, all other rugae are formed between ruga 8 and their predecessor [11].

Figure 1: (Left) A. The palatal rugae on the roof of the oral cavity of an adult mouse. The pattern of
these rugae is shown in B. Figure taken from [32] (Right) Sequential appearance of palatal rugae. The
mid-palatal Rugae Growth Zone (RGZ) is the region anterior to ruga 8 (r8) where new rugae appear.
Figure taken from [11].

A specific domain of the palate anterior to ruga 8, where sequential formation of rugae occurs, is known
as mid-palatal Rugae Growth Zone (RGZ) [39]. The anteroposterior growth in RGZ moves the rugae
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in this region apart from each other, while the spacing between more anterior rugae remains relatively
constant [11]. Studies have been done to identify the relation between rugae formation and anteropos-
terior growth in this region (for more information, see [11, 32, 39]). However, less is known about the
mechanisms which lead to the elevated growth in RGZ.

Different mechanisms can contribute to the growth in RGZ. The first possible explanation of the ele-
vated growth in RGZ could be an increased rate of cell proliferation in this region. However, detailed
analysis of cell proliferation shows that there is no difference between the rate of cell division in RGZ
and other regions of the palate [32, 39] [Also unpublished data from the Green lab] . This suggests that
non-proliferative mechanisms should be the main contributors to the non-uniform directional growth
of the palate [Unpublished data from the Green lab].

In the following essay, the major mechanisms underlying directional growth of the tissue will be briefly
explained (Section 2). Several analytical and computational models have been proposed to simulate tis-
sue development. These models will be described in Section 3. A model will be developed in this study
to simulate the growth of the tissue from a small patch of cells. Section 4 contains a detailed description
of this model, as well as a description of the measures used to study the tissue growth. The developed
model will then be used to study how different growth mechanisms can contribute to the non-uniform
directional growth observed in the palatal tissue. The results of this study will be presented in section
5. The essay ends with a discussion section (Section 6), where the findings will be discussed and com-
pared with previous works. Moreover, the limitations of the developed model will be explored and
suggestions will be made for future work.

2 Directional Growth of the Tissue: The Underlying Mechanisms

Tissue elongation is an important step during embryogenensis and organogenesis [22]. Below the major
mechanisms driving directional extension of the tissue will be explained. Recent findings of the role
each of these mechanisms play in the elongation of mouse palatal tissue will also be represented.

2.1 Intercalation

Intercalation is one of the major mechanisms that gives rise to tissue elongation, by which cells are
rearranged as they reorganise their junctions [24]. Cell intercalation has been extensively studied in
Drosophila embryo, where it drives germband elongation [24, 35]. Recent findings from the Green lab
suggest that cell intercalation (or more specifically, mediolateral cell intercalation) plays an important
role in the anteroposterior growth observed in mouse palatal epithelium.

Figure 2: Cell rearrangements (intercalation) in horizontal direction caused by the shrinkage of vertical
junctions (red) and formation of new horizontal junctions (blue). Figure taken from [24].

Figure 2 shows how cell intercalation can lead to extension of the tissue in a specific direction. In fact,
the junctions oriented along the vertical axis shrink. This is followed by formation of new junctions
perpendicular to the previous junctions, along the horizontal axis. It has been shown that shrinkage of
junctions with a direction close to the horizontal axis (in the case of Drosophila, close to the dorsoventral
axis) is not caused by ”external forces exerted at the tissue boundaries” [24], but by local cortical tension
arising from the enrichment of Myosin-II at these junctions [7, 35].

2



2.2 Oriented Cell Division

Oriented cell division is another major mechanism participating in tissue elongation [24]. Although be-
ing overlooked for many years, recent studies have revealed the major role of oriented cell divisions in
directional growth of both plant and animal tissues. Examples of this include morphogenesis of Antir-
rhinum petal [3], zebrabish gastrula and neurula [8] and Drosophila embryonic epithelia [9].

Figure 3: (a) Random cell divisions (outlined in red) lead to uniform growth of the tissue. (b) Oriented
cell divisions lead to tissue elongation. Figure taken from [24].

Figure 3 shows how oriented cell division can give rise to tissue elongation. In fact, it is known that
orientation of cell division is directed by mitotic spindles. In the absence of any bias in the orientation
of cell divisions, the cell divisions will be in random directions, leading to uniform growth of the tissue.
However, studies have shown that ”systematic alignment of mitotic spindles in dividing populations
could ... lead to significant tissue elongation” [40].

In mouse palatal epithelium, a strong bias has been observed in the orientation of mitotic spindles,
suggesting the presence of oriented cell divisions in this tissue. However, as this specific orientation
of mitotic spindles has been observed throughout the tissue and not just RGZ, it is suggested that this
mechanism cannot account for the promoted directional growth of the tissue in RGZ [Unpublished data
from the Green lab].

2.3 Cell Shape Changes

The shape of the cells in the tissue can be determined by a competition between adhesion and cortical
tension [25]. How the interplay between these mechanical forces can lead to different topologies has
been extensively studied in the literature [15, 13]. Although it has been proposed that changes in cell
shapes contribute to tissue elongation [24], less is known about the details of this contribution. A com-
putational model in [27] has explored the indirect effect of cell shape changes on tissue elongation. In
fact, it been shown that polarised tension can lead to changes in cell shapes, which can then promote
oriented cell divisions and lead to tissue extension. The direct contribution of cell shape changes to tis-
sue elongation is still unclear and yet to be studied.

Figure 4: Effect of cell shape changes on tissue elongation. As it can be seen, lengthening of cells in a
specific direction can give rise to effective tissue elongation. Figure courtesy of Andrew Economou.

3



Recent findings from the Green lab suggest that the changes in the shape of the cells partly contribute
to the directional growth of the RGZ in mouse palate. In fact, it has been observed that cells in RGZ
elongate in the anteroposterior direction, while cells in other regions do not. It has also been observed
that the growth arising from cell shape changes cannot account for the significant tissue elongation, sug-
gesting the involvement of other growth mechanisms in the growth of the RGZ [Unpublished data from
the Green lab].

3 Models of Tissue Development

Modelling tissue development, both in animals and plants, has been the topic of many studies in the
past 30 years. These models can be divided into two main groups: analytical and computational.

Many of the analytical models are focused on finding the transformation tensor that could describe
the growth of the studied organ [18, 19, 10, 36]. In these studies, the transformation tensor is derived
from measurements of the growth of the organ. For example, in studying the development of dorsal
petal lobes of Antirrhinum majus, Lagan and colleagues [36] divide the growing structure into several
segments and calculate the elements of the transformation tensor Tr

k from the experimental data. Given
the shape of a segment at time k− ∆, its shape at the next time step k can be calculated by Tr

k, where r
represents the position of the segment and k represents the time interval [k− ∆, k]. Thus, the changes in
the shape of the organ can be calculated by continuously applying transformation T to its initial shape.
Since analysing and measuring growth is easier in 2D flat tissues, such as leaves or petals, analytical
models have been widely used for studying development of plant tissues [36].

Several 2D and 3D computational models have been proposed to study the development of animal
tissues. Below, the main groups of these models are presented.

3.1 The Cellular Potts Model

The cellular Potts model is an extension to the large-Q Potts model, a model in foam physics that can
successfully describe the dynamics of the grain growth driven by the surface energy (e.g. in soap froth)
[17]. The large-Q Potts model is a lattice model, in which each lattice site, σ(i,j), has a spin value between
1 and N. Lattice sites with the same spin belong to the same cell. Therefore, the system is comprised of
N cells. The Hamiltonian of the system is defined as:

H = ∑
neighbours

1− δσ(i,j),σ(i′ ,j′) (1)

Given the initial state of the system, its temporal evolution can be computed as follows. At each time
step, the state of a randomly chosen lattice site is changed from σ to σ′ with Monte Carlo probability. To
be more explicit, for temperatures above 0, if the change is energetically favourable, i.e. if ∆H < 0, the

change is accepted. Otherwise, it is accepted with probability e−
∆H
kBT , where kB is the Boltzmann constant.

In order to be applied to biological systems, the large-Q Potts model has been modified by Graner
and Glazier [17]. In fact, they argued that biological systems differ from soap bubbles, as they have
a constraint on their size (i.e. volume), whereas bubbles are free to expand [17]. This is implemented
in the model by adding an ”elastic-area constraint” to the Hamiltonian. In addition, a second ”quan-
tum number”, τ, is introduced, which represents differential adhesion between different cell types. The
Hamiltonian of the cellular Potts model is as below:

H = ∑
neighbours

J(τ(σ(i, j)), τ(σ(i′, j′)))(1− δσ(i,j),σ(i′ ,j′)) + λ ∑
σ

[a(σ)− Aτ(σ)]
2θ(Aτ(σ)) (2)

In the first term, J describes the surface energy between two different cell types τ and τ′. The elastic-area
constraint is implemented in the second term. In fact, λ is a Largange multiplier defining the strength
of the elastic area constraint, a is the actual area of the cell and Aτ is the target area of the cells of type τ.
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Adjustments have been made to the Hamiltonian of the cellular Potts model, in order to enable it to
simulate the dynamics of tissue development [21, 33]. For example, Kafer and colleagues [21] study the
shape of the cells in a Drosophila retinal ommatidium. They argue that the cell packing observed in the
epithelium cannot be modelled only by adhesion-related tension, as in the original cellular Potts model.
Therefore, they add a term to the Hamiltonian as below:

λP(Pi − P0i)
2 (3)

where λP is the perimeter modulus, and Pi and P0i are the actual and target perimeters of the cell i,
respectively. This term accounts for the cell contractility, arising from contraction of actin cytoskeleton
[12].

In another study, Poplawski et al [33] used a 3D cellular Potts model to simulate growth of the chick
Gallus gallus limb bud. Similar to [21], they used an adjusted version of the Hamiltonian that included
a term for cell contractility. In addition, diffusion of morphogen Fibroblast Growth Factor 8 (FGF8) was
implemented in the model. FGF8 is a gene that encodes for a protein involved in various biological pro-
cesses, including embryonic development and cellular growth [14]. Their research demonstrated that
differential cell adhesion and diffusion of morphogens are required to simulate growth of the paddle
shaped chick limb bud.

3.2 The Vertex Model

The vertex model is a model in statistical mechanics that has extensively been used to simulate epithelial
packing and development [13, 27, 28, 35].

Figure 5: In the vertex model, cells are represented as polygons, with their sides being defined by ver-
tices. Each cell has an area Aα and perimeter Lα. The length of the junction between vertex i and j is
described by lij. Figure taken from [27].

It is comprised of a network of Nc cells, where the cell edges are shown by Nv vertices (figure 5). The
general energy function proposed in [13] is as follows:

E(Ri) = ∑
α

Kα

2
(Aα − A(0)

α )2 + ∑
<i,j>

Λijlij + ∑
α

Γα

2
L2

α (4)

The first term accounts for the elastic-area constraint, also known as area elasticity. Here Kα is the elastic
coefficient, Aα is the actual area of the cell and A(0)

α is its target area. The second term represents the
line tension between vertices, with Λij being the line tension and lij the length of the junction between
vertices i and j. This line tension is the sum of the adhesive forces between cells and contractile forces
arising from the cell cortex [13, 27]. The mechanics of the actomyosin cytoskeleton is embedded in the
third term, where cortical contractility is described by the cell perimeter Lα and a coefficient Γα.

The cells in the vertex model are able to grow, divide, exchange neighbours and die. The growth is
implemented by gradually increasing the target area of the cells to twice their initial area. The cells
reaching this threshold size enter the division phase [13, 27, 28].

Different approaches were taken to implement division in the model. For example, in [13], the cells
are divided in a random direction through their centroid, while in [27], the cells are divided along their
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short axis. In [28], a new boundary is introduced by randomly choosing a cell side and connecting its
midpoint to the midpoint of the opposite side [30].

Neighbour exchange and cell death were enabled by introducing T1 and T2 transitions in the model.
Figure 6 shows the steps of these processes.

Figure 6: (A)T1 transition. During T1 transition, a junction shrinks and a new junction is formed per-
pendicular to it. (B) T2 transition. During this transition, triangular cells smaller than a threshold value
are removed from the system. Figure taken from [13].

Different methods could be used to determine the time evolution of the system. In [13] for example,
the configuration of the system at each time step is determined using the conjugate gradient method
[34]. This is a numerical method which finds the local minimum of the energy function at each time
step. The system is perturbed and driven out of equilibrium by cell divisions and apoptosis [13]. The
Monte Carlo methods have also been used to determine the configuration of the system [28]. This is
similar to finding the system configuration in the cellular Potts model, with the difference that instead
of changing the state of a lattice site, the position of a vertex is changed.

Adjustments have been made to the energy function presented above in order to account for the elonga-
tion observed in some tissues, such as Drosophila melanogaster embryo [35] and Drosophila wing epithelia
[27].

In [27], it is argued that appearance of an atypical myosin, Dachs, in certain locations correlates with
the directional cell division and elongation. In fact, it is suggested that Dachs generates tension along
the cell-cell junctions, forcing the cells to change shape. The change in the shape of the cells affects
the orientation of mitotic spindle, leading to oriented cell divisions and elongation of the tissue. The
presence of Dachs in certain locations has been implemented in the model by adding a term in the form
∑<i,j> ΛijΦDachs

ij lij to the energy function. Here, ΦDachs
ij = ΦDachs

MAX × sin(φ) and 0 < φ < 90 is the edge
angle with respect to the proximal-distal axis. It has been found that while the polarised tension due to
the presence of Dachs can generate tissue elongation similar to those observed in vivo, the addition of
forced polarised cell division (division along proximal-distal axis) leads to unrealistic directional growth
of the tissue.

In [35], a tension anisotropy has been embedded in the line tension and cortical contractility terms of the
energy function. The results of this study show that cell elongation is the result of anisotropic cortical
tension at apical cell junctions. In fact, polarised tension, arising from the increased concentration of
myosin II at junctions with a direction close to the dorsoventral axis, leads to their shrinkage and for-
mation of new junctions along anterior-posterior axis. Besides the fact that an adjusted energy function
is used in this study, the model differs from those presented earlier in that the cellular growth, division
and apoptosis were not implemented in it.

3.3 Finite Element Models

The Finite Element Methods (FEM) are another set of computational techniques which use both cellular
mechanics and geometry to simulate the evolution of biological tissue through time [16]. Unlike previ-
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ous models where the energy function was used to determine the temporal evolution of the tissue, FEM
uses the forces acting on the cells to compute their change in shape.

Each cell is divided into a finite number of elements. The forces acting on the cell arise from circumfer-
ential microfilament bundles, the contractility of the cell cortex, adhesion mechanisms between cells and
apical mat of microtubules [5, 6]. However, all these forces can be summed into a force γ, equivalent to
interfacial tension along the cell boundary [6].

The dynamics of the system could be described by the following equation:

Cu̇ + Ku = f (5)

Here C and K are matrices representing the damping and the stiffness of the elastic components of the
system, respectively. u is the vector describing the displacements of each element, u̇ is the time deriva-
tive of the displacements and f is the vector of applied forces [6]. Equation 5 is a non-linear equation
because C, K and f change as the cells deform. Therefore, in order to find the time evolution of the sys-
tem, the displacements of elements during short time increments are calculated. At the end of each time
increment, the geometry of the system is used to find estimations of C, K and f for the next time step.

In [5], this finite element formulation has been used to explore the role of mitosis and its orientation
on cell shape and epithelia reshaping. Gibson et al [16] have also used this formulation to study how
orientation of mitotic cleavage plane affects th epithelial topology. In addition to cell proliferation im-
plemented in [5], they allow neighbour exchanges in their model. Their study shows that the orientation
of mitotic cleavage plane for each cell is defined by its shape and number of neighbouring cells. This
oriented cell division then determines the tissue topology (i.e. the distribution of cells with different
numbers of sides).

A different formulation of FEM has been used in [4] to simulate the morphogenesis of the mouse limb
bud. In fact, assuming that cells behave like liquids, the Navier Stokes equations have been used to
describe the forces acting on the cells. The results from this 3D FEM show that isotropic cell divisions
are not sufficient to generate the correct shape of the limb bud. Further analyses of the experimen-
tal data show that oriented cell divisions, cell shapes and Golgi orientation likely drive the directional
outgrowth of the limb bud.

4 Methods

4.1 Implementation of the Vertex Model

The vertex model developed in this research is a variant to the existing models [13, 27, 28, 30]. The code
is written in Matlab and is an adaption to the vertex model implemented in Matlab by Mehonic [30].

4.1.1 Representation of the Tissue

The tissue is represented by a 2D network of Nc polygonal cells, with their edges defined by Nv vertices.
The model developed by Mehonic [30], similar to that described in [13], made use of periodic boundary
conditions. However, this condition is true for situations where the planar area of the tissue remains
constant during development. This is not the case for the mouse palatal epithelium, where the planar
area is increased. Thus, this constraint was removed from the boundaries of the tissue, allowing it to
grow freely. This is similar to [27], where no special conditions were put on the tissue boundaries in
order to study its oriented growth [Tournier, personal communication].

4.1.2 The Energy Function

Two different energy functions were examined. For a set of simulations, the energy function described
in [13] (equation 4) was used. This energy function represents isotropic tension along the cell junctions
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and has been explained in detail in section 3.2. In order to analyse the effect of anisotropic tension on
tissue growth, the energy function proposed in [27] was used:

E(Ri) = ∑
α

Kα

2
(Aα − A(0)

α )2 + ∑
<i,j>

Λij(1 + Φij)lij + ∑
α

Γα

2
L2

α (6)

Φij = ΦMAX × sin(φ)

0 < φ < 90

Here, all parameters represent those described in section 3.2. It should also be noted that these energy
functions (equation 4 and 6) have been simplified by using constant values of K, Λ and Γ for all cells
and junctions of the system.

4.1.3 Temporal Evolution of the Tissue

The vertex model developed by Mehonic [28, 30] is stochastic, as it uses the Monte Carlo sampling to
determine the evolution of the tissue through time. Previous vertex models [13, 20] were deterministic,
in the sense that at each time step, the system would choose a configuration which minimised its energy
function, using the conjugate gradient algorithm. This meant that the final configuration of the tissue
was determined by its initial configuration and precise path of its temporal evolution [30]. However, the
presence of noise in the system prevents it from necessarily choosing the configuration that minimises
its energy function at each time step.

Since ”active molecular processes” introduce some noise into biological systems [30], in the model de-
veloped in this study, I keep the stochastic feature of Mehonic’s model. Thus, the tissue is evolved
through time using the Monte Carlo Metropolis-Hastings algorithm:

1. A vertex is chosen at random and displaced through a small distance δ = (δx, δy). δx and δy are
randomly chosen from a uniform distribution on the interval [0, δmax], with δmax being a free parameter.

2. ∆E, the change in the energy function due to this displacement is then calculated.

3. If ∆E < 0, i.e. if the move is energetically favourable, it is accepted. Otherwise, the move is ac-
cepted with the Monte Carlo probability e−∆E.

At each simulation time step, the system was relaxed by repeating the above steps for trelax × Nv times,
with trelax being the relaxation time of the system. This implies that as the system grew and the number
of vertices (or cells) increased, more time was given to the system to relax.

4.1.4 Cellular Growth and Division

As in previous models, cellular growth was implemented by gradually increasing the target area of the
cells [13, 27, 28, 30]. More explicitly, at each simulation time step, the target area of each cell was multi-
plied by its growth rate g, a random number that was chosen from a uniform distribution in the interval
[1, gmax] and was assigned to each cell when it first appeared in the system. After increasing the target
area of the cells, the tissue was left to relax, using the procedure described in section 4.1.3.

Next, the tissue was monitored for cells that had grown to twice their standard size. These cells were
then divided by introducing a new cell boundary that went through the centroid of the cell and had a
random direction. The steps of introducing this new boundary is as follows (figure 7):

1. One edge of the dividing cell is chosen at random. The midpoint of this edge is the first end of
the boundary.

2. The other end of the boundary is the intersection of a line going through its first end and the cen-
troid of the cell with the cell perimeter.
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Figure 7: The steps of the cell division in the vertex model. First, the cell is grown to twice its initial size.
Then the cell is divided by introducing a new boundary. The resulting cells are then left to relax.

The result of this division procedure described above is formation of two cells of approximately the
same size, thus mimicking the division of the cell through mitosis [1]. It should be noted that this di-
vision procedure is similar to that described in [13] and differs from the division method originally
implemented in Mehonic’s model. In fact, in Mehonic’s model, the new boundary was introduced by
connecting the midpoint of the chosen edge to the midpoint of this opposite edge. However, in cases
where the cell is asymmetric, this method does not lead to formation of two cells of the same size.

4.1.5 Topological Changes: T1 and T2 Transitions

Cell neighbour exchanges (T1 transition) and cell apoptosis (T2 transition) were included to allow for
minor rearrangements of the cells [27].

To allow for T1 transitions, the tissue is monitored at every time step for junctions smaller that a thresh-
old value δT1. If such a junction exists, it is shrinked to zero with a Monte Carlo probability and ex-
panded in the opposite direction. T2 transitions were implemented as follows: the tissue was monitored
for triangular cells with area smaller than a threshold value Amin. These cells were then removed from
the tissue.

It is worth mentioning that while T1 transitions introduce reversible topological changes in the tissue,
the changes following T2 transitions are irreversible [28, 30].

4.1.6 Setting Parameters

Similar to [13] and [27] normalised line tension Λ = Λ
K(A(0))3/2 and normalised contractility coefficient

Γ = Γ
KA(0)

were used. The values of these parameters were set to 0.1 and 0.033, as suggested in [27].

In order to allow for gradual changes in the configuration of vertices, δmax should not be large com-
pared to the length of the cell junctions. Thus, δmax was set to 0.025. A range of values in the interval
[0.01, 0.025] were also tested. However, it was found that choosing a value smaller than 0.025 was not
necessary, as it made no changes to the topology of the tissue.

The relaxation time trelax was determined as follows: tissue was grown using an isotropic tension energy
function with relaxation time of 1000. This was assumed to be the maximum relaxation time and I aimed
to find a time smaller than this, in order to reduce the run time of the simulations. After a patch of 68
were formed, I ran the simulation for another time step and measured the total energy per cell of the
tissue after Nv attempts to move the vertices. As figure 8 shows, the system reaches a minimum energy
after about 500 time steps. Therefore, the relaxation time trelax was set to 500 for further simulations.

gmax was set to 1.5. Various values have been used in literature for δT1. In this study, δT1 is set to
0.1, as in [27, 30]. Amin is set to A0

4 , with A0 being the standard size of the cells. This is in accordance
with [30].

9



0 100 200 300 400 500 600 700 800 900 1000
165

170

175

180

185

190

195

time

to
ta

l 
e

n
e

rg
y
 p

e
r 

c
e
ll 

o
f 
th

e
 s

y
s
te

m

Figure 8: The total energy per cell of the tissue over time. The relaxation time is defined as the time after
which the energy does not change.

4.2 Initial Configuration of the Vertex Model

In previous studies, the initial configuration was composed of a large number of cells (e.g. 305-459 cells
in [35], 250 cells in [28]). In the first attempt to model the growing tissue, I decided to start the growth
from a single cell. This required introducing additional conditions for the movement of vertices. For
example, it was found that a vertex belonging to only one cell is free to move, because there are no other
cells to be affected by its movements. Therefore, the vertices might make large displacement, sometimes
leading to formation of self-intersecting polygons. Thus, conditions were embedded in the model to
prevent the moves leading to generation of self-intersecting polygons.

Moves that led to cells growing into each other or crossing each other were also rejected. These con-
ditions were not required in models with continuous boundary conditions.

Figure 9 shows a tissue grown from a single cell. As figure 10 shows, a large proportion of cells at
each time step are tetragonal, which is not realistic for biological tissues. Also the shape of the cells do
not resemble those observed in real tissues. To find the cause of the unrealistic shape of the cells, the
initial number of cells was increased from one to seven hexagonal cells. However, it was observed that
after two or three simulation time steps, the cells acquired abnormal shapes. In another attempt, all of
the above conditions were removed. This led to development of a more realistic tissue. Thus, further
simulations were done by starting from seven hexagonal cells, with no excess conditions on the vertex
movements.

4.3 Quantifying the Growth of the Tissue

Several measures have been used to quantify the growth of the tissue and decide if it resembled the
biological tissue.

4.3.1 Distribution of Neighbour Numbers

Distribution of cell neighbour numbers is a useful way to characterise tissue topology [37]. It has been
used in the literature to explore the parameter space of the vertex model and choose the best parameters
for the energy function [13, 27, 30]. In this study, I do not try to reproduce the exact histogram of cell
neighbour numbers observed in mouse palatal tissue, as this requires an in depth study of the parameter
space which is beyond the scope of this project. However, a recent study has shown that the histogram

10



Figure 9: Snapshots of the growth of the tissue from a single cell.
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Figure 10: Histograms of the cell neighbour numbers at each simulation time step, corresponding to the
simulation represented in figure 9.
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of the cell neighbour numbers for growing epithelial tissues in several species fall onto a ”universal”
curve [15]. Thus, it might not be far from reality to expect that if the model is working properly, pre-
dominance of pentagonal and hexagonal cells should be observed in the tissue (as in the experimental
data provided in [13]).

Two types of plots will be used in this report to represent the topology of the tissue. The first type
of plot represents the distribution of cell neighbour numbers. To calculate this, the distribution of cell
neighbour numbers has been derived for every time step of each simulation. This has then been aver-
aged over the last 10 time steps of every simulation. The reason for averaging over the last 10 and not
all time steps is that in the first time steps, the tissue has not evolved far from its initial state, which was
deterministic. Thus, considering these time steps in the average topology of the tissue will affect the
stochasticity of the model. The other type of plot illustrates the change in the average cell neighbour
number as the tissue evolves. This has been calculated by measuring the average neighbour numbers at
each time step of each simulation and then averaging over all simulations.

4.3.2 Cell and Tissue Deformation

In order to study the changes in the shape of the cells, the relative dimensions of the tissue cells are
extracted. This is done by finding the ellipse of inertia for each cell and calculating the ratio of its long
axis to short axis. In fact, the ratio of the long axis to short axis of a cell’s ellipse of inertia, together with
the orientation of the ellipse can be a good measure of elongation of the cell in a certain direction. This
can be seen in figure 11.

Figure 11: Ellipse of inertia of a hexagonal cell. The ratio of the long to short axis gives a measure for
the relative dimensions of the cell. The angle between the long axis and horizontal axis gives a measure
for the cell orientation.

The deformation of the whole tissue was also quantified by finding its ellipse of inertia and measur-
ing the ratio of its long axis to short axis, as well as its orientation. It is expected that if the growth of
the tissue is isotropic, this ratio should be close to one, whereas if the tissue is elongating in a certain
direction, this ratio should be larger than one. The direction of elongation can be given by the angle the
major axis of the ellipse makes with the horizontal direction.

4.3.3 Growth Rates

The growth rates in horizontal and vertical directions were also used to quantify the growth of the tissue
in different directions. These were defined as below:

ghorizontal(t) =
[xmax(t)− xmin(t)]− [xmax(t− 1)− xmin(t− 1)]

∆t
(7)
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gvertical(t) =
[ymax(t)− ymin(t)]− [ymax(t− 1)− ymin(t− 1)]

∆t
(8)

5 Results

5.1 Growth Under Isotropic Tension

In order to find the effect of anisotropic tension on the development of the tissue, I first had to quantify
its growth in the absence of such tension. Thus, 4 simulations were run, each comprising of 15 simula-
tion time steps, with the number of tissue cells increasing from 7 to an average of 53.7. Figure 12 shows
the snapshots of one of these simulations (full simulation can be found in supplementary movie 1).The
energy function in equation 4 was used for evolving the tissue through time.

Figure 12: Snapshots of the growth of the tissue under isotropic tension. The growth has been started
from a patch of 7 hexagonal cells.

The histogram of cell neighbour numbers is presented in figure 13. As it can be seen, the majority of
cells are pentagons, in accordance with [13]. This is followed by hexagonal and tetragonal cells. These
results are also consistent with the case of growing tissue with uniform rate of cell divisions in [30].
However, it should be noted that exact comparison of statistics is not possible, as the model itself and
the parameters used are different from those in [13] and [30]. It can be inferred from the histogram that
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under isotropic tension, the model developed in this research can produce a tissue topology similar to
those in previous models.
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Figure 13: Histogram of Cell Neighbour Numbers (CNN) for tissue development under isotropic tension

Figure 17 (red line) shows that the relative dimensions of the cells vary in the interval between 1 and
2. This suggests that the shape of the cells are roughly equally proportioned. Considering the whole
tissue, its dimensions in different directions remain almost equal throughout its development. This is
illustrated in figure 19, where the relative dimensions of the tissue remains in the interval between 1 and
1.3.

The above results confirm that in the absence of any kind of anisotropy in the implementation of the
model, the growth of the tissue will be uniform in all directions. Although this result is trivial, it was
essential to analyse the growth of the tissue in the presence of isotropic tension in order to make com-
parisons with the results of the next section.

5.2 Growth Under Anisotropic Tension

A total of 16 simulations were run, with 4 simulations for each value of ΦMAX varying from 1 to 4,
incremented by 1. In these simulations, the energy function in equation 6 was used for the Metropolis-
Hastings algorithm. The snapshots of one of the simulations with ΦMAX = 2 has been presented (figure
14, also supplementary movie 2). Snapshots of simulations for other values of ΦMAX have been pro-
vided in the appendix A.2.

Histograms of cell neighbour numbers for each value of ΦMAX are represented (figure 15). Values larger
than this led to rapid deformation of the cells. In principle, it should be possible to run simulations with
these parameter values. However, in practice, the cells grow into each other, because the conditions that
prevented the vertices to move into neighbouring cells were removed from the model. Therefore, it was
not possible to try larger values of ΦMAX with the current implementation of the vertex model. As it can
be seen, for all cases except ΦMAX = 3, the majority of cells are pentagonal, followed by hexagonal and
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Figure 14: Snapshots of the growth of the tissue under anisotropic tension ΦMAX = 2. The growth has
been started from a patch of 7 hexagonal cells.

tetragonal cells. For ΦMAX = 3, the population of tetragonal cells is larger than hexagonals. Figure 16
shows the average cell neighbour numbers during tissue development. It can be seen that as the tissue
develops, the average number of neighbours decreases. For the case of isotropic tension and all cases
of anisotropic tension except ΦMAX = 3, this number decreases to a value in the interval [5.35,5.45],
whereas for ΦMAX = 3, it decreases to 5.56. As no major difference can be observed between the tissue
cell neighbour numbers under isotropic and anisotropic tension, it can be concluded that addition of
isotropic tension does not affect the tissue topology.

However, anisotropic tension does affect the shape of the cells. This is evident from figures 17 and
18. In fact, increasing ΦMAX leads to a rise in the ratio of the long axis to short axis of cells’ ellipses of
inertia (figure 17). Figure 18 shows that the increasing anisotropic tension does not affect the average
orientation of the ellipses of inertia, as their angle with horizontal axis remains within the range [4.6,
5.7]. Thus, it can be concluded that introducing anisotropic tension into the model leads to elongation
of cells in a specific direction. In our simulations, this elongation is in the horizontal direction, as the
tension is maximum in vertical junctions.

Figures 19 and 20 illustrate the overall changes in the shape of the tissue due to introducing and in-
creasing an anisotropic tension. It can be seen that as ΦMAX is increased, the ratio of the long axis to
short axis of tissue’s ellipse of inertia is increased, while its orientation remains close to the horizontal
axis. This suggests that the tissue is also elongating in the horizontal direction, although its elongation
is minor compared to that of individual cells. In fact, it can be seen that while there is %78 increase (on
average) in the average ratio of the long axis to short axis of the cells’ ellipses of inertia, this value is %8
for the overall tissue.

One point that requires explanation is the variations in the angle of long axis of tissue’s ellipse of in-
ertia with horizontal axis under isotropic tension, θ. The fact that under isotropic tension, the ratio of
the long axis to short axis of tissues’ ellipses of inertia remained close to 1 (changing between 1 and 1.3)
suggests that these ellipses are close to circles and thus, θ does not really define their orientation.
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Figure 15: Histogram of the average cell neighbour numbers during tissue development under
anisotropic tension.
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Figure 16: Average cell neighbour numbers of the whole tissue versus simulation time steps
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Figure 17: Average ratio of long axis to short axis of the cells’ ellipses of inertia at each simulation time
step. ΦMAX = 0 corresponds to the case of isotropic tension, while its non-zero values represent the
cases of anisotropic tension. Greater values show increased anisotropy.
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Figure 18: θ is the angle of the long axis of the cells’ ellipses of inertia with the horizontal axis. The aver-
age value of this angle has been shown for every simulation time step. Again, ΦMAX = 0 corresponds
to the case of isotropic tension and its non-zero values represent the cases of anisotropic tension.
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Figure 19: Temporal changes in the average ratio of the long axis to short axis of the ellipse of inertia
of the whole tissue. ΦMAX = 0 corresponds to the case of isotropic tension, while its non-zero values
represent the cases of anisotropic tension. Greater values show increased anisotropy.
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Figure 20: θ is the angle of the long axis of the ellipse of inertia of the whole tissue with the horizontal
axis. The average value of this angle has been shown for every simulation time step. Again, ΦMAX = 0
corresponds to the case of isotropic tension and its non-zero values represent the cases of anisotropic
tension.

The growth rates of the tissue in horizontal and vertical directions are illustrated in figure 21. It can
be seen that introduction of anisotropic tension into the model does not have major effects on tissue’s
growth rates. This supports the idea that although anisotropic tension leads to lengthening of individ-
ual cells, its effect on the overall shape of the tissue, when the cell divisions are in random directions,
might not be considerable.
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Figure 21: Growth rates of the tissue in horizontal and vertical directions. The cases of isotropic and
anisotropic tension have been shown.

5.3 Contribution of Cell Divisions to Tissue Elongation

How much of the elongation observed in the presence of anisotropic tension is due to cell proliferation
and how much of it arises from the change in the shape of the cells? In order to answer this question, I
decided to study the contribution of random cell divisions to tissue elongation. For this purpose, tissues
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developed in the previous section under anisotropic tension (ΦMAX = 2) were used. In fact, the config-
uration of these tissues at time step 10 was used as the initial state for the new set of simulations, where
the tension was still anisotropic but cell divisions were stopped. The results were then compared with
the original simulations.
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Figure 22: Average ratio of long axis to short axis of the cells’ ellipses of inertia at each simulation time
step. For the green line, cell divisions were disabled from time step 15.
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Figure 23: θ is the angle of the long axis of the cells’ ellipses of inertia with the horizontal axis. For the
green line, cell divisions were disabled from time step 15.

The changes in the cell shapes are compared in figures 22 and 23. It can be seen that even when the
cell divisions are stopped, anisotropic tension promotes cell elongation in the horizontal direction. Fig-
ures 24 and 25 show the changes in the overall shape of the tissue. These figures show no change in the
degree of tissue elongation when cell divisions were stopped. Thus, it can be concluded that cell shape
changes are the main contributors to the minor elongation observed when the tissue is under anisotropic
tension.

21



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

Time Step

A
v
e
ra

g
e
 R

a
ti
o
 o

f 
L
o

n
g
 a

x
is

 t
o

 S
h
o

rt
 A

x
is

 o
f 
T

is
s
u
e

 E
lli

p
s
e

 o
f 

In
e

rt
ia

 

 

Cell Division Enabled

Cell Division Disabled

Figure 24: Temporal changes in the average ratio of the long axis to short axis of the ellipse of inertia of
the whole tissue. For the green line, cell divisions were disabled from time step 15.
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Figure 25: θ is the angle of the long axis of the ellipse of inertia of the whole tissue with the horizontal
axis. The average value of this angle has been shown for every simulation time step. For the green line,
cell divisions were disabled from time step 15.
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6 Discussion and Conclusion

The effects of polarised tension on tissue development was studied. It was found that under such ten-
sion, the cells elongate in the direction of minimum tension. This could be explained as follows: when
the tension is polarised, the cells tend to orient their junctions in a specific direction along which tension
is minimum. This leads to lengthening of cells in the direction of minimum tension [27]. Minor tissue
elongation was also observed under anisotropic tension. The simulations show that cell shape changes
(elongations) give rise to this minor elongation and cell divisions either do not contribute to it or have
negligible effects.

To be more specific, in the model used in this study, cells divided in random directions. Results from an-
other study [27] show that anisotropic tension, together with division along the long axis of the cells lead
to directional growth of the tissue. The results of the current study show that in order for an anisotropic
tension to lead to major directional growth, this type of cell division is essential and divisions in a ran-
dom direction do not contribute a lot to tissue elongation.

The model developed in this study has qualitatively shown how cell shape changes, as a result of
anisotropic tension, can lead to minor elongation of the tissue. This is consistent with experimental
data from the growth in the RGZ of the mouse palate. These data revealed that cell shape changes may
be one of, but not the only, mechanism involved in tissue elongation [Unpublished data from the Green
lab]. It is worth noting that while in the model, cell shape changes were due to anisotropic tension on
the cell junctions, the source of cell elongations in mouse palatal epithelium is still unclear. One pos-
sibility is that these cell elongations, similar to the model, are caused by a polarised tension due to the
non-uniform presence of cell adhesion molecules (such as Dachs [24, 27]) at cell junctions. However,
currently there is no evidence for the presence of such molecules at the cell junctions in RGZ and further
study should be done to explore this.

Studies in [35] suggest that as a result of anisotropic tension, cell neighbour exchanges (T1 transitions)
will be promoted in the direction of minimum tension, thus elongating the tissue in that direction. The
exact rates and directions of T1 transitions have not been studied in this report, as they were not many
T1 transitions occurring in the developed tissues. However, it was observed that as the tissue grows, the
number of T1 transitions increases. Thus, it might be that if the tissues were left to grow larger, enough
T1 transitions would occur to produce effective elongation.

Despite the fact that the developed model has been used to find qualitative explanations of the di-
rectional growth of the tissue, its results cannot be used for quantitative analysis of the growth as it still
has some limitations and requires to be improved.

One limitation of the model is that some cells grow too small. This is especially promoted for the cells
on the edges of the tissue. This might be due to the fact that the vertices on the edge of the tissue are
shared between either one or two cells. This makes them more free to move compared to 3-way vertices.
Having continuous boundary conditions in previous models [13, 30] resulted in all vertices being shared
between three cells, thus more limited to move. It was also observed that small cells appear more often
in the tissue under anisotropic tension. One reason for this might be that under isotropic tension, the
area elasticity term plays an important role in the energy function by promoting moves that increase the
area of the cell and help them to reach their target area. By adding anisotropic term to the line tension
term, this term might become the dominant term in the energy function, thus reducing the effect of
the cell elasticity. Therefore, through development, the moves that reduce the tension on the junctions
would be preferred to those that increase the cell area and keep it close to its target value, leading to
formation of small cells. No conditions were embedded in the model to prevent the cells from getting
smaller than a threshold. The only process that removed the cells smaller than a certain threshold from
the tissue was T2 transition and that only removed 3-sided cells.

Another limitation of the model is that in some cases, the cells intersect with each other. As men-
tioned earlier, conditions were implemented in the model to prevent such moves. However, these were
removed from the model for final simulations, as they affected the shape of the cells. It should be noted
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that this growth of the cells into each other only occurred on the edge of the tissue, as the vertices there
were free to move. However, as the tissue grows, the ratio of the number of cells on the edge to the
number of cells inside the tissue decreases, thus reducing the effect of these cells on the overall statistics
of the tissue. Hence, it is believed that although these errors were present in the model, they did not
affect the results deduced in the previous section. It should also be noted that the simulations used for
the analysis of growth were carefully chosen from a number of simulations, in order to minimise the
degree of error.

These are believed to be the major issues of the current model. It is also believed that these issues
may partly explain why the modelled tissues do not fully resemble real tissues. Better choice of pa-
rameters may also improve the simulations. In fact, the parameter space of this model is comprised of
several parameters. Some of the parameters have been explored. The main parameters which are yet to
be explored are K, Λ and Γ in the energy function. It has been shown that the value of these parameters
affect the topology of the tissue [13]. Since the model developed here is an adaption to previous models,
the parameter values used in those models cannot necessary be the best choices for this model. Thus, a
parameter study should be carried out on the parameters mentioned above.

In the developed vertex model, continuous boundary conditions were not used for the growing tis-
sue. This is similar to [27] and differs from [13, 28]. [30] has modelled growing tissue with continuous
boundary conditions by increasing the boundaries of the tissue in every 5th time step. Using continu-
ous boundary conditions has some advantages and disadvantages. The advantage is that under these
conditions, all vertices will be 3-way, thus the issues raised above, which were due to the vertices being
free to move, would be solved. However, since putting continuous boundary conditions on a physical
system implies its infinite size, it is not certain how a tissue under these conditions can represent growth.
Thus, a more in depth study should be done to decide whether any conditions (in particular, continuous
boundary conditions) are needed to be implemented in the model in order to increase the resemblance
between simulated and real tissues.

To conclude, the aim of this study was to develop a model of growing tissue and use it to explore
the contribution of different mechanisms to its directional growth. Outcomes of the simulations suggest
that minor tissue elongation might be caused by cell shape changes. In addition, anisotropic tension has
been proposed as a possible explanation for the change in the cell shapes. Although the model has been
used to make qualitative analysis of the tissue growth, a more quantitative study which could be com-
pared with experimental data cannot be done before solving the model’s issues. These limitations have
been discussed in detail and suggestions have been made to direct the future work. It is hoped that by
applying the suggested changes, the model could be employed as a useful tool to increase insight into
the mechanisms involved in directional growth of the tissue.

7 Acknowledgements

I am grateful to both my supervisors, Prof Mark Miodownik and Dr Jeremy Green for their continuing
help, support and encouragement throughout the project. It has been through their guidance that I
learnt that the key element in modelling biological systems is deciding the amount of detail to be put into
the model, so that it holds the key features of the real biological systems while being kept simple.

24



A Appendix

The code for the vertex model developed in this research, as well as two movies showing the tissue
growth under isotropic and anisotropic tension are available as supplementary materials. These have
been handed in to CoMPLEX and will be provided upon request.

A.1 The Code

Below are the main functions of the vertex model code. This is an adaption to the code developed by
Aida Mehonic [30] and provided to me by Charlotte Strandkvist. The codes for plotting histograms of
cell neighbour numbers, determining ellipses of inertia and calculating growth rates are also presented.
All codes are written in Matlab.

A.1.1 The Vertex Model Code - Main Function

tStart=tic;

tm_newsetup

global ncell nvertex tmax areamax;

global vertex_xy vertex_cell;

global cell_vertex cell_nvertex cell_cell cell_area0 cell_generation cell_energy cell_growthrate;

% Preallocation of output arrays

noCells=zeros(1,tmax);

totalenergy=zeros(1,tmax);

totalarea=zeros(1,tmax);

cellvertex=zeros(tmax,500,15);

cellnvertex=zeros(tmax,500);

cellcell=zeros(tmax,500,15);

vertexcell=zeros(tmax,3000,3);

vertexxy=zeros(tmax,3000,2);

cellgeneration=zeros(tmax,1,500);

tenergy=zeros(tmax,500);

for t = 1:tmax

% T1 and T2 transitions

tm_t1

tm_t2

% Growth and Relaxation of the system

for jcell=1:ncell

cell_area0(jcell)=cell_area0(jcell)*cell_growthrate(jcell);

end

for i=1:500

for kvertex=1:nvertex

tm_move(kvertex);

end

end

% Cell Division

for jcell=1:ncell

if (tm_area(jcell)>areamax)

tm_newgrowanddivide(jcell)

end
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end

% Plot the Tissue Configuation

tm_plotcells

Video(t) = getframe;

[totalenergy(t) totalarea(t) noCells(t) cellvertex(t,:,:) cellnvertex(t,:,:) ...

cellcell(t,:,:) vertexcell(t,:,:) vertexxy(t,:,:) cellgeneration(t,:,:)]=tm_totalenergy;

end

save

% movie(Video)

movie2avi(Video, ’tm-movie-70’)

toc(tStart)

A.1.2 The Code for Changing the Configuration of the Tissue

function tm_move(kvertex)

% move vertices

global ncell

global vertex_xy vertex_cell cell_nvertex cell_vertex

global delta

% calc energy of the 3 cells associated with the vertex

energy0 = 0;

for j = 1:3

jcell = vertex_cell(kvertex,j);

if (jcell~=0)

energy0 = energy0 + tm_energy(jcell);

end

end

% move vertex through random diplacement

xy0 = vertex_xy(kvertex,:);

dx = (rand-0.5)*delta;

dy = (rand-0.5)*delta;

x1=xy0(1)+dx;

y1=xy0(2)+dy;

IN=0;

for jcell=1:ncell

if ~ismember(jcell,vertex_cell(kvertex,:))

[xv, yv] = tm_cellcoords(jcell);

if (inpolygon(x1,y1,xv,yv)==1)

IN = 1;

end

end

end

if (IN==0)

vertex_xy(kvertex,1) = x1;

vertex_xy(kvertex,2) = y1;

end

energy = 0;

for j = 1:3
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jcell = vertex_cell(kvertex,j);

if (jcell~=0)

energy = energy + tm_energy(jcell);

end

end

% % reject move if the new cells intersects others or themselves

% isect=0;

% selfintersect=1;

% vertex_list=zeros(6,1);

% for i=1:3

% cell=vertex_cell(kvertex,i);

% if (cell~=0)

% poly=[];

% [poly(:,1) poly(:,2)]=tm_cellcoords(cell);

% if (selfintersect==1)

% selfintersect=isempty(polygonSelfIntersections(poly));

% end

% end

% end

%

% if (selfintersect==0)

% vertex_xy(kvertex,:) = xy0;

% elseif (selfintersect==1)

% for i=1:3

% cell=vertex_cell(kvertex,i);

% if (cell~=0) && (isect==0)

% P1=[];

% [P1(1,:) P1(2,:)]=tm_cellcoords(cell);

% for jcell=1:ncell

% P2=[];

% [P2(1,:) P2(2,:)]=tm_cellcoords(jcell);

% c=poly2poly(P1,P2);

% if ismember(0,unique(ismember(c,P1)))

% isect=1;

% break

% end

% end

% end

% end

% if (isect==1)

% vertex_xy(kvertex,:) = xy0;

% end

% end

% %

% % if (isect~=0) || (selfintersect==0)

% % % if (nnz(isect1)~=0) || (selfintersect~=0)

% % vertex_xy(kvertex,:) = xy0;

% % end

% reject move according to Boltzmann probability, if energy increases

if (energy > energy0) && (rand > exp(energy0-energy))

vertex_xy(kvertex,:) = xy0;
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end

end

A.1.3 The Code for Cell Divisions

function tm_newgrowanddivide(jcell)

% divide cell jcell

global ncell nvertex area0

global vertex_xy vertex_cell

global cell_vertex cell_nvertex cell_cell cell_area0 cell_generation cell_growthrate

%---------------------------

% Divide

%---------------------------

% choose vertex at random

k1 = floor(rand*cell_nvertex(jcell)) + 1;

% find the centroid of the cell

poly=[];

[poly(:,1) poly(:,2)]=tm_cellcoords(jcell);

centroid=polygonCentroid(poly);

% find other vertex, on the line going through cenroid

point1=tm_midedge(jcell,k1);

point2=zeros(1,2);

line=createLine(point1,centroid);

intersects=intersectLinePolygon(line,poly);

for i=1:size(intersects,1)

if (abs(intersects(i,1)-point1(1,1))>0.0001) && (abs(intersects(i,2)-point1(1,2))>0.0001)

point2(1,1)=intersects(i,1);

point2(1,2)=intersects(i,2);

end

end

for i=1:cell_nvertex(jcell)

i1=i;

i2=i+1;

if i1==cell_nvertex(jcell)

i2=1;

end

EDGE=[vertex_xy(cell_vertex(jcell,i1),1) vertex_xy(cell_vertex(jcell,i1),2)...

vertex_xy(cell_vertex(jcell,i2),1) vertex_xy(cell_vertex(jcell,i2),2)];

if (isPointOnEdge(point2,EDGE)==1)

k2=i1;

end

end

if (k1==k2)

’YES’

end

if (k2<k1)

k2=k2+cell_nvertex(jcell);
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end

% number of vertices of old cell (nv0), new old cell (nv), and new cell (nv3)

nv0 = cell_nvertex(jcell);

nv = k2-k1+2;

nv3 = nv0-nv+4;

if (k2 > nv0);

k2 = k2 - nv0;

end

% indices of new vertices (kvertex1, kvertex2), neighbouring cells (jcell1, jcell2) ...

and new cell (jcell3)

kvertex1 = nvertex + 1;

kvertex2 = nvertex + 2;

nvertex = nvertex + 2;

jcell1 = cell_cell(jcell,k1);

jcell2 = cell_cell(jcell,k2);

jcell3 = ncell+1;

ncell = ncell + 1;

% assign new coordinates

vertex_xy(kvertex1,:) = [point1(1,1) point1(1,2)];

vertex_xy(kvertex2,:) = [point2(1,1) point2(1,2)];

% assign adjacent cells to new vertices

vertex_cell(kvertex1,:) = [jcell, jcell3, jcell1];

vertex_cell(kvertex2,:) = [jcell3, jcell, jcell2];

% copy list of vertices and neighbouring cells

vertex_list = cell_vertex(jcell,:);

cell_list = cell_cell(jcell,:);

% new old cell

for k = 1:nv-2

kk = k1 + k;

if (kk > nv0)

kk = kk - nv0;

end

cell_vertex(jcell,k) = vertex_list(kk);

cell_cell(jcell,k) = cell_list(kk);

end

cell_vertex(jcell,nv-1) = kvertex2;

cell_cell(jcell,nv-1) = jcell3;

cell_vertex(jcell,nv) = kvertex1;

cell_cell(jcell,nv) = jcell1;

cell_vertex(jcell,nv+1) = 0; % not strictly necessary

cell_cell(jcell,nv+1) = 0;

cell_nvertex(jcell) = nv;

% new cell

for k = 1:nv3-2

kk = k2 + k;

if (kk > nv0)

kk = kk - nv0;

end
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cell_vertex(jcell3,k) = vertex_list(kk);

cell_cell(jcell3,k) = cell_list(kk);

end

cell_vertex(jcell3,nv3-1) = kvertex1;

cell_cell(jcell3,nv3-1) = jcell;

cell_vertex(jcell3,nv3) = kvertex2;

cell_cell(jcell3,nv3) = jcell2;

cell_vertex(jcell3,nv3+1) = 0; % not strictly necessary

cell_cell(jcell3,nv3+1) = 0;

cell_nvertex(jcell3) = nv3;

% replace jcell by jcell3 in neighbour-list of cells adjacent to new cell

for k = 1:nv3-2

kk = k2 + k;

if (kk > nv0)

kk = kk - nv0;

end

j0 = cell_list(kk);

if (j0~=0)

for k0 = 1:cell_nvertex(j0)

if (cell_cell(j0,k0) == jcell)

cell_cell(j0,k0) = jcell3;

end

end

end

end

% add vertex kvertex1 to cell jcell1 before vertex_list(k1)

% assign jcell3 as corresponding new neighbour of jcell1

if (jcell1~=0)

index = find(cell_cell(jcell1,:)==jcell3); % switch jcell for jcell3

cell_cell(jcell1,index) = jcell;

incr = 1;

for kk = cell_nvertex(jcell1):-1:1

cell_vertex(jcell1,kk+incr) = cell_vertex(jcell1,kk);

cell_cell(jcell1,kk+incr) = cell_cell(jcell1,kk);

if (cell_vertex(jcell1,kk) == vertex_list(k1))

incr = 0;

cell_vertex(jcell1,kk+incr) = kvertex1;

cell_cell(jcell1,kk+incr) = jcell3;

end

end

cell_nvertex(jcell1) = cell_nvertex(jcell1) + 1;

end

% add vertex kvertex2 to cell jcell2 before vertex_list(k2)

% assign jcell as corresponding new neighbour of jcell2

if (jcell2~=0)

index = find(cell_cell(jcell2,:)==jcell); % switch jcell3 for jcell

cell_cell(jcell2,index) = jcell3;

incr = 1;

for kk = cell_nvertex(jcell2):-1:1

cell_vertex(jcell2,kk+incr) = cell_vertex(jcell2,kk);

cell_cell(jcell2,kk+incr) = cell_cell(jcell2,kk);

if (cell_vertex(jcell2,kk) == vertex_list(k2))
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incr = 0;

cell_vertex(jcell2,kk+incr) = kvertex2;

cell_cell(jcell2,kk+incr) = jcell;

end

end

cell_nvertex(jcell2) = cell_nvertex(jcell2) + 1;

end

% update generation and set target area and growth rate of new cells

cell_generation(jcell) = cell_generation(jcell) + 1;

cell_generation(jcell3) = cell_generation(jcell);

cell_growthrate(jcell)=1+(rand/2);

cell_growthrate(jcell3)=1+(rand/2);

% cell_growthrate(jcell)=2;

% cell_growthrate(jcell3)=2;

nvertices=max(max(cell_vertex(:,:)));

for i=1:nvertices

k=1;

for j=1:ncell

if (k<4) && (ismember(i,cell_vertex(j,:)))

vertex_cell(i,k)=j;

k=k+1;

end

end

end

% Assign initial target area to cells

cell_area0(jcell) = tm_area(jcell);

cell_area0(jcell3) = tm_area(jcell3);

A.1.4 The Code for T1 and T2 Transitions

function tm_t1

% attempt T@1 transitions

global xmax ymax

global ncell nvertex

global vertex_xy vertex_cell

global cell_vertex cell_nvertex cell_cell cell_area0 cell_generation

global kappa2 lambda gamma2 area0 delta delta_t1 area_t2

% total number of attempts per time step equal to number of cells

for j = 1:ncell;

%choose a random vertex of a random cell

jcell=j;

% jcell = floor(rand*ncell) + 1;

k = floor(rand*cell_nvertex(jcell)) + 1;

kvertex = cell_vertex(jcell,k);

%attempt T1 if edge is short

if tm_edge(jcell,k) < delta_t1

k1 = k + 1;
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if k1 > cell_nvertex(jcell)

k1 = 1;

end

kvertex1 = cell_vertex(jcell,k1);

if (nnz(vertex_cell(kvertex,:))==3) && (nnz(vertex_cell(kvertex1,:))==3)

% calc initial energy of the 3 cells associated with the vertex

energy0 = 0;

for j = 1:3

energy0 = energy0 + tm_energy(vertex_cell(kvertex,j));

end

% save original coords and move vertex to position of neighbour

xy0 = vertex_xy(kvertex,:);

vertex_xy(kvertex,:) = vertex_xy(kvertex1,:);

% calc final energy of the 3 cells associated with the vertex

energy = 0;

for j = 1:3

energy = energy + tm_energy(vertex_cell(kvertex,j));

end

% reject move according to Boltzmann probability, if energy increases

if (energy > energy0) && (rand > exp(energy0-energy))

vertex_xy(kvertex,:) = xy0;

% otherwise do T1

else

’T1’

beep

% identify cells that will receive a new vertex

k2 = k - 1;

if k2 < 1

k2 = cell_nvertex(jcell);

end

jcell1 = cell_cell(jcell,k1);

jcell2 = cell_cell(jcell,k2);

% and cell that will lose a vertex (in addition to jcell)

jcell3 = cell_cell(jcell,k);

% add vertex kvertex to jcell1 before kvertex1

% assign jcell2 as new neighbour of jcell1

incr = 1;

for kk = cell_nvertex(jcell1):-1:1

cell_vertex(jcell1,kk+incr) = cell_vertex(jcell1,kk);

cell_cell(jcell1,kk+incr) = cell_cell(jcell1,kk);

if cell_vertex(jcell1,kk) == kvertex1

incr = 0;

cell_vertex(jcell1,kk+incr) = kvertex;

cell_cell(jcell1,kk+incr) = jcell2;

end

end

cell_nvertex(jcell1) = cell_nvertex(jcell1) + 1;

% add vertex kvertex1 to jcell2 before kvertex
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% assign jcell1 as new neighbour of jcell2

incr = 1;

for kk = cell_nvertex(jcell2):-1:1

cell_vertex(jcell2,kk+incr) = cell_vertex(jcell2,kk);

cell_cell(jcell2,kk+incr) = cell_cell(jcell2,kk);

if cell_vertex(jcell2,kk) == kvertex

incr = 0;

cell_vertex(jcell2,kk+incr) = kvertex1;

cell_cell(jcell2,kk+incr) = jcell1;

end

end

cell_nvertex(jcell2) = cell_nvertex(jcell2) + 1;

% remove vertex kvertex from jcell3

if cell_vertex(jcell3,1) == kvertex

cell_vertex(jcell3,1) = cell_vertex(jcell3,cell_nvertex(jcell3));

% don’t shift, to match cell_cell

else

incr = 0;

for kk = 1:cell_nvertex(jcell3)

cell_vertex(jcell3,kk+incr) = cell_vertex(jcell3,kk);

if cell_vertex(jcell3,kk) == kvertex

incr = -1;

end

end

end

cell_vertex(jcell3,cell_nvertex(jcell3)) = 0;

% remove cell jcell from neighbours of jcell3

incr = 0;

for kk = 1:cell_nvertex(jcell3)

cell_cell(jcell3,kk+incr) = cell_cell(jcell3,kk);

if cell_cell(jcell3,kk) == jcell

incr = -1;

end

end

cell_cell(jcell3,cell_nvertex(jcell3)) = 0;

cell_nvertex(jcell3) = cell_nvertex(jcell3) - 1;

% remove vertex kvertex1 from jcell

if cell_vertex(jcell,1) == kvertex1

cell_vertex(jcell,1) = cell_vertex(jcell,cell_nvertex(jcell));

% don’t shift, to match cell_cell

else

incr = 0;

for kk = 1:cell_nvertex(jcell)

cell_vertex(jcell,kk+incr) = cell_vertex(jcell,kk);

if cell_vertex(jcell,kk) == kvertex1

incr = -1;

end

end

end

cell_vertex(jcell,cell_nvertex(jcell)) = 0;

% remove cell jcell3 from neighbours of jcell

incr = 0;

for kk = 1:cell_nvertex(jcell)

cell_cell(jcell,kk+incr) = cell_cell(jcell,kk);
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if cell_cell(jcell,kk) == jcell3

incr = -1;

end

end

cell_cell(jcell,cell_nvertex(jcell)) = 0;

cell_nvertex(jcell) = cell_nvertex(jcell) - 1;

% reassign adjacent cells to vertices

vertex_cell(kvertex,1) = jcell;

vertex_cell(kvertex,2) = jcell2;

vertex_cell(kvertex,3) = jcell1;

vertex_cell(kvertex1,1) = jcell1;

vertex_cell(kvertex1,2) = jcell2;

vertex_cell(kvertex1,3) = jcell3;

end

end

end

end

function tm_t2

% perform T2 transition for all small triangular cells

global vertex_xy vertex_cell

global ncell nvertex

global cell_vertex cell_nvertex cell_cell cell_area0 cell_generation cell_energy

global kappa2 lambda gamma2 delta delta_t1 area_t2 t2_counter

%total number of attempts per time step equal to number of cells

for jcell=1:ncell

%do T2 if cell is triangular and smaller than the threshold area

if cell_nvertex(jcell)==3 && tm_area(jcell) < area_t2

’T2’, jcell

vertex_list=sort(cell_vertex(jcell,1:3));

%create new vertex at centroid of cell, and index as vertex_list(1)

[xcm, ycm] = tm_centroid(jcell);

vertex_xy(vertex_list(1),1) = xcm;

vertex_xy(vertex_list(1),2) = ycm;

%identify neighbouring cells and update vertex_cell for the new vertex

cell_list=cell_cell(jcell,1:3)

vertex_cell(vertex_list(1),:) = cell_list;

%remove the vertex corresponding to jcell from each of the neighbouring cells

%and relabel the following vertex as vertex_list(1)

%also remove jcell from the neighbour-list of neighbouring cells

for jj = 1:3

incr = 0;

if cell_list(jj)~=0

for k = 1:cell_nvertex(cell_list(jj))-1

if cell_cell(cell_list(jj),k) == jcell

cell_vertex(cell_list(jj),k) = vertex_list(1);

incr = 1;
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cell_cell(cell_list(jj),k) = cell_cell(cell_list(jj),k+incr);

else

cell_vertex(cell_list(jj),k) = cell_vertex(cell_list(jj),k+incr);

cell_cell(cell_list(jj),k) = cell_cell(cell_list(jj),k+incr);

end

end

%wrap around if vertex corresponding to jcell was at end of array

if cell_cell(cell_list(jj),cell_nvertex(cell_list(jj))) == jcell

cell_vertex(cell_list(jj),1) = vertex_list(1);

end

cell_vertex(cell_list(jj),cell_nvertex(cell_list(jj))) = 0;

cell_cell(cell_list(jj),cell_nvertex(cell_list(jj))) = 0;

cell_nvertex(cell_list(jj)) = cell_nvertex(cell_list(jj)) - 1;

end

end

%update total number of vertices

nvertex = nvertex - 2;

%left with two spaces for vertices at vertex_list(2:3) to fill in from top of old list

%(if they are not above top of new list)

if vertex_list(2) <= nvertex

if vertex_list(3) ~= nvertex+2

vertex_sub = nvertex+2;

else

vertex_sub = nvertex+1;

end

%substitute vertex in list

vertex_xy(vertex_list(2),:) = vertex_xy(vertex_sub,:);

vertex_cell(vertex_list(2),:) = vertex_cell(vertex_sub,:);

%adjust label in cell_vertex

for j = 1:ncell

for k = 1:cell_nvertex(j)

if cell_vertex(j,k) == vertex_sub

cell_vertex(j,k) = vertex_list(2);

end

end

end

end

if vertex_list(3) <= nvertex

vertex_sub = nvertex+1;

%substitute vertex in list

vertex_xy(vertex_list(3),:) = vertex_xy(vertex_sub,:);

vertex_cell(vertex_list(3),:) = vertex_cell(vertex_sub,:);

%adjust label in cell_vertex

for j = 1:ncell

for k = 1:cell_nvertex(j)

if cell_vertex(j,k) == vertex_sub

cell_vertex(j,k) = vertex_list(3);

end

end

end

end

%clear the two vertices removed from top of list (not strictly necessary)

vertex_xy(nvertex+1,:) = 0;

vertex_xy(nvertex+2,:) = 0;
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vertex_cell(nvertex+1,:) = 0;

vertex_cell(nvertex+2,:) = 0;

%update total number of cells and energies of neighbours of vanished cell

ncell = ncell - 1;

for jj = 1:3

if cell_list(jj)~=0

cell_energy(cell_list(jj)) = tm_energy(cell_list(jj));

end

end

%left with a space for a cell at jcell to fill in from top of old list

%(if it is not above top of new list)

if jcell <= ncell

%substitute cell in list

cell_vertex(jcell,:)=cell_vertex(ncell+1,:);

cell_nvertex(jcell)=cell_nvertex(ncell+1);

cell_cell(jcell,:) = cell_cell(ncell+1,:);

cell_area0(jcell)=cell_area0(ncell+1);

cell_generation(jcell)=cell_generation(ncell+1);

cell_energy(jcell)=cell_energy(ncell+1);

%adjust label in vertex_cell and cell_cell

for k=1:nvertex

for j = 1:3

if vertex_cell(k,j) == ncell+1

vertex_cell(k,j) = jcell;

end

end

end

for j = 1:ncell

for k = 1:cell_nvertex(j)

if cell_cell(j,k) == ncell+1

cell_cell(j,k) = jcell;

end

end

end

end

%clear the cell removed from top of list (not strictly necessary)

cell_vertex(ncell+1,:)=0;

cell_nvertex(ncell+1)=0;

cell_cell(ncell+1,:)=0;

cell_area0(ncell+1)=0;

cell_generation(ncell+1)=0;

cell_energy(ncell+1)=0;

t2_counter=t2_counter+1;

end

end

A.1.5 The Code for Plotting Histograms of Cell Neighbour Numbers

% Create matrix to store CNN

Averagecnn=zeros(5,4,10);

Avgcnn=zeros(5,10);

Normalizedcnn=zeros(5,4,10,18);
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nccCounts=zeros(5,4,18);

FinalnccCounts=zeros(5,18);

nccCounts2=zeros(5,10,18);

for n=1:5

nphi=79+n;

for nsimulation=1:4

% load data file

name=[’tm-results-’,num2str(nphi),’-’,num2str(nsimulation)];

load (name);

% Merge cnn from different simulations

for t=6:15

nvertex=cellnvertex(t,:);

nvertex=nvertex(find(nvertex));

Averagecnn(n,nsimulation,t)=mean(nvertex);

nbins=3:1:20;

[Normalizedcnn(n,nsimulation,t,:),xout] = hist(nvertex,nbins);

Normalizedcnn(n,nsimulation,t,:)=Normalizedcnn(n,nsimulation,t,:)/noCells(t);

end

end

end

%Average normalized cnn over all time steps

for n=1:5

for nsimulation=1:4

for cc=1:18

nccCounts(n,nsimulation,cc)=mean(Normalizedcnn(n,nsimulation,:,cc));

end

end

end

%Average normalized cnn over simulations

for n=1:5

for cc=1:18

FinalnccCounts(n,cc)=mean(nccCounts(n,:,cc));

end

end

%Average normalized cnn over simulations

for n=1:5

for t=1:10

for cc=1:18

nccCounts2(n,t,cc)=mean(Normalizedcnn(n,:,t,cc));

end

end

end

% %Average mean cnn over simulations

% for n=1:5

% for t=1:10

% Avgcnn(n,t)=mean(Averagecnn(n,:,t));

% end

% end

%%

%===============
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% Plot histogram

%---------------

for n=1:5

x=[3:1:20];

m=zeros(1,18);

m(1,:)=FinalnccCounts(n,:);

cmap = hsv(5);

figure;bar(x,m,0.5);

% bar(m,...

% ’bar_color’,cmap(n,:));

clear title xlabel ylabel

set(gca,’XTick’,2:1:15)

set(gca,’XLim’,[2 15])

set(gca,’YLim’,[0 0.5])

xlabel(’CNN’)

ylabel(’Distribution’)

name=[’tm_CNN_’,num2str(n+79)];

legendname=[’\Phi_{MAX}=’,num2str(n-1)];

legend(legendname,’Location’,’NE’);

print (’-depsc’,’-r300’,name);

end

%%

%================================

% Plot Average cnn over timesteps

%--------------------------------

for n=1:5

hold on;

m=zeros(1,10);

m(1,:)=Averagecnn(n,1,:);

cmap = hsv(5);

plot(m,’-rs’,’LineWidth’,1.1,...

’Color’,cmap(n,:),...

’MarkerEdgeColor’,cmap(n,:),...

’MarkerFaceColor’,cmap(n,:),...

’MarkerSize’,3);figure(gcf)

clear title xlabel ylabel

set(gca,’XTick’,1:1:10)

xlabel(’Time Step’)

ylabel(’Average CNN’)

name=[’tm_average_CNN’];

legend(’\Phi_{MAX}=0’,’\Phi_{MAX}=1’,’\Phi_{MAX}=2’,’\Phi_{MAX}=3’,...

’\Phi_{MAX}=4’,’Location’,’NE’);

print (’-depsc’,’-r300’,name);

end

%%

%====================

% Plot time evolution of cnn

%----------------------------------

for n=1:5

cmap = hsv(8);

hold off;

for cc=2:9

m=zeros(1,10);

m(1,:)=nccCounts2(n,:,cc);
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plot(m,’-rs’,’LineWidth’,1.1,...

’Color’,cmap(cc-1,:),...

’MarkerEdgeColor’,cmap(cc-1,:),...

’MarkerFaceColor’,cmap(cc-1,:),...

’MarkerSize’,3);figure(gcf)

clear title xlabel ylabel

set(gca,’XTick’,1:1:10)

xlabel(’Time Step’)

ylabel(’Average CNN’)

name=[’tm_CNN_time_evolution_’,num2str(n+79)];

legend(’CNN=4’,’CNN=5’,’CNN=6’,’CNN=7’,’CNN=8’,’CNN=9’,’CNN=10’,...

’CNN=11’,’Location’,’NE’);

print (’-depsc’,’-r300’,name);

hold on

end

end

A.1.6 The Code for Determining Cells’ Ellipses of Inertia

%=====================================================================

% Quantify the shape of the cells by measuring their ellipse of inertia

%----------------------------------------------------------------------

%%

tmax=15;

% Define an array to store the parameters of ellipse of inertia

EllipseofInertia=zeros(5,4,15,100,5);

AxisRatio=zeros(5,4,15,100);

meanratio=zeros(5,4,15);

mratio=zeros(5,1,15);

meantheta=zeros(5,4,15);

mtheta=zeros(5,1,15);

%%

% Determine Cells’ ellipses of inertia

for n=1:1

nphi=79+n;

for nsimulation=1:1

% load data file

name=[’tm-results-’,num2str(nphi),’-’,num2str(nsimulation)];

load (name);

% Find the ellipse of inertia

for t=1:1

for jcell=1:noCells(t)

% Calculate the coordination of the edges of the cells

xy=zeros(cellnvertex(t,jcell),2);

for k = 1:cellnvertex(t,jcell)

xy(k,1) = vertexxy(t,cellvertex(t,jcell,k),1);

xy(k,2) = vertexxy(t,cellvertex(t,jcell,k),2);

end

EllipseofInertia(n,nsimulation,t,jcell,:) = inertiaEllipse(xy);

ell = EllipseofInertia(n,nsimulation,t,jcell,:);

figure(1); clf; hold on;

drawPoint(xy);

drawEllipse(ell, ’linewidth’, 2, ’color’, ’r’);

pause(0.5)

end
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end

end

% Calculate ratio of long to short axis

for nsimulation=1:4

for t=1:tmax

for jcell=1:noCells(t)

ax1=EllipseofInertia(n,nsimulation,t,jcell,3);

ax2=EllipseofInertia(n,nsimulation,t,jcell,4);

AxisRatio(n,nsimulation,t,jcell)=ax1/ax2;

end

end

end

% Calculate average of ratios at each time step of simulation

for nsimulation=1:4

for t=1:15

ratio=0;

theta=0;

ntotal1=0;

ntotal2=0;

for jcell=1:noCells(t)

if AxisRatio(n,nsimulation,t,jcell)>0

ratio=ratio+AxisRatio(n,nsimulation,t,jcell);

ntotal1=ntotal1+1;

end

if EllipseofInertia(n,nsimulation,t,jcell,5)>-100

theta=theta+EllipseofInertia(n,nsimulation,t,jcell);

ntotal2=ntotal2+1;

end

end

if ntotal1~=0

meanratio(n,nsimulation,t)=ratio/ntotal1;

meantheta(n,nsimulation,t)=theta/ntotal2;

end

end

end

% Average ratios over 4 simulations

for t=1:15

mratio(n,1,t)=mean(meanratio(n,:,t));

mtheta(n,1,t)=mean(meantheta(n,:,t));

end

end

%%

%======================================

% Plot mean ratio of long to short axis

%---------------------------------------

for n=1:5

hold on;

m=zeros(1,15);

m(1,:)=mratio(n,1,:);

cmap = hsv(5);

plot(m,’-rs’,’LineWidth’,1.1,...

’Color’,cmap(n,:),...

’MarkerEdgeColor’,cmap(n,:),...
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’MarkerFaceColor’,cmap(n,:),...

’MarkerSize’,3);figure(gcf)

clear title xlabel ylabel

set(gca,’XTick’,1:1:15)

xlabel(’Time Step’)

ylabel(’Average Ratio of Long axis to Short Axis of Cells Ellipses of Inertia’)

name=[’tm_axis_ratio_cellEoI’];

legend(’\Phi_{MAX}=0’,’\Phi_{MAX}=1’,’\Phi_{MAX}=2’,’\Phi_{MAX}=3’,...

’\Phi_{MAX}=4’,’Location’,’NW’);

print (’-depsc’,’-r300’,name);

end

%%

%==========================================================

% Plot mean angle of ellipse of inertia with horizontal axis

%-----------------------------------------------------------

for n=1:5

hold on;

m=zeros(1,15);

m(1,:)=mtheta(n,1,:);

cmap = hsv(5);

plot(m,’-rs’,’LineWidth’,1.1,...

’Color’,cmap(n,:),...

’MarkerEdgeColor’,cmap(n,:),...

’MarkerFaceColor’,cmap(n,:),...

’MarkerSize’,3);figure(gcf)

clear title xlabel ylabel

ylim([4 6])

set(gca,’XTick’,1:1:15)

xlabel(’Time Step’)

ylabel(’Theta’)

name=[’tm_theta_cellEoI’];

legend(’\Phi_{MAX}=0’,’\Phi_{MAX}=1’,’\Phi_{MAX}=2’,’\Phi_{MAX}=3’,...

’\Phi_{MAX}=4’,’Location’,’SW’);

print (’-depsc’,’-r300’,name);

end

A.1.7 The Code for Measuring Growth Rates of the Tissue

%=============================================

% Measure growth rates in different directions

%---------------------------------------------

%%

tmax=15;

% Define an array to store the parameters of ellipse of inertia

gx=zeros(5,4,15);

gy=zeros(5,4,15);

mgx=zeros(5,1,15);

mgy=zeros(5,1,15);

for n=1:5

nphi=79+n;

for nsimulation=1:4

% load data file

name=[’tm-results-’,num2str(nphi),’-’,num2str(nsimulation)];

load (name);
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% Find the coordinates of vertices

for t=2:tmax

x2=vertexxy(t,:,1);

x2=x2(find(x2));

x1=vertexxy(t-1,:,1);

x1=x1(find(x1));

y2=vertexxy(t,:,2);

y2=y2(find(y2));

y1=vertexxy(t-1,:,2);

y1=y1(find(y1));

gx(n,nsimulation,t)=(max(x2)-min(x2))-(max(x1)-min(x1));

gy(n,nsimulation,t)=(max(y2)-min(y2))-(max(y1)-min(y1));

end

end

% Average growth rates

for t=1:tmax

mgx(n,1,t)=mean(gx(n,:,t));

mgy(n,1,t)=mean(gy(n,:,t));

end

end

%%

%========================================

% Plot growth rate in horizontal direction

%-----------------------------------------

for n=1:5

hold on;

m=zeros(1,15);

m(1,:)=mgx(n,1,:);

cmap = hsv(5);

plot(m,’-rs’,’LineWidth’,1.1,...

’Color’,cmap(n,:),...

’MarkerEdgeColor’,cmap(n,:),...

’MarkerFaceColor’,cmap(n,:),...

’MarkerSize’,3);figure(gcf)

clear title xlabel ylabel

set(gca,’XTick’,1:1:15)

ylim([-10 10])

xlabel(’Time Step’)

ylabel(’Growth Rate in Horizontal Direction’)

name=[’tm_mgx_tissueEoI’];

legend(’\Phi_{MAX}=0’,’\Phi_{MAX}=1’,’\Phi_{MAX}=2’,’\Phi_{MAX}=3’,...

’\Phi_{MAX}=4’,’Location’,’NE’);

print (’-depsc’,’-r300’,name);

end

hold off;

%%

%========================================

% Plot growth rate in vertical direction

%-----------------------------------------

for n=1:5
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hold on;

m=zeros(1,15);

m(1,:)=mgy(n,1,:);

cmap = hsv(5);

plot(m,’-rs’,’LineWidth’,1.1,...

’Color’,cmap(n,:),...

’MarkerEdgeColor’,cmap(n,:),...

’MarkerFaceColor’,cmap(n,:),...

’MarkerSize’,3);figure(gcf)

clear title xlabel ylabel

set(gca,’XTick’,1:1:15)

xlabel(’Time Step’)

ylabel(’Growth Rate in Vertical Direction’)

name=[’tm_mgy_tissueEoI’];

legend(’\Phi_{MAX}=0’,’\Phi_{MAX}=1’,’\Phi_{MAX}=2’,’\Phi_{MAX}=3’,...

’\Phi_{MAX}=4’,’Location’,’NE’);

print (’-depsc’,’-r300’,name);

end

A.2 Snapshots of Simulations

Below, the snapshots of the simulations of growth under anisotropic tension for three values of ΦMAX
are presented.

Figure 26: Snapshots of the growth of the tissue under anisotropic tension ΦMAX = 1.

43



Figure 27: Snapshots of the growth of the tissue under anisotropic tension ΦMAX = 3.

Figure 28: Snapshots of the growth of the tissue under anisotropic tension ΦMAX = 4.
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