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Abstract

Multicellular organisms acquire their structure and behaviour incrementally in the course of
development from a single cell. This process is enormously intricate and may give rise to at-
tributes that confound interpretation. Greatly simplified cellular automaton models can provide
useful insights, especially when considered in the light of evolution. We present one such model,
EmbryoCA, and consider some of its implications.
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1 Development & Evolvability

1.1 From Egg to Organism

All multicellular organisms develop by division from a single cell.1 To a good approximation,2

that cell’s genome, along with most of its structure, is faithfully reproduced in all its myriad
descendants. Yet those descendants can vary greatly in their form and function. Much of the
process by which this occurs remains mysterious. [8, 7]

As the egg divides and divides again, its initial homogeneity breaks down, and the cell mass
undergoes patterning : a separation into different functional regions. Within those regions, the
(still genetically identical) cells begin to take on more specialised functions (differentiation). The
overall organism starts to develop distinctive features of shape (morphogenesis), and exhibits
growth, becoming larger and more complete.[18, 14]

These are not one-off processes, but continue in a sequence of increasing localisation through-
out the development, and to some extent the lifetime, of the organism. Moreover, they are
both profoundly contingent (tightly bound up with their immediate chemical and physical en-
vironment) and remarkably robust. We will return to these characteristics repeatedly in the
discussion below.

The behaviour of all cells, along with their sub-cellular constituents, is subject to the constraints
of material reality. Those constraints are quite different at different scales: a cell’s chemical
behaviour will be governed by electromagnetic forces, its physical construction by surface tension
and viscosity, the gross structure of the organism of which it is a part will most likely be strongly
affected by gravity and so on.[11] Thus, development entails an overall accretion of constraints,
the interaction of which contributes substantially to the final form of the organism.

Individual cells experience a similar increase in behavioural restriction over the course of devel-
opment. The original fertilised egg has the potential, and indeed the need, to divide into every
kind of cell that the organism will ever possess. This plasticity diminishes as the organism
becomes more complete, until most mature cells have no choices left at all.

1.2 Robustness & Homeostasis

In many organisms, though by no means all, the initial embryonic environment is carefully
controlled; nevertheless, there will always be some degree of variability. The world is an uncer-
tain and dynamic place and many external influences—including experimental scientists—may
disrupt the environment in which development occurs.

Development is intimately dependent on intricate interactions between the organism and its
surroundings, and one might expect such a process to be highly sensitive to environmental
perturbation. In fact, it turns out to be remarkably robust, not only to biologically-plausible
levels of noise but to considerably more drastic experimental interventions.

The well-documented phenomenon of embryonic wound healing is one such example: in marked
contrast to adult organisms, developing embryos can quickly and seamlessly repair inflicted
damage involving significant tissue loss.[13] Viewed as a distinct phenotypic character, this
ability is of doubtful evolutionary value: it is unlikely that an embryo could suffer such a wound

1Various plants and animals can reproduce by budding or by regeneration from a piece of an adult. Somewhere
along the line there must nevertheless have been an original single cell from which the divided adult grew.

2It is reasonable in this context to ignore somatic mutations and, to a lesser extent, generational changes such
as truncation of telomeres.
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outside the laboratory without irrecoverable damage to its environment and consequent death.
Any selective pressure for perfect wound healing per se would be much more likely to favour it
in the adult.

However, evolution operates in the space of the possible; and wound healing may turn out to
be just one facet—perhaps a quite incidental one—of the more general feature of developmental
robustness.

If the goal of development is reliably to produce a phenotype—to reproduce, with minor vari-
ations, the phenotype of the parents—then robustness is clearly advantageous, since it means
the required form will be reached irrespective of (some tolerable range of) environmental dis-
turbances. Moreover, once the form has been reached, it must be maintained—it is unlikely
that the organism will be able to fulfil its reproductive purpose at the very instant it achieves
its proper shape—and most organisms do indeed exhibit such homeostasis.

Both of these criteria can be satisfied if the ultimate form constitutes, in the language of
dynamical systems, an attractor.3 The corresponding basin of attraction would define the range
of perturbations to which the development was robust.

Clearly, any conjectural phase space of embryonic development would likely be so complex as to
be barely imaginable, let alone amenable to analysis. Were we to try to engineer a developmental
process producing a viable organism with attractor-like attributes in such a space, we would
not even know where to begin.

That, however, isn’t the problem that evolution faces.

1.3 Nothing Succeeds Like Success

Like development, natural selection is highly contingent: the reproductive success of a species—
its only measure of evolutionary merit—is closely dependent on the details of its environment.
Evolution creates—or finds—things that reproduce well in context. While immediate phenotypic
fitness is an ingredient in this success, it isn’t the whole story. The reproductive processes
themselves are also subject to evolution.

Successful reproduction implies some degree of generational similarity: it would be meaningless
to describe an organism as ‘reproducing’ if all its offspring were wholly unlike their parent and
each other. Moreover, in such a case, any reproductive advantages of the organism would most
likely be lost in its randomly-differing children.

To properly occupy a region of the fitness landscape, a species must continue to reproduce with
reasonable fidelity over many generations. For multicellular organisms, this suggests also that
they must develop with reasonable fidelity. If the environment is noisy, this may constitute a
selective pressure in favour of developmental robustness—at least if developmental variations
lead to reduced fitness.

However, the relationship between robustness, evolution and environment is fraught with com-
plications. [9] With too little variation, evolution has little to work with; with too much,
advantages may be too easily lost.

For ideal evolvability, an organism must be able to support both incremental variation—
exploring possible local improvements in phenotype—and also the background accumulation
of locally neutral changes—allowing the investigation of longer-range possibilities, and perhaps

3The use of the term here is extremely informal, but I hope it will be of at least metaphorical value later on.
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escape from a local maximum, without sacrificing current fitness.4 [15, 16, 6]These features
typically carry a cost of their own, and so will also be subject to selective pressure.

There is thus a balance to be struck between robustness, evolvability and efficiency, and where
that lies will depend both on the phenotypic space and the genotypic: how the organism in-
teracts with its environment, but also what is evolutionarily possible given its current genome.
Robustness may be one result; but so may pared-down fragility in the right circumstances.

2 Computational & Modelling Background

2.1 Cellular Automata

A cellular automaton (CA) is a discrete model in which cells arranged in a regular array each
have an associated state drawn from a finite set, and an associated neighbourhood of connected
(usually adjacent) cells. Some initial condition defines the start states of all cells. At each
subsequent time step, the state of each cell is calculated from the previous state of the cell
and its neighbourhood by application of some (usually simple and deterministic) rules. In most
CAs, all cells are updated in parallel.

There are many variations on this basic scheme (the EmbryoCA model described below is one
such), but the characteristics of finite states, local interaction and highly-parallel processing are
usually maintained.

Cellular automata can be considered as discrete approximations of systems of partial differential
and/or integral equations describing the interdependencies of many variables. As such, they
often exhibit highly complex emergent behaviour that is at least qualitatively, and in some cases
also quantitatively, comparable to continuous models of real-world dynamic systems. At the
same time, they are computationally tractable and can usually be represented graphically in an
intuitive way.5 [5]

CAs have been applied to a wide variety of biological problems, particularly those around
pattern formation. Indeed, some specific instances of natural growth patterns are known to be
produced by processes that closely approximate CAs.[17]

2.2 Genetic Algorithms

Genetic algorithms (GAs) are one of a number of different evolutionary computation approaches
attempting to exploit the power of evolution in silico for engineering or exploratory purposes. In
the former case, the goal may be to solve specific problems: for example, tuning the weights of a
neural network to perform some desired calculation. In the latter, the goal is to investigate GA
behaviour itself, often in the hope of adding to our understanding of the workings of evolution
in the living world.

GAs are distinguished from other evolutionary computation methods by usually including some
explicit separation between genotype and phenotype—with variation acting on the former and

4This latter capability is strongly implicated in the natural evolution of novel characters, and usually implies
some redundancy in the genotype.

5On the other hand, like many dynamic systems, their behaviour over time may be counter-intuitive and
resistant to ex ante analysis. Indeed, several simple CAs have been found to be Turing-equivalent: being able to
predict the outcome of any arbitrary input to such a CA would be tantamount to solving the Halting Problem.
Of course, any number of particular initial conditions can still produce readily predictable behaviour.
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selection on the latter—and by their use of the crossover or recombination operator to generate
child genomes from pairs of parents. [12]

A GA generally starts from a random population of genomes. These are assessed by a fitness
function to estimate how well each corresponding phenotype solves the target problem. Parents
are selected according to fitness and combined by crossover and mutation to produce a new
population. The process is repeated for many generations and will often—although by no
means always—discover highly fit individuals.

GAs are usually characterised as a type of search algorithm, conducting a heuristic parallel
search of a high-order possibility space by means of schemata—combinatorial subsets of pro-
posed solutions.

GAs, along with most other current evolutionary computation approaches, have been criticised
on several grounds, in particular their simplistic approach to the genotype/phenotype relation-
ship and the fixed forms of their genomes and fitness functions [1]. However, the proposed
alternatives—which incorporate, inter alia, ideas of development and co-evolution of the repro-
ductive process—have yet to bear significant fruit and risk losing explanatory power in their
welter of complexity. There is much to be said for simplified models.

3 EmbryoCA

3.1 Overview & Aims

The local interactions and parallel processing of cellular automata make them appealing as
models for embryonic development. A CA can be started from a fixed initial state—typically a
single cell—and developed by repeated application of fixed rules (the genome) until it reaches
some final phenotype.

However, CA behaviour is typically very brittle, depending sensitively on the letter of its rules.
Such CAs do not lend themselves to evolution because genetic variation tends to result either
in no change at all or else a catastrophic alteration of the phenotype. Without middle ground
there is little scope for exploration.[10, 3]

EmbryoCA is an effector automaton6 developed by David Basanta and colleagues with the
express purpose of providing decent evolvability. Attempts to do this generally demand a
significant increase in rule complexity to allow for redundancy and incremental change. In
EmbryoCA, such complexification is achieved by distributing responsibility across a population
of rules. The rules themselves—the conditions they assess and the resulting actions—remain
very simple, but each contributes only a single vote towards the action taken by the cell. Except
in the most degenerate cases, no individual rule will be able to dominate the CA behaviour and
thereby present an obstacle to evolution.[4]

Rule application and the electoral process remain deterministic and uniform—no attempt is
made to model gene regulation or cell differentiation, nor to model environmental perturbation.
The system is equivalent to having a single fixed rule with many conditions and possible results,
but is both easier to understand and more readily mapped to a genome for the purposes of a
genetic algorithm: one rule, one gene.

6EAs are similar to CAs but treat the cell lattice as a geography within which the smaller number of stateful
and rule-driven automata operate. Wolfram [17] calls these generalised mobile automata and demonstrates their
functional equivalence to fixed CAs, so the distinction should be thought of as a matter of optimisation: for
suitable problems, the EA will be more efficient because fewer cells are considered at each time step.
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Having first established that this model is indeed evolvable, the researchers then applied a GA
to evolve solutions to a simple, highly abstracted, developmental task, that of generating an
organism with distinct developmental phases: a period of vigourous growth, followed by a longer
period of homeostasis. (See Appendix A.)

This is an extremely general problem statement, making almost no assumptions as to the
mechanisms that might be used or the purposes they might serve. Further, the CA environment
includes no attempt to represent any of the material details—forces, thermodynamics, chemical
properties—on which real world development so depends.[2]

Nevertheless, the task captures something essential for development and its very abstraction
makes it potentially illuminating.

3.2 Initial Results

The model successfully evolved a number of organisms exhibiting a good level of homeostasis.
Despite the simplified environment, the organisms hit on different strategies for doing so: static
strategies, in which the cells reach a final form and subsequently maintain it by inaction; and
dynamic strategies, in which form is maintained by an ongoing balance between cell division
and death. Between these two poles were organisms exhibiting a combined strategy, with both
static and dynamic regions.

These strategies are comparable to those found in living organisms.

A particularly interesting analogy is between the stratified structure of evolved organism #18
and many animal tissues such as those of the skin and gut (see Figure 1). In both cases, a base
layer of ever-dividing stem cells replenishes a region of transit amplifying cells that migrate
towards a surface region in which they die. That this strategy should occur in such an abstracted
simulation as well as so widely in living organisms suggests it may be a natural—which is to
say, attracting—solution to the problem of homeostasis.

3.3 Subsequent Experimentation

Having evolved such organisms, a natural extension was to investigate their behaviour under
systematic perturbations. Two principal tests were performed:

• To identify the single genes with the greatest impact on homeostasis, a systematic loss of
function analysis was applied, generating phenotypes from variant rulesets in which each

Figure 1: Organism #18 at timesteps 50, 100 and 150. Cells propagate up from the flat base
to die at the surface.
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of the 100 rules was deleted in turn and comparing those to the unmodified original.

• To test robustness to environmental perturbation, the original organisms were subjected
to ‘gunshot wounds’—the instantaneous removal of a body of cells at timestep 100—and
their form at step 150 compared to that in the unwounded version.

In the first test, a small number of rules were found to play a disproportionately large role
in homeostasis. In particular, for organisms whose homeostatic strategy involved a dynamic
component, the critical rules were all found to be promoters of apoptosis. Deletion of these
genes led to loss of growth regulation and consequent disruption of form. While it would be
reckless to take the analogy too literally, there is a clear correspondence here with cancerous
growth in living tissue: controlled cell death is evidently an important component of health in
artificial systems, just as it is in living ones.

All the homeostatic organisms also proved remarkably robust to wounding, despite that being
an event to which they had never been exposed during their evolutionary history and thus for
which there would never have been an explicit selective pressure. While such a result might
be expected in organisms with a dynamic strategy—which would, in any case, be constantly
renewing their form—it is more surprising in the static organisms, in which the circumstances
for such self-repair would not normally occur.

In the specific case of the tissue-like organism #18, the wounding experiment showed evidence
of something interpretable as functional differentiation between the cells in separate strata:
while a wound to the transit and outer layers was quickly repaired, a substantive wound to the
generative ‘stem cell’ layer at the base led to progressive tissue loss and even the death of the
entire organism.

A subsequent loss of function investigation of the wound healing response in this organism
revealed that the rule with greatest impact on wound healing was one that was not crucial for
homeostasis. Examining the evolutionary history of the organism, however, showed that in early
antecedents not exhibiting significant wound healing, the same rule did contribute somewhat
to homeostasis. It appears that, as more efficient mechanisms for the primary purpose of
homeostasis evolved, the redundant gene acquired this inadvertent secondary role.

3.4 Conclusions

At least in this highly abstract universe, there is clearly some relationship between the primary
traits for which an explicit selective pressure exists and secondary behaviour that, although not
selected for, seems consistently to co-evolve. Some degree of robustness may turn out to be an
inevitable corollary of the evolution of homeostasis, which itself is a common feature of most
living organisms.

The fact that artificial organisms evolve similar strategies in the solution of this simple problem
to those found in the natural world is at best circumstantial, but it is nonetheless suggestive
that there may be patterns in the evolutionary landscape toward which evolution tends to
gravitate.

It is possible that the apparent correlation between embryonic wound healing and more general
developmental robustness represents one such attractor. But even if that turns out not to be
the case, the results from this model should at least sound a note of caution about too readily
interpreting particular behaviours as evolutionarily selected in and of themselves rather than
just coming along for the ride.
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4 Further Investigation

4.1 Speculation

The wounding experiment demonstrates that these evolved EmbryoCA organisms exhibit some
robustness to acute environmental perturbation, even though such perturbation was never ex-
plicitly part of the selective landscape in which they evolved. Their developmental environment
during evolution, and thus the mapping from genome to fitness, was entirely deterministic and
error-free.

Nevertheless, from the discussion in §§1.2-1.3 above, some degree of robustness is not a wholly
unexpected companion to success. The random variations by which the genome evolves consti-
tute a kind of noise, and small genomic changes may manifest unpredictably during develop-
ment. We might expect that selection would favour organisms capable of holding on to their
advantages despite such minor mutations, and which include sufficient redundancy to allow
exploration of more distant evolutionary possibilities.

If this were the case, the successful organisms ought also to exhibit some level of robustness to
imperfections in development : faults individually less extreme than the gunshot wounds—which
incur a major recovery cost—but which, unlike those, are chronic.

4.2 Introducing Stochastic Effects

In order to test this hypothesis, the operation of the CA has been altered to allow a pa-
rameterised level of stochastic imperfection when applying the ruleset, analogous to errors in
transcription or translation. Since there is no single obvious definition of ‘imperfection’ in this
context, two different versions are implemented. In the less specific variant, there is a probabil-
ity that any rule might be replaced by a randomly concocted other—on a one-off basis—before
being tested and invoked. In the more directed, the probability is for the existing rule to be
applied in reverse: promoting the action it would normally inhibit, or vice versa.

In both cases, we expect a degradation of phenotypic behaviour as the error probability in-
creases. However, the exact nature of the degradation will depend on the presence and nature
of developmental robustness. If development is robust, we would expect the effect of noise to
be relatively low up to some threshold; if not, then even small chronic perturbations should be
enough to derail the final phenotype.

With the introduction of stochasticity, it is no longer possible to get a single ‘correct’ answer
from the model: different runs produce different results. Instead, a statistical approach must be
used, in which the results of many runs are taken together, and their distribution assessed.

The fitness functions applied in the evolutionary stages are a natural choice for quantifying the
effects of developmental noise, at least in the first instance. However, they are unlikely to tell
the whole story.

4.3 Results

Summary results from a series of trials on the tissue-esque organism #18 are shown in Figures 2
and 3. While far from conclusive, they exhibit several interesting features. Perhaps surprisingly,
there is a qualitative difference between the effects of the two alternative noise implementations
as their level increases.
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Figure 2: Fitness results from simulations of organism #18 with developmental noise; lower
values are more fit. Red lines indicate the noise-free fitness level.

In both cases, even low levels of noise introduce considerable variance to the homeostatic fit-
ness of the phenotype. However, with inversion this seems to remain roughly centred on the
deterministic value over a considerable range of error probabilities—up to just below 0.2, by
which point we must expect multiple malfunctions in almost every cell at every timestep—and
a significant proportion of the final phenotypes in this range achieve a better homeostasis score.
Beyond the threshold, fitness degrades very rapidly.

By contrast, the purely random noise leads to deteriorating homeostasis almost immediately;
only for very small error probabilities is there any accidental improvement in fitness score. But
this deterioration does not continue at the same rate: the fitnesses soon settle down to a broad
plateau, never approaching the extreme values reached by high levels of inversion.

Of course, the fitness scores provide only a narrow window onto the behaviour of these organisms;
important, as the express criteria of selection, but nonetheless incomplete. To get a qualitative
idea of the effects of our introduced stochasticity, we should also look at the actual phenotypes.
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Figure 3: Closer examination of the low noise region.

Several typical examples are shown in Figures 4 and 5.

It is immediately apparent that the main cause of loss of homeostasis at higher levels of noise
is unrestrained growth. This is consistent with the original loss of function analysis.

4.4 The Problem of Interpretation

Taken in isolation, the inversion results might seem to indicate a high level of developmental
robustness in organism #18: 10% is a pretty large sustained error rate. The random results, on
other hand, are much less supportive. Certainly, if the ruleset has evolved to exploit a basin of
attraction in the phenotypic landscape, it is a relatively limited one, whose edges can quickly
be discovered by cumulative random errors. Yet the organism has previously been shown to be
robust to acute perturbation.

At this stage, there is insufficient information to justify a full explanation of this apparent
contradiction. Nevertheless, some features can be discerned—even if they tell us more about
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Figure 4: Phenotypes at steps 50, 100 and 150 for inversion probabilities (from top to bottom)
0.01, 0.1, 0.2 and 0.4.

11



Figure 5: Phenotypes at steps 50, 100 and 150 for random noise probabilities (from top to
bottom) 0.01, 0.1, 0.2 and 0.4.
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our experiment than the evolution of robustness.

The directed nature of inversion promotes a specific kind of deterioration. At high levels,
inevitably, this compromises the phenotype—that is, in a sense, its purpose. However, inversion
can only subvert the rules already present; it can never introduce new ones. The impact of
inversion will therefore depend on the particular distribution of rules in the genome.

While much of the behaviour of a ruleset is intricately unpredictable, it need not all be. In the
case of organism #18, almost one third of the rules have conditions that can never be matched in
the given simulation environment and are thus guaranteed not to be invoked. While these rules
have no effect one way or another on the phenotype, they do constitute a sort of redundancy.
Inversion will not affect them, so they can ‘mop up’ a certain amount of perturbation.7 During
evolution, these may provide a pool of mutable genes and hence improve evolvability.

Random changes, on the other hand, can introduce new types of rule which were not present
before. Moreover, they are undirected. Broadly speaking, a mutant is as likely to act for or
against any action, so the cumulative effect of such changes should be approximately—pace the
structural biases of the CA and fitness functions—diffusive. It is perhaps not so surprising,
then, that the effect increases more markedly over the short probability range than the long,
although it’s certainly nothing as clean as F ∝

√
P .

Taken together, the results suggest that, while this organism exhibits a high degree of robustness
to specific kinds of perturbations during development, it cannot be described as robust in
general. Which begs the question: how, if at all, do those particular manifestations reflect the
evolutionary process that gave rise to this organism?

5 Conclusions & Future Work

In the study of complex processes such as development and evolution—and particularly their
interactions—models like EmbryoCA provide invaluable abstraction, control and repeatability.
When phenomena common to natural systems recur in the rarefied context of these models, it
can suggest new ways of interpreting their mechanics and help us recognise which factors are
more or less important to understanding the processes of life.

However, it is important to be aware of the ways in which the structure and implementation of
our models prejudice the results obtained. The inversion results in the previous section illustrate
this clearly—taken out of context they could be quite misleading.

The EmbryoCA experiments so far have only begun to explore the model’s possibilities, and a
great deal of further work would be possible. Having suggested, for example, that the response
to environmental perturbation will depend a good deal on the rule distribution, a natural
progression would be to run similar tests on a range of other organisms and see how they
compare.

One highly suggestive feature of the results obtained above is that a degree of developmental
noise—some non-uniformity in the application of the rules—frequently gave rise to organisms
with improved fitness. Such variability is not available for exploitation by evolution in the
current model, but we know it is used extensively by living systems. Despite the inevitable
increase in complexity it would entail, the addition of some kind of heritable regulation to the
model seems an avenue particularly rich in possibilities.

7Although the inversion operation is artificial, there is certainly no reason why a rule’s condition and conse-
quence should mutate together; consider the operation of transcription factors in real cells.
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A Appendix: EmbryoCA Specifics

EmbryoCA is implemented on a 3-dimensional rectangular lattice. At each location, the cell
may either be occupied or unoccupied; automata operate only in occupied cells.

A cell’s neighbourhood consists of the 26 adjacent cells, including diagonals (a Moore neighbour-
hood). This is subdivided into 6 overlapping sets of 9 cells each in the directions north, south,
east, west, up and down, each of which is assessed totalistically ; that is, only the number of
occupied cells in each set is considered, rather than their arrangement, which greatly simplifies
the rules.8

In addition, each automaton has an internal state variable that keeps track of the number of
times it has divided.

The genome shared by all automata consists of 100 rules of the form:

if (variable in interval [lower, upper]) then consequence

The variable tested can be the current timestep, the number of divisions the cell has undergone,
or the occupancy count for one of the directional subsets of the neighbourhood. The consequence
is a vote either for or against an action. Actions available to the cell are to move or divide in
a particular direction, or to die. Inaction is also allowed, though it is not explicitly included as
a distinct rule consequence.

At each timestep, all rules whose condition is met by a particular automaton are tallied and
the action with the highest excess of ayes over nays is performed. In the case of a tie, multiple
actions may be selected if they are not incompatible. A minimum threshold is required: inaction
is preferred over ‘least worst’ actions.

In order to be computable in reasonable time, the lattice is finite (a 50 × 50 × 50 cube), with
periodic boundary conditions; however a fitness penalty is levied for reaching the sides, to
discourage strategies that exploit what is essentially an implementation artefact rather than
part of the model proper.

The initial condition is a single occupied cell in the centre of the space, and the CA is run for
150 timesteps, with fitness tests for the phenotype—the pattern of occupied cells—at steps 50,
100 and 150.

Fitness is calculated in two distinct ways. The initial growth phase (up to step 50) is scored
according to a simple surface/volume ratio test, favouring larger and more compact pheno-
types.

The homeostasis phase is tested at steps 100 and 150, comparing the form at each step with
that at step 50 using a combination of two-point correlation and the lineal path function. These
are statistical measures of the distribution of phases in a space: two-point correlation gives
the probability that two cells are both occupied as a function of the distance between those
cells; lineal path measures the probability that a straight line between two occupied cells passes
through no unoccupied cells, again as a function of distance. Taken together, these functions
serve to quantify the morphological differences of the phenotypes.

The genetic algorithm operates on a population of 1000, initially random. An elitist strategy is
used: from each generation, the 50 genomes giving rise to the fittest phenotypes are propagated
unchanged to the next. The remaining 950 places are produced by mutation and two-point

8As the sets are not disjoint, the overall effect is only semi-totalistic, since the occupancy pattern of each set
will affect the populations of those it intersects.
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crossover, using parents chosen by tournament—a fitness face-off between randomly-selected
individuals from the whole generation (including the elite).

Mutation occurs with a probability of 0.05 per rule in the genome, and entails replacing the
rule entirely at random: there are no smaller mutable units.

The GA is run for 30 generations.

The system is implemented in the Java language, using the ECJ library for some GA infras-
tructure. OpenDX is used to visualise the 3D CA phenotypes.
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