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ABSTRACT

A classical finding of visual cortical responses in anesthetized cat is that they
are sensitive to the temporal context in which a stimulus is presented. Here, we in-
vestigate the classic tilt after-effect in awake mice, using 2-photon calcium imaging
to simultaneously record the responses of 1000+ neurons in transgenic mice with
labeled paravalbumin- (PV) or somatostatin- (SOM) expressing interneurons. We
found that both pyramidal and PV cells showed highly diverse responses, with
a minority of cells in both populations showing stable orientation tuning. Very
few PV cells had high orientation tuning, but SOM cells seemed to be equally
orientation tuned as pyramidal cells. We observed classical adaptation effects in
putative pyramidal and SOM cells, with reduced responses of cells with preferred
orientations/directions near that of the adaptor. PV cells, on the other hand, did
not seem to undergo any adapation effects. Notably, however, we did not observe
previously reported repulsive tuning curve shifts during an adaptation-inducing
stimulus, in any of our populations. We conclude that adaptation effects in mouse
V1 likely arise from single-cell adaptation, and propose future modeling work that
may clarify whether other cortical contributions may play a role.
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1. Introduction

One of the most fascinating and eminent challenges of modern neuroscience is
understanding the connection between brain and behavior. From visual percep-
tion to social exchanges, mammals demand that their nervous system accomplish
astonishing computational feats on a second-by-second basis. A thorough under-
standing of such nervous systems and the behaviors they produce thus necessitates
understanding these computations and how the underlying biological processes give
rise to them. [10, 46]

A practical starting point in this venture is sensory perception, where both
ends of the brain-behavior spectrum can be observed. From the seminal work of
Hubel & Weisel a half-century ago [32], neuroscientists have had much success
mapping cortical activity to perceptual phenomena. Furthermore, the abstract
mathematical problem that perception poses provides a framework through which
to understand such mappings in terms of computation. [10, 11, 47]

An illustrative example of this approach is the study of the tilt after-effect,
whereby being exposed to a visual stimulus of a particular orientation for an ex-
tended period of time induces a perceptual bias in subsequently presented orienta-
tions. [63, 27, 38, 16] The resulting biases are systematic and can be interpreted as
serving a functional computational role. [63, 16] Such adaptation to the temporal
(or spatial [63]) context in which a stimulus is encountered can also be observed in
the brain, where visual cortical neurons show corresponding systematic changes in
their response properties. [48, 39, 12, 19, 9, 62, 17] Hence, adaptation provides an
elegant example where we can neatly map changes in neural activity to changes in
behavior (in this case, perception). [38, 63] In a certain sense, it allows to observe
neural computation.

Here, we present a series of findings from recording visual cortical neurons re-
sponding to such oriented stimuli. By presenting the stimuli in different temporal
contexts, we can ask how neurons change their responses under different settings
and how these changes may underlie functional computations.

Importantly, it is clear that the mammalian cortex employs a diverse arsenal of
cells that may each play distinct computational roles. [29, 30] In understanding
the biological substrate of cortical computation it will thus be essential to disen-
tangle the response properties of and interactions between these different types of
neurons. One particularly crucial distinction in this respect is that of inhibitory
(GABAergic) and excitatory (glutamatergic) neurons. [33] GABAergic cells have
drastically different firing dynamics [42, 41] as well as differential connectivity pat-
terns than those of typical excitatory pyramidal cells. [31, 55, 23, 22, 56] These
differences must in some sense underlie differential functional roles played by these
two broad classes of cortical cells. [33, 31, 30, 29]

In this vein, we used 2-photon calcium imaging with transgenic mice to record
from many cells simultaneously and selectively record parvalbumin-positive and
somatostatin-positive interneurons. With this technique, we were able to observe
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many different kinds of activity in these different classes of cortical cells. What
follows is mainly a descriptive study of how these cells respond to stimuli in differ-
ent temporal contexts. This lays the groundwork for future analysis to dig into the
mechanisms giving rise to the neural responses intrinsic to contextual processing
in visual cortex.1

I start by reviewing the literature surrounding orientation tuning and the in-
fluence of context on visual cortical neuron responses, followed by a discussion
of current hypotheses about the computational roles of parvalbumin and somato-
statin interneurons in visual cortex. I then outline the approach taken here before
reporting the method details and results.

1.1. Contextual processing in visual cortex. The crux of the challenge faced
by any visual system is that vision is inherently an inverse problem: the sensory
data available to an organism severely underdetermines what is actually out there
in the world. [47] It is because of this that context is critical to perceptual process-
ing. The context an object is in can provide crucial information for inferring what
that object is or what it may be doing, particularly because the space of possible
contexts encountered on planet earth turns out to have a significant amount of
structure. [63, 21] Intuitively, it would be thus be advantageous for a perceptual
system’s functioning to be sensitive to changes in context. [63, 38, 16]

Indeed, this strategy seems to be prominent in mammalian sensory cortices.
[63, 39, 48, 50, 25, 45, 17] In visual cortex, in particular, one domain where such
adaptation effects are seen robustly is in neural responses to orientation. Orienta-
tion tuning is a robust phenomenon in visual cortex whereby neurons preferentially
respond to orientations within a certain range. [32] However, the tuning of these
neurons (i.e. the orientations they prefer) is strikingly modulated by the spatial
and temporal context in which oriented stimuli are encountered. [63]

For example, in a classic finding termed the tilt after-effect, neural responses to
an oriented stimulus are modulated in systematic ways when a stimulus is shown
in a temporal context favoring one orientation. A cell’s orientation tuning can be
measured precisely by presenting an animal with a sequence of different orientation
and measuring the cell’s responses to each one. This will yield a tuning curve re-
flecting the orientations that cell responds to most strongly. But when the animal
is presented repeatedly with stimuli of one single orientation (e.g. by showing a
grating of a particular orientation for an extended period of time spanning min-
utes [19], or by showing a sequence of oriented gratings where one orientation is
significantly more frequent than any other [9]), that cell’s tuning begins to change.
Primarily, two effects are observed: [63, 38, 19, 9, 34]

(1) Responses to the “adaptor” orientation are strongly reduced. If the an-
imal is presented a 90◦ oriented stimulus repeatedly or for a duration of

1At least in the temporal domain, although there are reasons to think that results would
generalize to spatial contextual processing as well [63]
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many seconds, orientation tuned neurons in visual cortex will subsequently
respond much more weakly to 90◦ oriented stimuli, as well as to other ori-
entations within ∼ 20◦. Responses to orientations more than 30◦+ away
from 90◦, however, will be largely unaffected.

(2) The cell’s preferred orientation shifts away from the adaptor orientation.
Again, this effect is strongest for cells with preferred orientations near the
adaptor orientation. So if a cell prefers 95◦ oriented stimuli when they are
presented in isolation, it will respond preferentially to 100◦ orientations
after being stimulated by a 90◦ stimulus over an extended period of time.
However, a cell that prefers 175◦ will maintain its tuning.

Such changes in response properties arising from changing the context in which a
stimulus is presented are termed adaptation effects.

In fact, adaptation effects can be observed across processing stages in the vi-
sual system hierarchy, from cortical responses to spatial frequency [48], direction
of motion [39], spatial location [17], and contrast [48, 12], down to the lateral
geniculate nucleus cells [17] and retinal ganglion cells. [4] The effects of adap-
tation can be observed at the level of behavior as well, where preceptual biases
arise after prolonged exposure to a particular stimulus like an orientation or even
a face. [27, 16] Similar effects can be found in the auditory domain as well, where
repeated presentation to the same frequency leads to changes in the frequency
tuning of individual cells and a similiar stimulus-specific attenuation of responses.
[50] These adaptation effects found across sensory cortices suggest that it might
be a general strategy employed by mammalian perceptual systems, or even by the
mammalian cortex in general.

Why would such perceptual biases and response changes be useful? Indeed, a
change in the orientation tuning of cell should lead to the so-called coding catastro-
phe, where a population code of orientation is suddenly changed from one moment
to the next, leading to downstream decoding errors and incorrect inferences. [63]
However, it turns out that if one assumes classical population decoding schemes
(e.g. winner-take-all, maximum-likelihood, population vector), this problem is in
fact dealt with via the interplay of the the two effects mentioned above: whereas
the reduction of responses to stimuli near the adaptor amplifies the decoding error,
the repulsive shifts in preferred orientation ameliorate it. [34] A plausible hypoth-
esis is thus that biological constraints impose that neurons can’t respond at the
same strength when repeatedly stimulated, leading to a kind of neural fatigue en-
hanced in the cells than usually repsond most strongly to the repeatedly presented
adaptor stimulus. Indeed such effects are in fact seen in vitro, where stimulation
of individual neurons over a long period of time leads to an attenuation in spiking
responses. [43] These spike-frequency adaptation effects seem to be a consequence
of the cellular mechanisms inherent to neural spiking, explained by the dynamics of
membrane ion channels. [43, 59] Thus, it could be that visual cortex might is wired
up in such a way that repulsive tuning curve shifts occur under certain temporal
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contexts that would otherwise lead to the coding catastrophe via spike-frequency
adaptation. [68]

Alternatively, these adaptation effects may be desirable despite the coding catas-
trophe. Selectively reducing responses to stimuli appearing frequently in the sen-
sory environment would lead to improved deviance detection, which may be ad-
vantageous for survival even under erroneous perceptual biases. [50, 28, 63, 38]
Relatedly, it would improve coding efficiency by reducing redundant signals and
decorrelating neural responses. [63, 38, 9] Adapting to the statistics of the sensory
context may also help maintain stimulus discriminability across different envi-
ronments while staying within a healthy dynamic firing range [38], although the
psychophysical evidence for this is dubious. [63]

In summary, it is clear that sensory adaptation is ubiquitous throughout sensory
cortices. It is unclear, however, whether it is a property brains are designed to
have or whether it is simply a byproduct of biological constraints that the brain
must deal with. Elucidating the mechanisms by which it arises will be crucial for
disentangling these two explanations. Here, we focus on orientation adaptation
because adaptation effects in orientation tuned V1 cells are well studied and robust.
Furthermore they provide a probe for understanding cortical computation, since
they seem to arise from cortical activity: the sharp orientation tuning obseved in
V1 seems to necessitate recurrent cortical input to begin with [65, 6, 13], and lateral
geniculate nuclues (LGN) neurons are very weakly orientation tuned [17], meaning
that they could not underlie the stimulus-specific adaptation effects observed (i.e.
the fact that cells tuned to orientations near the adaptor’s are more affected than
those tuned to orientations orthogonal to the adaptor). Importantly, however,
all previous experiments mentioned here were performed on anesthetized cats. It
remains an open question whether they will be replicated in awake mice, whose
visual cortex is differently organized. [29]

Lastly, inhibitory neurons have also been shown to be somewhat orientation
selective [52, 67, 61, 3, 36, 14, 42] and seem to play an important role in establishing
and sharpening the orientation tuning of pyramidal cells [65, 70, 44, 35, 6, 2].
These observations pose the question of whether they play a role in driving cortical
adaptation effects, or whether they undergo adaptation effects themselves. [68, 50]
Thus, orientation tuning and tilt after-effects provide a paradigm well-suited to
probing the cortical circuitry underlying contextual processing in V1.

1.2. Cortical inhibition in visual cortex. One of the questions currently at
the forefront of research on mammalian neocortex is the question of what com-
putational role is played by GABAergic inhibitory neurons. In general, inhibitory
neurons have very distinct firing and wiring patters that clearly distinguish them
from cortical pyramidal cells [30, 22, 29], and even within the class of GABAer-
gic interneurons, many subtypes exist with different properties. A full taxonomy
remains a matter of debate, but it is largely agreed upon that three main classes
can be distinguished by their gene expresssion patterns, response properties, and
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connectivity: parvalbumin expressing (PV), somatostatin expressing (SOM), and
vasoactive intestinal peptide expressing interneurons (VIP). [56, 71] VIP interneu-
rons seem to provide very little inhibition to pyramidal cells [56], so we focus on
PV and SOM interneurons.

Parvalbumin-expressing interneurons seem to be the most abundant in visual
cortex, as well as the most responsive to visual stimulation [36] and the ones that
evoke the strongest inhibitory post-synaptic conductances in pyramidal cells. [56]
They synapse onto perisomatic regions of pyramidal cells [22, 18], with highly dense
connections to and from the local population (input and output connectivity rates
of ∼ 80%). [31, 55] In V1, excitatory inputs to PV cells tend to be unselective
and local [31], leading to low orientation selectivity and a tuning bias toward that
of the surrounding local population. [36] These observations seem to suggest that
PV cell activity simply reflects the average activity of pyramidal cells in the local
vicinity. [36, 31]

A hypothesis that arises out of these findings is that the computational role of
PV cells may be to control the response gain of pyramidal cells. [3] Indeed, optoge-
netic activation or suppression of PV cells in V1 leads to changes in pyramidal cell
response gain while leaving orientation tuning and contrast gain intact [3, 70] (al-
though see [40] for a contradictory result2). Similarly, pharmacological blocking of
GABA receptors increases pyramidal cell response gain but not contrast gain. [35]
The fact that PV cells synapse onto areas near or on the somata of pyramidal cells
makes them particularly well-suited to regulating pyramidal cell output. They also
show short response latencies similar to pyramidal cells [41, 42] and seem to be
particularly efficient at transforming synaptic input into spikes [41], putting them
in an ideal position to coactivate with and thus efficiently regulate pyramidal cell
responses to cortical or thalamic input. Indeed, PV cells receive synaptic input
from thalamus [58] and respond to visual stimulation on the same timescale as
pyramidal cells, allowing them to drive feed-forward inhibition. [42] Controlling
pyramidal cell response gain in this way may be crucial for allowing them to oper-
ate within a reasonable dynamic range in the face of massive excitatory synaptic
input. [64]

On the other hand, somatostatin-expressing interneurons have complementary
properties that seem to make them better suited for modulating the input to
pyramidal cells. [70, 26] They target pyramidal cell dendrites rather than cell
bodies [22, 18], allowing them to directly interfere with the driving ability of specific
synaptic inputs to a cell. Rather than providing strong and fast inhibition like PV
cells, SOM cells tend to show much longer response latencies [41, 42] and produce
inhibitory post-synaptic conductances half as strong as those produced by PV
cells. [56] They also receive significantly weaker and delayed excitatory drive.
[41, 42] Together, these observations suggest that SOM interneurons implement

2Note, however, that the discrepancy may be explained by the fact that the authors in [40]
used 4 seconds of laser stimulation, which could have led to confounding network effects [20]
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weak modulatory feedback inhibition in cortex. Indeed, the inhibition stemming
from SOM cells seems to modulate the excitatory drive to pyramidal cells, affecting
orientation tuning [70, 44], contrast sensitivity [70], and distal dendritic activity in
L1 [26]. Interestingly, somatostatin-expressing interneurons seem to be orientation
tuned [42] (although see [36]), suggesting they receive highly specific synaptic input
from pyramidal cells.

What role could each of these play in contextual processing? The short-term
dynamics of the synapses between pyramidal cells and each of these types of in-
terneuron suggest they may each play fundamentally different roles. Specifically,
PC-SOM synapses are typically facilitating [5, 66, 60] whereas PC-PV synapses are
depressing [5, 60, 24]. Indeed, in auditory cortex, optogenetic suppression of PV
vs SOM cells leads to differential changes in pyramidal cell responses to deviant
and regular tones. [50] SOM-mediated inhibition seems to selectively suppress
responses to repeated stimuli, whereas PV inhibition seems to affect responses to
all stimuli unselectively. Again, this is reminiscent of the hypothesis that PV cells
implement unselective response gain control whereas SOM cells implement selec-
tive feedback modulation of dendritic input. Other studies have also pointed out
the importance of SOM cell activity for deviance detection in mice. [28]

In fact, both PV and SOM interneurons seem to undergo adaptation effects
themselves in anesthetized mouse A1. [50] However, anaesthesia seems to strongly
modulate SOM cell responses [1], so it remains an open question whether this is
the case in awake mouse V1. Indeed, as reported below, we found no adaptation
effects in PV and SOM responses to oriented gratings.

1.3. Measuring neural responses. To be able to probe the neural circuitry
underlying contextual processing in visual cortex, we need a way to (1) record
many neurons simultanesouly and (2) identify different types of neurons, in vivo.
To do so, we use 2-photon calcium imaging, a technique that allows the recording of
action potentials of many neurons simultaneously. [36, 31, 15, 37] Importantly, we
take advantage of the fact that different genetically expressed fluorescent proteins
can be imaged at different wavelengths, allowing us to use transgenic mice to
label different classes of neurons. We can then selectively record PV or SOM
interneurons along with the rest of the cells in their surrounding local population.
This paradigm also provides the huge bonus of allowing us to image awake mice by
headfixing them to the microscope after surgically implanting a transparent cover
window over visual cortex.

However, like so many things in life, the huge advantages provided by 2-photon
calcium imaging don’t come without their costs. The raw data obtained from the
microscope consists of an array of pixels with intensity values that vary over time.
Determining which pixels belong to cells, which don’t, and which belong to the
same cell is by no means a trivial problem, and even pixels that we can be sure
belong to a certain cell will inevitably have signals contaminated by irrelevant neu-
ral activity in the surrounding tissue (so-called “neuropil” contamination). Such
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issues are critical to take into account when trying to infer neural activity from
raw calcium imaging data. [54, 15, 57] We are not interested in how fluorescence
intensity values measured by the microscope change with different stimulus pre-
sentations - we are interested in how a given neuron’s pattern of firing changes. As
such, need a way to accurately infer cell spiking activity from the recorded calcium
signal. [54, 15, 57]

In addressing all of these challenges, we utilized a recently developed software
for pre-processing 2-photon calcium imaging data, called Suite2P. [54] This soft-
ware performs the whole pipeline, from cell detection to neuropil subtraction to
spike deconvolution, and outperforms all current algorithms on ground truth data
(http://neurofinder.codeneuro.org/). The result is a spike train for each neuron
in the imaged field-of-view, which we can then analyze with respect to the stim-
uli presented to the mouse during recording. In the following methods section I
describe in detail the processing steps implemented by Suite2P.

Using two different transgenic mouse lines, we imaged awake mice with labelled
parvalbumin or somatostatin neurons while they were presented oriented gratings.
The sequence of gratings were desigend to induce adaptation effects, which we
measured and characterized in putative pyramidal cells, parvalbumin cells, and
somatostatin cells.

2. Methods

2.1. Mice & Imaging. Experiment 1 was performed on three PV-Cre×tdTomato
transgenic mice, imaging at 30Hz in L2/3. Experiment 2 was performed on a single
SOM-Cre×tdTomato mouse, imaging at 3Hz across 10 planes spanning L2/3 and
L4. These particular transgenic lines are such that parvalbumin- (in PV-Cre) or
somatostatin- (in SOM-Cre) positive cells emit red light when stimulated with
a laser at the correct frequency. Calcium activity was recorded by injecting an
AAV1 virus at the field of view that led to all neurons near the injection site to
express GCaMP6m/f, a protein that emits green light when stimulated by a laser
whilst in the presence of calcium. Importantly, this particular calcium indicator
has fast enough dynamics to detect spiking activity. [15] This allowed us to later
infer spike times from the resulting recorded fluorescence signal.

An experimental session consisted of several blocks. First, retinotopic mapping
was performed to find the receptive fields of the cells in the field of view. This
was necessary to then be able to present the stimulus at the optimal location to
stimulate the cells being imaged. Then, imaging was performed with the laser at a
wavelength that would maximally activate the red fluoorescent protein in the PV+
or SOM+ cells to be able to later identify which recorded cells were PV/SOM and
which were not (termed putative pyramidal cells). A different photodiode was used
for this, with a filter to ensure only red light was being detected. The rest of the
blocks consisted of presenting the head-fixed mouse with a series of visual stimuli
while recording with the laser at a wavelength chosen to elicit emission from the
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calcium indicator GCaMP. These provided us with fluorescence timecourses for
each pixel in the field of view, which we then grouped into cells (see below) that
we later classified as PV/SOM or putative pyramidal based on the red images.

In all experiments, mice were surgically implanted with a cover window over
visual cortex that allowed us to image visual cortical neurons without exposing
the brain. By head-fixing the mice during stimulus presentation, we were able to
perform all experiments in vivo without anaesthesia. This is a crucial point, as the
majority of previous studies on adaptation and orientation selectivity have been
performed on anesthetized animals [36, 61, 20, 35, 2], and stimulus-evoked activity
may not be the same in an awake animal as in an anaesthetized one (although see
[53]), particularly that of somatostatin cells. [1]

2.2. Stimuli. In experiment 1, stimuli consisted of circular patches of oriented
bars (circular gratings). They were presented at the optimal receptive field for
the cells in the field of view. Stimuli were shown under three different conditions.
In the 1Hz condition, the experimental block consisted of showing a sequence of
gratings at a frequency of 1Hz for a duration of 100ms each. The 10Hz con-
dition accordingly consisted of gratings presented at a frequency of 10Hz, also
for a duration of 100ms each. In both of these cases, 12 different orientations
(0◦, 15◦, 30◦, 45◦, 60◦, 75◦, 90◦, 105◦, 120◦, 135◦, 150◦, 165◦) were shown, presented in
a random order such that any orientation was equally likely to succeed any other
orienation. In addition, blank stimuli were interleaved randomly between oriented
gratings. The third condition was the biased stimulus condition, which was just
like the 10Hz stimulus except that one orientation (90◦) was more frequent than
any other. This type of stimulus provides the advantage of allowing us to stmul-
taneously induce and probe the effects of adaptation. [9] To ensure that all other
aspects were kept constant relative to the unbiased 10Hz stimulus sequence, we
equated the number of presentations of all other orientations, reducing the number
of blank trials to increase the number of 90◦ stimulus presentations while keeping
the total experiment length constant.

In experiment 2, oriented bars were presented drifting across the screen at dif-
ferent angles. The sequence of simuli consisted of a 30 second adaptation stimulus
followed be a sequence of 2 second alternating “top-up” and test stimuli, separated
by 1 second inter-stimulus blank intervals. In the control condition, the adapta-
tion stimulus and top-up stimuli consisted of blanks. In the adaptation condition,
these consisted of oriented bars drifting at 180◦ in both the 30s adaptor period
and in each of the top-ups.

Stimuli were presented using Psychtoolbox, using a photodiode to precisely de-
tect stimulus onset times relative to the calcium recording.

2.3. Imaging data analysis.

2.3.1. Cell detection and neuropil subtraction. As mentioned above, the raw recorded
imaging data consists of a timecourse of fluorescence intensity for each pixel in the
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imaged field of view. However, what we seek is cell spiking activity. To obtain
this, we modeled each pixel’s fluorescence activity as a series calcium transients
arising from the spiking activity of a cell the pixel is a part of (if it is part of one).
By fitting this model to the measured pixel intensity values, we were able to infer
the groups of pixels that comprised single cells, along with those cells’ spike trains.

Importantly, however, it is well known that the point spread function of the
2-photon microscope is elongated in the z axis by an order of magnitude more
than in the x or y axes, meaning that the measured fluorescence from even a cell
perfectly in focus will inevitably contain signal from adjacent somata or dendrites
and axons behind and in front of it. [54, 15, 36] Such sources of fluorescence
activity irrelevant to the actual spiking of the cell are termed neuropil, and are
crucial to account for in inferring individual cell activity from the fluorescence
signal. To do this, we incorporate into our generative model of pixel fluorescence
instensities a term for neuropil contamination that models the spatial structure of
neuropil activity. Previous studies have shown that this activity is correlated in
space [54], so the model is designed such that the neuropil signal is forced to vary
smoothly over space. Specifically, we model the neuropil signal across the image
as a series of raised cosine functions uniformly tiling the field of view. By fitting
weights and timecourses to each of these components, we obtain the neuropil signal
at each pixel, enforced to vary smoothly between neighboring pixels. [54]

The generative model of the raw recorded signal rk of the kth pixel is thus
expressed as follows:

rk =
∑
n

Λknfn + αk
∑
i

Bkini + η

where

• Λ is a sparse matrix designating pixel membership to individual cells in the
image (ROIs). Λkn > 0 if pixel k is part of the nth cell and 0 otherwise.
• fn is the fluorescence signal reflecting the calcium activity arising from

action potentials of the nth cell.
• {Bi} are the set of basis functions modelling the spatial structure of the

neuropil signal, each Bi consisting of a two-dimensional raised cosine. Each
of these components has an associated neuropil signal timecourse ni. We
thus denote the resulting contribution of the ith neuropil component to the
kth pixel as Bki, which decays as a function of the pixel’s distance from
the spatial center of Bi (the peak of the cosine).
• αk is a scaling constant that estimates the level of neuropil contamination in

each pixel. This is important because the amount of neuropil contamination
in any given part of the image will depend on whether there is a cell there
and whether it is in focus. The presence of a cell will displace the neuropil
along the z-axis, reducing its contribution. If, however, that cell is out of
focus, then the neuropil contribution will be greater. On the other hand, if
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there is no cell there at all the signal will be dominated by neuropil activity
and αk will be high for pixels in that area.
• η ∼ N (0, σ) is the random measurement noise

By jointly modelling the neuropil contamination across the field of view and the
individual cell fluorescence timecourses, our fitting procedure simultaneously per-
forms cell identification and neuropil subtraction.

The model is fit via a modified expectation-maximization (EM) algorithm that
minimizes the squared error between the model’s estimate of each pixel’s recorded
signal and that from the actual recording. [54] In the E step, the algorithm op-
timizes the matrix of pixel membership Λ and the neuropil scaling parameter α.
Given these, the M step estimates the cell and neuropil timecourses f and n by
linear regression. As mentioned above, the neuropil basis functions Bi are fixed
to be two-dimensional raised cosines tiling the field of view. This algorithm con-
verges on the optimal set of parameters relatively quickly [54], which together
provide us with clusters of pixels (ROIs) corresponding to individual cells and the
neuropil-free fluorescence timecourses for each of these.

To ensure that each of the identified ROIs corresponds to an actual cell, we
impose certain spatial constraints (e.g. member pixels should lie close to the
centroid). We then manually checked the remaining ROIs using a custom GUI
[54], removing any that resembled axons or dendrites such that our resulting data
set consisted only of cell somata. In this manual curation step, we also removed
any cells with an aberrant fluorescent signal due to saturation with GCaMP.

In our data set, this resulted in a total of 1012 cells across 4 data sets (from 3
mice) in experiment 1, and 4953 cells across 10 recording planes in experiment 2.
We then classified each cell as putative pyramidal cell or parvalbumin (experiment
1) or somatostatin (experiment 2) using the images obtained from the red-pass
filtered photodiode to find the cells transgenically labelled with tdTomato.

2.3.2. Spike detection. One component that the above model is missing is the
calcium dynamics of spiking cells. In extracting spikes from fluorescence data,
we used the neuropil signal and ROIs obtained above to refit a new generative
model of cell fluorescence traces that incorporated cell spiking, as has been done
in previous calcium imaging data processing pipelines. [57, 69] Here, we model
the fluorescence timecourse fn of the nth cell as a spike train sn convolved with a
kernel k, with a contribution from neuropil:

fn = sn ∗ k + βnpn + bn

In the analyses performed here, we used a decaying exponential kernel with a decay
constant of 100ms. pn is determined by averaging the neuropil signal obtained in
the pervious step (above) for each pixel over all the pixels in the ROI corresponding
to the nth cell. bn denotes baseline activity. We now fit this model to the average
raw fluorescence signal in each ROI, giving us the spike trains sn of each neuron and
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a new estimate of level neuropil contamination βn, presumably now more accurate
because the model incorporates calcium dyanmics arising from cell spiking. [54]

Importantly, each spike train consists of a series of spikes at different times and
with different amplitudes that are fit to each individual cell. Because different cells
may show different levels of GCaMP expression (or different calcium dynamics if
they are different types of cells [36]), the resulting spike amplitudes provide only a
relative measure of spike rate for that cell itself. In other words, an amplitude of 2
indicates twice as many spikes as a previous spike of amplitude 1 by the same cell.
But it does not necessarily indicate twice as many spikes as a spike of amplitude 1
in a differnt cell. This caveat is important to take into account when interpreting
spiking activity in different neurons, as we do at times below. It is for this reason
that we refer to “spiking activity” rather than spike rate.

The whole pipeline has been shown to accurately infer ground truth spiking
activity quite accurately [54], currently leading other prominent 2-photon calcium
imaging data processing pipelines (http://neurofinder.codeneuro.org/). The re-
sulting spike trains are thus a good estimate of actual cell spiking activity.

2.4. Characterizing neural responses.

2.4.1. Classifying neural responses. Individual cell responses were classified by the
difference between mean activity during the 333ms (10 imaging samples) prior to
stimulus onset and the mean activity during the 333ms just after stimulus onset.
We term this difference the evoked response. For each cell and orientation, we
computed the evoked response at each stimulus presentation and then performed
a sign test at α = .05 to determine statistical significane. If a cell had a positive
and statistically significant evoked response to at least one orientation, it was clas-
sified as responsive. If no orientations provoked a statistically significant evoked
response, the cell was classified as non-responsive. On the other hand, if no ori-
entations provoked a statistically significant positive evoked response and at least
one orientation provoked a statistically significant negative evoked response (i.e.
pre-stimulus onset activity was higher than post-onset activity), it was classified
as suppressive.

2.4.2. Estimating and quantifying orientation tuning. Tuning curves were esti-
mated by fitting circular Gaussian functions to the mean responses to each orien-
tation. Unless otherwise noted, the preferred orientation of a cell was taken to be
the orientation at which the Gaussian tuning curve peaked. OSI was computed as
1 - circular variance:

global OSI =
|
∑

k Rke
i2θk |∑

k Rk

where Rk is the mean response to the orientation θk. Tuning amplitude and half-
width at half-height were comptued as usual.
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We quantified tuning stability as 1 minus the circular variance of the boot-
strapped distribution of preferred orientation. For a given cell, this was found by
randomly sampling half of all trials and estimating the preferred orientation based
on these, using the vector averaging method3:

θpref =
1

2
angle

(∑
k

Rke
i2θk

)
=

1

2
arctan

(∑
k Rk sin 2θk∑
k Rk cos 2θk

)
By iterating this procedure 1000 times, a distribution of preferred orientations
could be obtained for any given cell. The tuning stability ψ was then computed
as:

ψ =
|
∑

k e
i2θ

(k)
pref |

1000

where θ
(k)
pref denotes the preferred orientation estimated from the trials sampled in

the kth iteration of the sampling procedure. 1-ψ is called the circular variance of
the distribution. Because an orientation is a circular quantity, circular statistics
must be used to characterize a distribution of preferred orientations. ψ varies
between 0 and 1, 1 denoting the most narrow distribution of preferred orientations
across random samples of trials (i.e. a distribution with 0 circular variance).

To facilitate interpretation of this measure, figure 1 plots the value of ψ for
orientation distributions of different widths. These are obtained by drawing 106

random samples from a normal distribution centered at 180◦ with standard devia-
tion designated by the x-axis and measuring the ψ value of the resulting samples:

0 20 40 60 80 100 120 140 160 180
Normal Distribution SD (/)
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0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A

Figure 1. ψ values for normal distributions of orientation with different standard
deviations. See text for details.

We thus designated ψ = .90 as an appropriate cut-off for deciding whether
or not a cell was appropriately tuned. This value of ψ corresponds to a normal

3We chose this estimate of preferred orientation as opposed to that of a Gaussian fit for speed
purposes



13

distribution of preferred orientations with a standard deviation of approximately
25◦. Such a distribution would yield a 95% confidence interval 100◦ wide. In
other words, you can be 95% sure that the true preferred orientation of a cell with
ψ = .90 lies within 50◦ of your estimate, in either direction.

3. Experiment 1 Results

To investigate neural responses in different temporal contexts, we compared
responses between unbiased 1hz and unbiased 10hz and then separately compared
responses between unbiased and biased 10hz. We did this for putative pyramidal
cells and labelled parvalbumin expressing cells.

3.1. Putative pyramidal cells.

3.1.1. 1Hz and 10Hz stimulus. We found that putative pyramidal cells in our pop-
ulation were strikingly heterogenous in their visual evoked responses. We begin
by focusing on responses to the 1Hz stimulus, where each presented grating was
preceded by a 900ms inter-stimulus interval consisting of a blank screen. Figure 2
depicts the stimulus-triggered average fluorescence and spiking responses of four
representative cells with different response properties. Figure 2a shows a partic-
ularly “well-behaved” cell, with a strong evoked response precisely time-locked to
stimulus onset. Cell b, however, shows a similarly temporally precie response but
in the opposite direction. We found several cells in our population that responded
like this, seemingly suppressed by visual stimulation. Other cells did not seem to
be at all responsive to oriented gratings, like that shown in figure 2c.

To better probe the underlying differences between such cells, we quantitatively
classified all the cells in our population by their response, using the difference in
activity before and after the stimulus (see methods, section 2.4.1) This resulted
in classifying 424 (45%) cells as responsive (e.g. cell a), 267 (29%) as suppressive
(cell b), and 243 (26%) as non-responsive (cell c). Indeed, as we show below,
each of these three classes of cells showed substantial differences in their response
dynamics and tuning.

We first looked at the temporal properties of the neural response by computing
the cross-correlation of each cell’s spike train with the stimulus timecourse4 at
different time lags. The time lag at which this cross-correlation is maximized
provides an estimate of the latency at which a given cell responds strongest to
visual stimulation. Figure 3 shows the relative frequency of these peak latencies in
each response class, within a range of 0 to 1 second after stimulus onset (discretized
by the 30Hz sampling rate of our imaging). It is readily apparent that whereas the
positive responding neurons consistently responded strongest at ∼ 120 − 150ms
after stimulus onset, the suppressive and non-responsive cells were much more
variable in the timing of their response.

4A series of 0’s with a 1 at each onset time
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Figure 2. Examples of differential responses in the putative pyramidal population.
Top panels show stimulus-triggered average of the fluorescence response, bottom panels
show the same for the inferred spike trains.

Some further subtleties can be appreciated by looking at the average peri-
stimulus histogram (PSTH) for each class (fig.4). While the response peaks of
the suppressive cells indeed tend to be noisy and variable, the timing of the peak
of suppression in these cells is highly precise, tightly coupled with the response
peak of the responsive cells. The class averages also reveal that the suppressive
cells tended to have much higher baseline activity than all the others, even dur-
ing the blank stimulus (gray line). In fact, the average spiking actvity over the
whole experiment timecourse was significantly higher in suppressive cells than re-
sponsive ones (two-sample t-test, p < .001), despite their substantially weaker
stimulus-evoked response.5

Another interesting observation about the suppressive cells is that they often
showed a rebound in activity overshooting the baseline. A representative example
is shown in figure 2d. 40 out of the 267 suppressive cells showed responses like this,
where the mean activity 330-660ms after stimulus onset was significantly higher

5Although it is important to remember here that spiking activity is not necessarily comparable
between different cells, see methods section 2.3.2.
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Figure 3. Relative frequency histogram of peak stimulus - spike-train cross-
correlation time lags. y-axis is the proportion of cells in the given class that had
their highest cross-correlation at the time lag indicated by the x-axis.

than mean acivity during the 330ms just prior to the stimulus (sign test, using
FDR correction for mutiple comparisons [7] at α = .05). Each stimulus in this
condition was presented for 100ms, meaning that these cells had a strong response
∼ 200− 400ms after stimulus offset. Indeed, such an OFF-type response [32] can
also be glimpsed in the mean PSTH (fig.4), where suppressive cells consistently
peaked at around 500ms. The responses at this peak tended to be unselective for
orientation, however, with a median global OSI of .05.

On the other hand, stimulus-evoked responses in the responsive classes were
highly orientation tuned, as can be glimpsed from the smooth color gradient in
the zoom-in of the response peak (fig.4, inset), color-coded by distance from pre-
ferred orientation (see figure caption for details). Indeed, the median OSI of re-
sponsive cell responses at the time of this peak (133ms) was .32. The differential
orientation selectivity of these three classes is made evident by cross-validating
tuning curves measured at each response latency for each cell class (fig.5). Using a
cross-validation measure of tuning stability (see methods, section 2.4.2), we found
that suppressive and non-responsive cell responses did not seem to differentiate
between orientations at any timepoint after stimulus onset, whereas responsive cell



16

-0.5 0 0.5 1 1.5 2

time relative to stimulus onset (s)

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

m
ea

n
P
S
T
H

responsive
suppressive
non-responsive

0.05 0.1 0.15 0.2

Figure 4. Mean PSTH for each class. Each trace of a given color was constructed
by taking the stimulus-triggered average spike train for each cell and then averaging
over all cells in each response class. This was done separately for each orientation,
yielding 12 traces for each class. Importantly, we grouped orientations by their dis-
tance from each cell’s preferred orientation (determined by the stimulus that produced
the highest mean response during the 333ms immediately succeeding stimulus onset).
For example, the responses to the 60◦ stimulus of a cell with orientation preference
15◦ were averaged together with the responses to the 150◦ simulus of a cell with ori-
entation preference 105◦ (i.e. +45◦). The inset provides a zoom-in of the peak of
the mean PSTH for the responsive class. Here, each trace is color coded by distance
from preferred orientation, where red indicates the preferred orientation (±0◦) and
blue indcates the orthogonal one (±90◦)

responses were highly selective at 100-150ms. Interestingly, however, the magni-
tude of suppression in suppressive cells was weakly orientation tuned, with median
OSI .156.

These sharp distinctions in response properties raise the question of whether we
are distinguishing between different types of neurons. Indeed, L2/3 of visual cortex
contains many types of inhibitory GABAergic as well as excitatory glutamatergic
cells. Current estimates [30, 33] put the proportion of each at about 80 and 20%,
respectively, with ∼ 30-40% of GABAergic cells being parvalbumin positive. [56]

6This was computed by taking the difference between mean response to a visual stimulus
and to the blank (averaged over 333ms period after stimulus onset). This gave us a measure
of the magnitude of suppression evoked by each orientation, for each cell. Taking only the
suppressive cells that were suppressed at all 12 orientations (208/267), we computed the OSI
on the magnitude of suppression at each orientation for each cell and took the median over this
population.
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Figure 5. Tuning stability at different response latencies. y-axis is mean tuning
stability computed across cells in each population, by cross-validating tuning curves
obtained from responses at each latency on the x-axis. Tuning stability was measured
as 1 - circular variance of the boostrapped distribution of preferred orientations, ob-
tained by iteratively sampling a random half of trials and reestimating the preferred
orientation (see methods, section 2.4.2

Because our transgenic mice have PV cells labelled with tdTomato, we can be sure
our population of putative pyramidal cells did not contain any, leaving a rough
estimate of (1 − .4) × .2)/(.8 + (1 − .4) × .2)) ≈ 13% of our putative pyramidal
cells likely to be non-PV interneurons. This is far below the 29% of cells we
classified as suppressive, indicating that the cells in this class are likely pyramidal
cells being inhibited. However, it is possible that the delayed OFF-type response
pattern observed (fig.2d, 4% of all putative pyramidal cells) could be that of a
certain subtype of interneuron. For example, it is known that somatostatin positive
interneurons have a particularly delayed and variable reponse latency relative to
pyramidal and parvalbumin cells [42, 41], which could explain the late peak in
activity.

Focusing on the responsive class of cells, we then asked if and how stimulus-
evoked responses changed in the 10Hz condition. In this condition, each stimulus
was preceded by 100ms of another stimulus, with no inter-stimulus interval (except,
effectively, when a blank stimulus was presented). Such a dynamic setting more
closely resembles the kind of constant stream of visual stimulation the visual cortex
would receive in nature, and can lead to altered single cell responses. [51, 49, 8] We
found a very simple pattern of changes, where cells typically saw reduced activity
in the higher temporal frequency setting. Furthermore, the cells with strongest
stimulus-evoked responses in the 1Hz condition saw the largest reduction (fig.6).
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Figure 6. Mean stimulus-evoked spiking responses in 1hz vs 10hz stimulus.
Stimulus-evoked response computed by taking the mean spiking response over the
333ms period immediately succeeding stimulus onset and averaging across stimulus
presentations. Linear fit shows a highly significant linear relationship (p < .001), with
slope significantly below 1 (t-test, p < .001). Inset shows histogram of difference
between the two conditions, only for those cells with statistically significant changes
(two-sample t-test, unequal variance, using FDR correction for multiple comparisons
[7] with α = .05). The median of these differences was significantly below 0 (sign test,
p < .01), indicating that cells that saw significant differences in their responses to the
two stimulus sequences on average produced weaker resposnes in the 10Hz stimulus.

Such changes are evocative of homeostatic response gain control. An example of
this is plotted in fig.7a. That said, we observed large variability in how responses
differed between the two conditions (fig.7). Indeed, some cells saw an increase
in activity (fig.7b), and others were completely silenced (fig.7c). Furthermore,
median time-averaged spiking activity in the population was significantly higher
in the 10Hz than in the 1Hz condition (sign test, p < .001), suggesting that
homeostatic mechanisms in fact may not be at play here.

Did these changes in response translate to changes in tuning? If so, this would
have important implications for the population coding of orientation, which has
previously been investigated in dynamic high temporal frequency stimuli such as
our 10Hz stimulus, but in anesthetized cat. [8] We fit tuning curves to each cell’s
responses at 133ms after stimulus onset to estimate their preferred orientations,
and computed a cross-validation measure of the stability of these tuning curves
(see methods, section 2.4.2). Restricting our analysis to only those cells with sta-
ble orientation tuning in the 10Hz condition7 (ψ > 0.9, see methods), we found

7We computed tuning stability from responses in the 10Hz condition rather than in the 1Hz
condition because of the greater number of trials.
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Figure 7. Individual examples of differences in stimulus-evoked response between
1hz and 10Hz conditions. Left panels show stimulus-triggered mean spike trains during
the 1Hz stimulus, right panels show the same for the 10Hz stimulus. Different colored
traces represent responses to different orientations, where red corresponds to 90◦ and
blue is 0◦. Row (a) shows classic response gain control type of modulation. Rows (b)
and (c) show cells that underwent different changes.

that cells largely maintained their tuning, with only slight (10-20◦) deviations of
the preferred orientation (fig.8, top left panel). However, global OSI and ampli-
tude were significantly reduced in the 10Hz stimulus (sign test, p < .05, .001,
respsectively). That said, we again saw great variability in 1Hz vs 10Hz tuning
differences, with some cells seeing a significant increase in tuning curve amplitude
(fig.9c). A few representative examples are plotted in figure 9.

3.1.2. Unbiased vs biased stimulus. In comparing responses in the 10Hz unbiased
and biased stimulus conditions we looked only at cells identified as responsive in the
1Hz stimulus and with a tuning stability ψ > .90 in the 10Hz unbiased stimulus, to
constrain our analysis to cells that we were confident were orientation tuned. This
resulted in a total of 270 cells, with median global OSI 0.39 and HWHH 20.2◦,
in line with previous reports [53, 31, 67, 3, 36] regarding orientation tuning in
mouse visual cortex (although substantially lower than that found in [61]). Note,
however, that this population consists of about 29% of all the putative pyramidal
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Figure 8. Differences in tuning properties between 1hz and 10Hz conditions. Only
showing cells judged as having stable tuning (see text). Color designates our measure
of tuning stability ψ (see section 2.4.2). Red crosses designate means.

cells we recorded. The large number of untuned cells we found may relate to the
fact that we recorded from awake mice, as opposed to all the studies cited (except
[53], who found largely unchanged tuning in awake mouse V1).

A few examples of the kinds of response differences observed in the biased con-
dition are shown in figure 10. In general, the strength of the evoked response was
strongly reduced in the biased stimulus, with tuning curve amplitudes reduced
by 20-40%. To look at tuning changes across the population, we focused on the
well-tuned cells with global OSI > 0.25, (n = 201) and looked to see if classical
adaptation effects were replicated in our experiment. Validating our approach,
we found that responses to the adaptor stimulus (90◦) were significantly lower in
the biased condition - the hallmark of adaptation (fig.11A; sign test, p < .001).
This can be seen as well in the cell-specific reduction in tuning curve amplitude,
strongest for cells tuned to orientations near the adaptor orientation (fig.11B). The
magnitude of this reduction at its strongest (40%) is consistent with that found
in anesthetized cats. [9] However, our results did not replicate previous findings
regarding adaptation-induced shifts in preferred orientation in ansthetized cat V1.
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Figure 9. Individual examples of tuning curves in 1Hz (red) and 10Hz (blue) con-
ditions. These cells were selected based on their high global OSI across both conditions
and on their differential tuning differences between conditions. Error bars designate
SEM across stimulus presentations and dotted lines are mean response to the blank
stimulus, with shaded area showing SEM in the 1Hz condition. The same follows for
all subsequently shown tuning curve plots.

[19, 9] We found that cells tuned to orientations far from the adaptor suffered
tuning shifts of the same magnitude as those tuned to orientations close to the
adaptor, and there was no systematicity in the direction of these shifts (fig.11C).
Looking at the population tuning curves (obtained by averaging over cells with
similar preferred orientations, see figure caption for details), the significant effect
on tuning curve amplitude reduction and null effect on preferred orientation be-
come obvious (contrast with figures 1c,d in [9]). The overall effect of these tuning
changes did not lead to a homeostatic equalization of time-averaged responses
(fig.13), as opposed to that seen in anesthetized cats. [9]

3.2. Parvalbumin cell responses.

3.2.1. 1Hz and 10Hz stimulus. Our whole recorded cell population contained 78
identified parvalbumin-positive (PV) cells. We found that responses in this popula-
tion were by and large quite similar to those of the putative pyramidal population.
Indeed, we encountered the same three types of responses in the 1Hz stimulus
(fig.14), leading us to classify 28 (36%) cells as responsive (fig.14a), 40 (51%) as
suppressive (fig.14b), and 10 (13%) as non-responsive (fig.14c). 12 suppressive
cells showed significant OFF-type responses (fig.14d). The finding that only 36%
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Figure 10. Examples of differential responses in the biased and unbiased stimulus
conditions. First two panels in each row plot stimulus-triggered mean fluorescence
traces in the unbiased (left) and biased (middle) stimulus conditions. Mean activity
prior to stimulus onset is subtracted from each trace (∆ F) to facilitate comparison
of the evoked response. Rightmost panel in each row shows resulting tuning curves
in unbiased (red) and biased (blue) conditions. Note the stability of the preferred
orientation - orientation tuning shifts were not typically observed. Adaptor orientation
was 90◦, so a noticeable shift right would have been expected in the top cell, from
previous findings [19, 9]. Tuning curves plotted as in fig.9

of PV cells reponded strongly to visual stimulation is surprising in light of previous
reports yielding proportions as high as 70% in anesthetized mouse V1. [36] Again,
this could be a result of our mice being awake during recording.

In this case, however, we found that very few cells were tuned for orientation.
Performing the same analysis as in figure 5 above, we found that PV cell activity
did not seem to be selective for orientation at any response latency (fig.15). The
mean tuning stability was maximal for responsive cells at 133ms after stimulus
onset, just like for the responsive putative pyramidal cells, but with ψ = 0.6,
∼20% lower. Importantly, a ψ value of 0.6 corresponds to highly variable tuning
across stimulus presentations, approximately equivalent to a normally distributed
preferred orientation with standard deviation of 58◦ (see methods, section 2.4.2).
This implies that the 95% confidence interval of the preferred orientation of a
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Figure 11. Changes in tuning properties in biased stimulus condition. Color of
each point denotes OSI. Only cells with stable tuning (ψ > 0.90) and high OSI (global
OSI > 0.25) are included (n = 201). Panel A plots mean responses to the adapator
stimulus (90◦) in each condition. Dark red cross denotes median across cells. Panel
B plots the biased to unbiased condition ratio of tuning amplitudes. Dark red bars
denote bin medians and SEM. Cells were binned into 15◦ bins by distance of preferred
orientation from adaptor orientation (θpref − θadapt), same bins as in fig.12. Panel
C depicts changes in preferred orientation between unbiased and biased conditions.
Again, dark red data points denote bin medians and SEM, here using 10◦ bins.

cell with ψ = 0.6 is about 116◦ wide. We found that only 12 PV cells (15% of
PV population) satisfied our criterion for sufficiently stable tuning (ψ > .90 in the
10Hz condition), and these had a median OSI of .12 and median half-width at half-
height of 32.0. Four representative cell tuning curves are plotted in fig.16). This
is in line with the .1 to .26 range found in previous studies in anesthetized mouse
V1 [31, 36, 3] (although substantially lower than others [61]). The population of
PV cells as a whole, however, had a substantially lower median OSI of .08.

An interesting difference between the responsive PV cells and the responsive
putative pyramidal cells was that the 10Hz stimulus elicited an increase in activity
in the PV cells, rather than a decrease (fig.17, vs fig.6). These changes seemed
to largely consist of an increase in baseline spiking activity, leading to a reduction
of the amplitude of the stimulus-evoked response. Two representative examples
are shown in figure 18. Indeed, the time-averaged spiking activity for this group
of cells was significantly higher in the 10Hz condition than in the 1Hz (sign test,
p < .001, n = 28), as was the response to the blank stimulus (dotted lines in fig.16),
suggesting that spontaneous activity was much higher in this condition. This is
consistent with the hypothesis that PV cell activity simply reflects the average
activity of the local pyramidal population [31, 36], as many pyramidal cells would
have been actively responding to the high abundance and frequency of stimuli
in that condition. This would also explain our observation that responsive PV
cell OSIs were significantly lower in the 10Hz condition (sign test, p < .001, n =
28), and preferred orientations seemed to vary between the two conditions (see
fig.16 for a few examples). In summary, it seems that PV cells in the responsive
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Figure 12. Mean population tuning curves in unbiased and biased stimulus con-
ditions. Cells were binned into 15◦ bins by their preferred orientations in the unbiased
stimulus condition, and their responses to each orientation were then averaged within
each bin to produce each of the plotted population tuning curves. Population tuning
curves were then scaled by their maximum in the unbiased condition. Color coded by
bin center, with red = 90◦ (adaptor orientation) and blue = 0◦. Shaded vertical bars
indicate space between bin centers, such that each bin center lies at the border between
two bars with different shading. These make it evident that, in the biased stimulus
condition, the population tuning curves do not stray from their preferred orientation
bin centers - the classic tuning curve repulsion effect of adaptation [19, 9] is not repli-

cated.

class unselectively increase their spontaneous activity when presented with higher
frequency stimuli.

3.2.2. Unbiased vs biased stimulus. As we did with the putative pyramidal cells,
we restricted our analysis here to responsive PV cells with ψ > 0.9 (n = 12).
Some examples of the kinds of response changes induced by the biased stimulus
are shown in figure 19. Responses did not seem to modulate in the same manner
as in the putative pyramidal cell population. The amplitude of the stimulus-
evoked fluorescence response remained largely unchanged, and responses to the
adaptor orientation were, on average, maintained across both conditions (sign
test, p = .77, n = 12). Looking at individual tuning curves of the 12 tuned PV
cells (fig.20) reveals the lack of orientation tuning of these cells and the variability
in tuning changes between the unbiased and biased stimulus conditions. Overall,
PV cells did not seem to be orientation tuned, leading to what looks like largely
noise in the tuning differences between the unbiased and biased stimulus.
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Figure 13. Mean time-averaged activity of each preferred orientation bin. Spiking
activity over the whole timecourse in each condition (unbaised, biased) was averaged
for each cell, and then means were computed for each bin from figure 12. The mean
for each bin was then scaled to that in the unbiased condition. Red line indicates bin
means in biased condition, with error bars showing SEM for each bin.

3.3. Noise correlations between different response classes. To furhter in-
vestigate the possibility that the different response classes we observed formed
differential subtypes of neurons, we computed noise correlations between pairs
of cells in each class (Pyr/PV, responsive/suppressive/OFF-type/non-responsive).
Different patterns of noise correlations for each class would suggest differential
connectivity patterns, providing a distinction between them beyond the their re-
sponses that we classified them by.

Due to time constraints, we were not able to fully delve into this analysis, but
I briefly mention two points. Firstly, parvalbumin-positive cells had substantially
more and larger noise correlations between each other than did putative pyramidal
cells (the yellowish bottom section of the triangle in each matrix), replicating
previous results in anesthetized mouse V1. [31] Secondly, putative pyramidal cells
with OFF-type responses (oPC) had significantly larger noise correlations with
PV cells than any other class of putative pyramidal cell, particularly with PV cells
with likewise OFF-type responses. It is difficult to exactly interpret this result,
but it indeed agrees with the idea that these cells comprised a subtype of cell
distinct from the rest of the putative pyramidal population.

The above results were computed from responses to the 1Hz stimulus. This
correlation structure remained qualitatively similar across the 1Hz, 10Hz, and 10Hz
biased stimulus conditions, with somewhat more and stronger noise correlations
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Figure 14. Examples of PV cell responses in the 1Hz stimulus and mean PSTHs
for each response class. Analysis performed exactly as in figures 2 and 4 above.

in the 10Hz stimuli than in the 1Hz stimulus. Unfortunately we did not have time
to look into this carefully.

4. Experiment 2 Results

Due to lack of time, we were not able to apply the same battery of analyses to
our somatostatin cell labelled recordings, but I will briefly report two findings.

Firstly, we found that somatostatin cells are highly direction tuned, with a me-
dian global DSI8 of .26, compared to .25 for putative pyramidal cells. Indeed the
distribution of global DSI across each of the populations were statistically indistin-
guishable (two-sample Kolmogorov-Smirnov goodness-of-fit test, p = .12, fig.22).
We were not able to classify different responses within each of these populations so
we can’t say at this moment whether there were underyling subpopulations with
differntially lower or higher levels of tuning. Having collapsed across all response
classes, this number is still significantly higher than the .18 median OSI of PV

8This was computed exactly as global OSI, but adapted for 360◦ (i.e. the same equation for
global OSI in section 2.4.2 but without multiplying θk by 2)
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Figure 15. PV cell tuning stability at different response latencies. Analaysis and
plot exactly as in fig.5

cells in the 1Hz condition of experiment 1. That said, we did not get to quanti-
fying tuning stability of any cells in this experiment, leaving open the possibility
that some of the highly tuned SOM cells were simply showing spurious selective
responses.

Interestingly, by comparing responses in the control and adaptation conditions,
we found that somatostatin-expressing and putative pyramidal cells both showed
the hallmarks of adapatation. Narrowing down our population to only those with
global DSI > 0.25, we found that responses to the adaptor orientation (180◦)
were significantly lower in the adaptor condition than in the control condition
(see methods, section 2.2), for both putative pyramidal cells (sign test, p < .001)
and SOM cells (sign test, p < .05). In line with previous findings in A1 [50],
this suggests that SOM cells in awake mouse V1 undergo adaptation effects alike
those seen in pyramidal cells. However, the effecs were markedly weaker for SOM
cells, with a mean difference between conditions of -.07, versus -.14 in the putative
pyramidal cells.
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Figure 16. Individual PV cell tuning curves in 1Hz stimulus and 10Hz stimulus.
Cells were selected based on satisfying our criterion for tuning stability (ψ > 0.9 in the
10Hz condition) and on having high gobal OSI relative to the rest of the population.
Red indicates responses in the 1Hz stimulus, blue indicates 10Hz stimulus. Almost
all 12 PV cells with stable tuning showed this pattern of increased activity across the
board in the 10Hz stimulus, including responses to the blank stimulus (dotted lines).
Most also saw shifts in preferred orientation, as in cells (b), (c), and (d).

5. Discussion

One of the main novelties of our experiment was that we measured orientation
tuning in the visual cortex of awake mice. Most previous studies regarding orien-
tation tuning in V1 have focused on experiments with anesthetized animals, where
neural responses may be affected by the anaesthetic. We found that responses were
extremely diverse (figs.2 & 14), with a minority of cells being orientation tuned.
Specifically, we found that 29% of our putative pyramidal cell population and 15%
of our PV cell population showed stable orientation tuning. While V1 cells may
be responding solely to visual input when in the ansethetized state, our results
suggest that recurrent cortical activity arising from other ongoing processes in the
awake mouse may be influencing their responses in the awake state.

A related outstanding question from our results is the origins of the different
types of responses observed. Particularly, we found that a large proportion of both
parvalbumin-expressing interneurons (51%) and putative pyramidal cells (29%)
were suppressed by visual stimulation (fig.2,14 b). The origin of this suppression
is not clarified by the analyses performed here, but our finding that the magnitude
of the suppression was mildly orientation tuned suggests that it may arise from
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Figure 17. Mean stimulus-evoked spiking responses in 1hz vs 10hz stimulus. Anal-
ysis performed just as in fig.6. Histogram shows cells with statistically significant
changes (24/28), median of this group of cells is significantly greater than 0 (sign test,
p < .05, n = 24).

recurrent cortical inputs. Again, this may be the result of cortical processing
ongoing in the awake mouse that may not be present in the anesthetized state.

A second interesting type of response we encountered was a delayed response
following suppression. These responses were not orientation tuned but were rel-
atively time-locked to stimulus onset/offset. Furthermore, cells with this type of
response showed a distinct noise correlation pattern (fig.21), suggesting they were
indeed a separate subpopulation of cells. One plausible hypothesis might be that
these are a different type of cell from the rest. However, the fact that this type of
response was found in both labelled PV cells as well as putative pyramidal cells
suggests that, alternatively, it might be a response pattern arising from differen-
tial cortical and/or feed-forward interactions, rather than the result of differential
physiological properties of a distinct type of neuron.

In seeking to answer questions about contextual processing in visual cortex,
we also investigated responses in several different temporal contexts. Firstly, we
looked to see how responses were modulated by an increase in stimulus frequency.
Unsurprisingly, we found that putative pyramidal cells largely maintained their
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Figure 18. Individual examples of differences in PV cell stimulus-evoked response
between 1hz and 10Hz conditions. These were picked based on showing large and
significant differences between the two conditions. Most responsive PV cells showed
differences like that seen in cell (a). However, a significant number of cells showed
differences similar to cell (b), where baseline activity was largely unchanged and the
evoked response was completely eliminated.

orientation tuning properties, maintaining their population code. [8] However, PV
cells showed a wide variety of tuning changes, supporting the idea that thay are
laregly untuned for orientation. [31, 36, 67]

We also found classic signatures of response gain control in the putative pyra-
midal cell population, whereby response strength was diminished when responses
became more frequent, as in the 10Hz stimulus. Furthermore, neurons with the
strongest responses in the 1Hz stimulus saw the largest reductions in their re-
sponses. Interestingly, PV cells showed the opposite pattern: their evoked re-
sponses were stronger in the 10Hz stimulus than in the 1Hz stimulus. These
complementary differences could potentially be explained by increased pyramidal
cell firing from the more frequent visual stimulation during the 10Hz stimulus trig-
gering an increase in PV cell firing. Via the resultive IPSPs in their pyramidal
cell targets, this would then lead to attenuation of pyramidal cell responses. This
explanation is in line with claims that PV cells implement response gain control in
V1. [3, 70] However, it is worth noting here that synapses from pyramidal cells to
PV cells have been shown to be depressing [5, 60], which could interefere with this
putative causal mechanism. Alternatively, the reduction in putative pyramidal cell
responses may simply be the result of spike-frequency adaptation [43, 59] or other
short-term adaptation effects elicited by presenting stimuli in quick succession with
no inter-stimulus interval. [51, 49]
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Figure 19. Individual PV cell stimulus-trigerred responses and tuning curves in
the unbiased and biased conditions. Figure organized exactly as fig.10. Note that,
in contrast to the putative pyramidal cell population, amplitude of PV cell evoked
fluorescence responses tended to remain unchanged between the two conditions. Fur-
themore, tuning curve differences between the two conditions had little systematicity,
with a wide mix of vertical shifts (in activity) and horizontal shifts (in preferred ori-

entation).

Although not reported in the text above, we also found that 70% of all re-
sponsive putative pyramidal - responsive PV cell pairs had statistically significant
noise correlations (p < .05, FDR correction for multiple comparisons [7]) in the
10Hz condition, although with a relatively low mean Pearson correlation of .012.
Importantly, these two numbers dropped to 32% and .008 in the 1Hz condition,
suggesting that the higher stimulus frequency elicited more pyramidal-PV cell
coactivation. This possibility supports the hypothesis that stronger PV cell activ-
ity is recruited in the 10Hz condition by the more frequent visual stimulation of
pyramidal cells, possibly leading to response gain control. Further analyses in this
vein may better clarify the cortical dynamics underlying the observed differences
in responses to stimuli with different temporal frequencies.

A more behaviorally relevant type of contextual modulation is that elicited by
changes in the statistics of the stimuli. This is what we tested with the biased and
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Figure 20. Tuning curves tuned PV cells. Tuning curves plotted for all 12 PV
cells satisfying our criterion for stable tuning. As in fig.12, tuning curves were scaled to
the peak in the unbiased condition. Cells showed a wide variety of differences between
the two conditions. Note the cell with preferred orientation closest to the adaptor
orientation (the red curve), which saw an increase in responses to all orientations.

unbiased stimulus conditions. We replicated the classical finding that V1 pyra-
midal cell responses to an adaptor stimulus are significantly reduced (fig.11A),
leading to larger reduction of the tuning curve amplitude of cells tuned to ori-
entations near that of the adaptor stimulus (fig.11B). These results suggest that
adaptation effects are generated cortically, as upstream lateral geniculate nucleus
neurons are not orientation tuned and thus shouldn’t be able to elicit orientation-
specific adaptation effects. [17]

However, we did not replicate the classical tuning curve repulsion effects ob-
served in anesthetized cats. [19, 9] It is hard to see how anesthesia would lead to
such an effect, so it is more likely that these effects may arise from cortical inter-
actions inherent to the orientation column organization found in cat V1. Mouse
V1, on the other hand, has a “salt and pepper” organization [29] such that the
distance between any two pyramidal cells has no relationship to the difference in
their preferred orientations. However, pyramidal cells in mouse V1 nonetheless
preferentially connect to other pyramidal cells with similar orientation preference.
The crucial difference between cat and mouse V1 may thus be that interneurons,
which make dense local connections [22], will have post-synaptic targets with more
similar orientation tuning in cat V1 than in mouse V1, since in cat V1 the locality
constraint implies connnections onto cells within the same cortical column. In-
deed, modelling work shows that if inhibitory neuron responses are slightly tuned
(which would arise naturally in cat V1 from dense inputs within an orientation
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Figure 21. Noise correlations between pairs of neurons of different classes. Left
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in each combination of response classes, computed by Pearson correlation between
each cell’s responses across stimulus presentations (averaged over 333ms after stimulus
onset) and correcting for multiple comparisons with FDR correction [7] at α = .05.
Right panel shows the mean Pearson correlation coefficient between all cell pairs in
each combination of response classes. These matrices would usually be symmetric, so
we simply set all values below the diagonal to 0. PC = putative pyramidal cell, PV =
parvalbumin-positive cell. r = responsive (e.g. fig.2/14a), s = suppressive (fig.2/14b),
o = OFF-type (fig.2/14d), and n = non-responsive (fig.2/14c).
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statin populations. Labelled somatostatin-expressing interneurons showed equally high
direction tuning as putative pyramidal cells, with statistically indistinguishable distri-
butions (two-sample Kolmogorov-Smirnov goodness-of-fit test, p = .12).
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Figure 23. Individual cell mean responses to adaptor orientation in control con-
dition and adaptor condition. Black line is the unity line - note the different scales on
the x- and y- axes.

column) and are reduced by adaptation (or, alternatively, by depressing synapses
from and/or onto PV cells [24, 5]), repulsive tuning curve shifts may arise from
the resulting recurrent dynamics. [68]

In mouse visual cortex, however, we found no reduction in parvalbumin-expressing
interneuron responses by adaptation and no repulsive tuning curve effects. In fact,
our results our explained simply by single cell spike-frequency adaptation [43, 59],
leading to response reductions proportional to the difference between cells’ pre-
ferred orientations and the adaptor orientation. In principle, this simple expla-
nation should account for our population-level adaptation effects (fig.12). Future
modeling work should confirm this.

As already mentioned, we found PV cells not to show any adaptation effects,
their responses to the adaptor stimulus unaffected by its increased frequency in the
biased stimulus condition. This contrasts previous findings in anesthetized mouse
A1, where stimulus-specific adaptation is observed in PV cells. [50] Our data are
consistent with PV cells being largely untuned for orientation, with only 15% of
our whole population showing stable tuning curves. PV cells in A1, on the other
hand, may be more tuned to frequency. Overall, our results seem to support the
hypothesis that PV cell activity in V1 simply reflects average local activity via
unselective excitatory pyramidal inputs. [31, 36]
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Interestingly, however, we did find that somatostatin-expressing interneurons
were strongly direction tuned and showed the hallmark effects of adaptation. SOMs
have been shown to be important for stimulus-specific adaptation in A1 [50] and
seem to undergo stimulus-specific adaptation themselves. [50] Indeed, SOMs are
well-suited to drive adaptation in pyramidal cells by via their facilitating synapses.
[5, 50] It thus remains an open possibility that adaptation in mouse V1 pyramidal
cells is driven by cortical connections from somatostatin-expressing interneurons.
One could imagine a simple mechanism whereby highly tuned SOM cells selec-
tively inhibit similarly tuned pyramidal cells. Under a stimulus context heavily
favoring one orientation or direction, those SOM cells tuned to the adaptor ori-
entation/direction would be preferentially activated, thus leading to the selective
inhibition of pyramidal cells with orientation preferences also near the adaptor.
Recent evidence [70], however, suggests that SOM cells do not selectively inhibit
similarly tuned pyramidal cells. Regardless, adaptation in SOM cells could not
be mediated by SOM cell inhibition, since SOM cells do not typically inhibit each
other. [56] It is thus likely that spike-frequency adaptation does play a prominent
role in adaptation effects in awake mouse visual cortex.

To summarize, contextual processing in mouse V1 seems to be mediated by sin-
gle cell adapatation effects, rather than inhibitory cortical circuitry. The results
presented here, however, do not settle the question. We emphasize that future
modelling work may be able to elucidate cortical contributions to the kinds of
dynamics we observed. These models should be constrained by the fact that adap-
tation effects seem to involve modulation of the activity, and not the selectivity, of
cells with stimulus selectivity matching the context. Understanding the responses
and dynamics described above within a framework of temporal contextual process-
ing may lead to a better understanding of cortical circuitry and computation.
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Flogel, T. D. Functional specificity of local synaptic connections in neocortical networks.
Nature 473, 7345 (2011), 87–91.

[38] Kohn, A. Visual adaptation: physiology, mechanisms, and functional benefits. Journal of
neurophysiology 97, 5 (2007), 3155–3164.



38

[39] Kohn, A., and Movshon, J. A. Adaptation changes the direction tuning of macaque mt
neurons. Nature neuroscience 7, 7 (2004), 764–772.

[40] Lee, S.-H., Kwan, A. C., Zhang, S., Phoumthipphavong, V., Flannery, J. G.,
Masmanidis, S. C., Taniguchi, H., Huang, Z. J., Zhang, F., Boyden, E. S., et al.
Activation of specific interneurons improves v1 feature selectivity and visual perception.
Nature 488, 7411 (2012), 379–383.

[41] Li, L.-y., Xiong, X. R., Ibrahim, L. A., Yuan, W., Tao, H. W., and Zhang, L. I.
Differential receptive field properties of parvalbumin and somatostatin inhibitory neurons
in mouse auditory cortex. Cerebral Cortex (2014), bht417.

[42] Ma, W.-p., Liu, B.-h., Li, Y.-t., Huang, Z. J., Zhang, L. I., and Tao, H. W.
Visual representations by cortical somatostatin inhibitory neuronsselective but with weak
and delayed responses. The Journal of Neuroscience 30, 43 (2010), 14371–14379.

[43] Madison, D., and Nicoll, R. Control of the repetitive discharge of rat ca 1 pyramidal
neurones in vitro. The Journal of Physiology 354 (1984), 319.

[44] Mao, R., Schummers, J., Knoblich, U., Lacey, C. J., Van Wart, A., Cobos, I.,
Kim, C., Huguenard, J. R., Rubenstein, J. L., and Sur, M. Influence of a subtype of
inhibitory interneuron on stimulus-specific responses in visual cortex. Cerebral Cortex 22, 3
(2012), 493–508.

[45] Maravall, M., Petersen, R. S., Fairhall, A. L., Arabzadeh, E., and Diamond,
M. E. Shifts in coding properties and maintenance of information transmission during adap-
tation in barrel cortex. PLoS Biol 5, 2 (2007), e19.

[46] Marcus, G., Marblestone, A., and Dean, T. The atoms of neural computation. Sci-
ence 346, 6209 (2014), 551–552.

[47] Marr, D. Vision.
[48] Movshon, J. A., and Lennie, P. Pattern-selective adaptation in visual cortical neurones.

Nature (1979).
[49] Müller, J. R., Metha, A. B., Krauskopf, J., and Lennie, P. Rapid adaptation in

visual cortex to the structure of images. Science 285, 5432 (1999), 1405–1408.
[50] Natan, R. G., Briguglio, J. J., Mwilambwe-Tshilobo, L., Jones, S. I., Aizenberg,

M., Goldberg, E. M., and Geffen, M. N. Complementary control of sensory adaptation
by two types of cortical interneurons. Elife 4 (2015), e09868.

[51] Nelson, S. B. Temporal interactions in the cat visual system. i. orientation-selective sup-
pression in the visual cortex. The Journal of neuroscience 11, 2 (1991), 344–356.

[52] Niell, C. M., and Stryker, M. P. Highly selective receptive fields in mouse visual cortex.
The Journal of Neuroscience 28, 30 (2008), 7520–7536.

[53] Niell, C. M., and Stryker, M. P. Modulation of visual responses by behavioral state
in mouse visual cortex. Neuron 65, 4 (2010), 472–479.
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