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Configuration Effects in SWM
Is the probe square in a previously occupied position?

Jiang, Olson, & Chun (2000)
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Why are subjects
making errors?

If we look closely
at the proportion
of “change”

responses, we find

that a significant
amount of the
error can be

accounted for by a

systematic bias
depending on
condition
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Configuration effects in SWM can be explained by the algorithms

it uses, with no need to impose constraints on its contents

Prellmlnary Modeling: Single Probe Model

Model-Human Responses Comparison Algorithm
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**Explams the smgle probe condition but fails to capture bias**
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Modeling the Bias:
Borrowing from Apparent Motion

Two ways of implementing this principle:

Dawson (1991)

Constraining Constraining
Correspondences Bavesian Prior

__________________________________________________________________________________________________________________________________________

Bayesian Variable  This model is a generative Bayesian
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