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Summary

Although interspecific kleptoparasitism is widespread, theoretical models of klep-
toparasitism focus on the intraspecific case. In this project a game-theoretic model of
the behavioural decisions of a host species exploited by a kleptoparasite is developed.
The case where the host species can choose to fight to retain its food or immediately
surrender its food is considered and the model is used to determine the optimal host
strategy for different ecological conditions. This model is a modification of published
intraspecific models, in particular that of Ruxton & Moody (1997). We extend our
basic model in various ways to make it more biologically plausible. One such exten-
sion is to include parasite strategies and then find the optimal host strategy when
the parasite can choose to kleptoparasitise or not. We find the optimal strategies for
different combinations of parameter values.
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Chapter 1

Introduction

Kleptoparasitism is a foraging tactic where an individual (the kleptoparasite) at-
tempts to steal food which has been discovered and captured by another individual
(the host). Kleptoparasitism occurs obligatorily or opportunistically throughout the
animal kingdom in both intra- and interspecific interactions (Ridley & Child, 2009).
There are several benefits associated with kleptoparasitism; including a greater food
intake rate and acquiring otherwise unobtainable food items, and several costs; in-
cluding the time and energy spent trying to steal food and the risk of a physical
injury. In this chapter I will mention some of the studies which have been made
into kleptoparasitism, I will then discuss some of the influences on the evolution of
kleptoparasitism and finally I will review some of the work which has been done on
modelling intraspecific kleptoparasitism.

1.1 Studies of Kleptoparasitism in Birds

Observations of kleptoparasitism have been reported in many species (Iyengar, 2008)
and for some of these there have been detailed studies of the costs and benefits asso-
ciated with using this foraging technique (Luther & Broom, 2004). Kleptoparasitism
is particularly well studied in avian species and in particular seabirds (Brochman &
Barnard, 1979; Le Corre & Jouventin, 1997). Seabird species such as skuas (Sterco-
rariidae) and sheathbills (Chionididae) are considered to be obligate kleptoparasites,
and species such as frigatebirds (Fregatidae), gulls and terns may practise kleptopar-
asitism opportunistically (Shealer et al, 2004). Such cost/benefit studies have been
made (amongst others) into the fitness benefits of opportunistic kleptoparasitism
(e.g. Shealer et al, 2004); the impact of kleptoparasitism on the host species and its
avoidance responses (e.g. Le Corre & Jouventin, 1997 and Vickery & Brooke, 1994);
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the trade-off between looking for kleptoparasitic opportunities and looking for food
(e.g. Smith et al, 2002); tactics to reduce the costs of kleptoparasitism (e.g. Ridley
& Child, 2009); and also the reasons why kleptoparasitism occurs in some species,
or sometimes in some individuals of a species, but it is not used by every individual
(Morand-Ferron et al, 2007).

1.1.1 Sterna dougallii

Habitual food stealing by individual parent roseate terns (Sterna dougallii) is
associated with enhanced fitness, which is measured by the growth and survival to
fledging in their offspring. In a study of a colony site by Shealer et al (2004) it
was found that the roseate terns which regularly stole food from other terns to feed
their own chicks were expected to produce about 45% more fledglings. Despite this,
kleptoparasitism was only practised by a small number of terns in the colony. It
was suggested that some mechanism (e.g. a high cost or a phenotypic constraint)
prevents most individuals from stealing food.

1.1.2 Frigatebirds

Red-footed boobies (Sula sula) have been able to develop avoidance responses
to kleptoparasitic attacks. Le Corre & Jouventin (1997) studied the behaviour of
red-footed boobies in an environment where they were at risk of kleptoparasitism by
frigatebirds. They compared this behaviour to that demonstrated in an area where
the risk of kleptoparasitic attack was much lower. Their results showed that in the
risky environment 1% of the boobies lost their food by kleptoparasitism, and it was
observed that there was less chance of frigatebirds chasing boobies which flew in a
group >50m high or after dusk. It was also found that birds were more nocturnal and
better able to resist chases in the risky environment than in the safer one, suggesting
that they have developed avoidance responses.

Vickery & Brooke (1994) evaluated the importance of kleptoparasitic behaviour
towards Masked boobies (Sula dactylatra) in satisfying the energy needs of the frigate-
bird. They found that the frequency of kleptoparasitic attacks increased towards
dusk, which is the time that the masked boobies return to the roost site. Similarly
to Le Corre & Jouventin (1997) they found that there was more likelihood that a
masked booby returning to the roost at a low altitude (<30m) or by itself would
be chased. They found that approximately 40% of daily energy expenditure of an
individual frigatebird may be secured through kleptoparasitism, but frigatebirds on
average met under 5% of their daily energy demands by this feeding method. The
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avoidance responses of the masked boobies could mean that the kleptoparasitic attack
was too costly (e.g. by chases launched on high or distant targets). It was suggested
that frigatebirds could assess the profitability of targets carrying food because the
presence of food could affect flight. In this case frigatebirds could chase for a fixed
time and then give up if no food was obtained, or employ a strategy where they
would chase for a fixed time to assess profitability and then decide whether it was
worth pursuing the chase or not.

1.1.3 Dicrurus adsimilis

Ridley & Child (2009) show that the kleptoparasitic fork-tailed drongo (Dicru-
rus adsimilis) specifically targets juveniles when following pied babblers (Turdoides
bicolour). Drongos give alarm calls if they see a predator, when they do this pied
babblers become startled and as a result often drop any food they are carrying. Dron-
gos can exploit this behaviour by giving false alarm calls and then stealing dropped
food items. Drongos have been able to increase their efficiency of kleptoparasitism by
differentiating between different ages of babblers and then targeting juveniles (who
have a longer handling time and respond to alarm calls by moving to cover rather
than looking up). Drongos benefit from obtaining food by kleptoparasitism because
it gives them access to subterranean foods which have a higher energy content than
aerial prey, and provides them with an alternative foraging technique (Ridley et al,
2007). Thus they suggest that it is important that drongos do not over exploit the
babblers to the extent that they become tolerant of false alarm calls.

1.2 Influences on the Evolution of Interspecific Klep-

toparasitism

Hence, we have seen that within kleptoparasitic species there is evidence of a trade-
off of whether to steal food or not, and the associated costs and benefits have been
studied. However the reasons why food stealing occurs in some taxa but not in
others is still unclear. The main hypotheses which could influence the evolution of
interspecific kleptoparasitism are summarised below; these were discussed and tested
by Morand-Ferron et al (2007) who based their theories on field studies of interspecific
kleptoparasitic birds.

1. The brawn hypothesis; kleptoparasites should be characterised by a larger body
mass, because larger means more chance of winning fights and reduces the
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chances of the host aggressively defending its prey. Also, larger eyes means an
increased detection of kleptoparasitic opportunities.

2. The brain hypothesis; kleptoparasites should have larger brain sizes because
this means higher cognitive abilities which allows for better tactics (these in-
clude selection of appropriate hosts, attack from suitable angles and distance,
using appropriate timing, predicting the behaviour of the host so as to avoid
detection).

3. The vertebrate prey hypothesis; vertebrate prey are often of high energetic value
and require long handling times, factors which increase the probability and/or
profitability of kleptoparasitic attacks. Thus birds including vertebrate prey in
their diet might encounter profitable kleptoparasitic opportunities more often
and hence have more chance of evolving kleptoparasitism.

4. The group-foraging hypothesis; there are more opportunities for kleptopara-
sitism in multispecific groups of foragers because of the increase in the proba-
bility of encountering and/or pursuing successful foragers.

5. The habitat-openness hypothesis; the type of habitat might affect the evolution
of kleptoparasitism, e.g. open habitats have high visability and hence there is
an increased probability of detecting hosts.

Morand-Ferron et al (2007) found that the probability of kleptoparasitism for-
aging strategies occuring was positively associated with brain residual size, habitat
openness and the presence of vertebrate prey in the diet, but showed no association
with body size or participation in mixed-species foraging groups. The conclusion
that kleptoparasitism is associated more closely with cognition than with aggression
is further supported by the fact that kleptoparasites have a larger residual brain size
than their respective hosts, while their body size is not significantly larger.

However, it is suggested by Iyengar (2008) that studies into the evolution of klep-
toparasitism that only focus on avian species are not generalisable. This is because
these studies are unable to differentiate between the selective pressures and evolu-
tionary responses of general kleptoparasites and those that are restricted to certain
groups.

9



1.3 The Ideal Free Distribution

There have been several studies of the distribution of kleptoparasitic individuals by
looking at the ideal free distribution of foragers among patches of different quality
(usually measured by food density) (e.g Parker & Sutherland (1986); Korona (1989);
Holmgren (1995)). Holmgren (1995) constructed a simulation model based on a
behavioural model of the processes of foraging and kleptoparasitism to investigate the
spatial distribution of individuals which differ in foraging ability. He found that when
predators were all assumed to be different from one another then those which were
more dominant in winning fights for food or more efficient at prey handling would only
occur in the high prey density patches, and less dominant/efficient predators would
be mixed across patches. He also found that predators which were less efficient at
searching would be found in the high prey density patches.

Ruxton & Moody (1997) took the specific case of the Holmgren (1995) model
where all the individuals have identical foraging ability. They found the ideal free
distribution by finding the distribution of foragers across patches which gives all
individuals the same uptake rate (as at the ideal free distribution the intake rates for
all individuals will be identical in the occupied patches, as no individual can increase
its uptake rate by moving).

They set F as the population density of food items and vF and vH as the area an
individual can search per unit time for food and handlers respectively. They assumed
that individuals search for food items (and find them at a rate of vFF ) and when
found a finite amount of handling time is required to process the item before ingestion
(this time is assumed to be drawn from an exponential distribution with mean th).
During this time, if another individual encounters the handler (which happens at a
rate of vHH) then there is a contest for the prey item which takes a finite amount of
time (this time is taken from an exponential distribution with mean tk) and either
participant is equally likely to win the fight. The winner of the contest gets the entire
food item and begins to handle it, and the loser goes back to searching for food again.
It is assumed that the previous amount of handling has no effect on the post-contest
handling time.

Ruxton & Moody (1997) looked at the forager distribution on two patches where
the food population on one patch is F1 and on the other F2, similarly the forager
population on the two patches is P1 and P2 (and P1 + P2 = PT ). By setting the
uptake rate in each patch as equal they found P1 as a function of F1. They used this
result to investigate the relation between the proportion of food on one patch and
the number of foragers predicted on this patch (they also do this for three or more
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patches). They found that increasing forager density will increase the use of lower
quality patches. They predicted that foraging efficiency will decrease with forager
density if kleptoparasitism occurs, so foragers may move into lower quality patches
as a way of minimising kleptoparasitic attacks. Figure 1-1 shows that as th increases
(and thus the likelihood of being encountered by a kleptoparasite rises) individuals
will more readily move to the poorer patch. When th is very large however, this
effect is cancelled by the fact that the time spent searching be also decrease (hence
reducing the strength of kleptoparasitism).

Figure 1-1: The proportion of foragers in patch one as a function of the proportion
of food in that patch. Circles: th = 0.1, squares: th = 1, triangles: th = 10. Other
parameter values are taken as PT = 10, FT = 100, tk = 1, vF = vH = 0.1. Taken
from Ruxton & Moody (1997).

1.4 A Game-Theoretic Model for Intraspecific Kleptopar-

asitism

As discussed earlier, kleptoparasitism is shown to have several benefits, which include
a greater food intake rate and acquiring food which is otherwise unavailable by self
foraging. For example the size of the prey items that fork-tailed drongos capture
via kleptoparasitism are on average three times larger than those captured during
self-foraging (Ridley & Child, 2009). There are also costs associated with challenging
other individuals for their food; these include the time and energy spent trying to
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steal food and the risk of physical injury when a host decides to defend a challenge.
Hence attempting to steal food from another individual may not always be an efficient
strategy. This trade-off has spurred attempts to construct a game-theoretic model to
find which strategy is appropriate for any combination of parameter values (Bedding-
ton, 1975; Ruxton et al, 1992; Sirot, 2000; and developments of the model by Ruxton
& Moody, 1997). These models generally focus on intraspecific kleptoparasitism and
how it affects the food uptake rate (the functional response) of an individual. This
information can be used to assess the pay-offs of different possible strategies and
explore how ecological conditions can affect the evolutionarily stable strategies. [An
evolutionarily stable strategy (ESS) is reached when no mutant strategy can invade
a population in which all individuals are playing the ESS (Maynard Smith, 1974).]

Most of the game-theoretic work on kleptoparasitism has been based on the model
described earlier by Ruxton & Moody (1997), and its refinement in Broom & Ruxton
(1998) (the Broom-Ruxton model) where the structure of the states were modified
and strategic choice was introduced. Further developments of this model (e.g. Rux-
ton & Broom, 1999; Broom & Ruxton, 2003; Broom et al, 2004, 2008; Luther et al,
2007; Broom & Rychtář, 2007, 2009) have added complexity and biological realism,
as they often relax previous assumptions. In these models the functional response of
an individual (a function of food density and competition from other foragers) and
the evolutionarily stable strategy which maximises it are found. In a model by Sirot
(2000) (which is based on a hawk-dove model) the pay-offs of different strategies are
found using the rate of energy gain by an individual. These models are determinis-
tic and thus effectively assume a large population size, however it is sometimes the
case that kleptoparasitic populations are small and hence would be better modelled
stochastically. A stochastic model for kleptoparasitism has been developed by Yates
& Broom (2007) and later extended by Broom et al (2010). Also, the models as-
sume that mixed strategy solutions are not possible; this assumption was relaxed
by Broom & Rychtář (2007) where they consider the evolution of kleptoparasitism
under adaptive dynamics.

1.4.1 The Broom-Ruxton model

Some of the assumptions in the Ruxton and Moody (1997) model were unrealistic
and the results suggested that individuals would act in ways that were not always
the most efficient, therefore Broom and Ruxton (1998) extended the model in two
ways to allow the individual to act optimally.
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One extension was to allow individuals to pass up opportunities to kleptopara-
sitise when detecting a handler, and the other way was to assume that individuals
have to split their searching capacity between searching for food and searching for
opportunities to steal food (although in some circumstances this does not hold, see
Smith et al (2002)). They investigated what circumstances made it beneficial for an
individual to challenge a handler.

They considered a population of constant population density, P , which is divided
into three subpopulations of searchers (with density S), handlers (with density H)
and those involved in aggressive interaction (with density A). These activities are
mutually exclusive so S + H + A = P . The probability that an individual meeting
a handler will enter into a potential fight is a constant, p. For convenience, the ag-
gressive interaction was set to last for a time drawn from an exponential distribution
with mean ta/2. Hence, they constructed the following set of equations describing
the rates of movement between the three subpopulations:

dS

dt
=
H

th
− vfSf − pvHSH +

A

ta
, (1.1)

dH

dt
= −H

th
+ vfSf − pvHSH +

A

ta
, (1.2)

dA

dt
= 2pvHSH −

2A
ta
. (1.3)

They then assumed that the population was at dynamic equilibrium to find that:

H

P
=
−(C + 1)±

√
(C + 1)2 + 4pCD

2pD
. (1.4)

where C = thfvf and D = taPvH . An individuals uptake rate (the functional
response) is the rate at which it makes the transition from handler back to searcher,
i.e. the rate at which it gains food items. They took this rate to be

γ =
H

thP
, (1.5)

which is equal to the population per capita rate of food items consumed because
all individuals are intrinsically identical. They then found the optimal value of p
which maximises γ for different parameter values. To do this they found the value
of p which minimises the mean time taken for a searcher that has just encountered a
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handler to begin handling a food item itself, this is

τ =
1
fvf

+ p
tafvf − 1
fvf

. (1.6)

Hence if tafvf > 1 then the optimal strategy is to play p = 0, i.e. never try to steal
food. Similarly, if tafvf < 1 then the optimal strategy is to play p = 1, i.e. always
take opportunities to steal food. If tafvf = 1 then any value of p adopted will be
equally effective. Hence, when the optimal strategy is p = 0 then H/P = C/(C + 1)
and substituting this into (1.5) gives

γ =
( 1
th

)f

f + 1
vf th

. (1.7)

When the optimal strategy is p = 1 and in the limit (C + 1)2 � 4CD (which might
occur when P is very low (Ruxton & Moody, 1997)) they argue that γ can be well
approximated by

γth =
( 1
th

)f

f + 1
vf th

+ tafvHP
thfvf+1

. (1.8)

Hence they predict that as food becomes more difficult to find (or equivalently fights
for food take less time) there will be a dramatic step change in both behaviour and
uptake rate. This result can be seen in Figure 1-2, taken from their paper. It shows
that the uptake rate increases with food density, and at f = 20 the population
changes it’s strategy from always kleptoparasitising to never kleptoparasitising with
increasing food density. This behaviour change results in a step change in the uptake
rate because when the population swaps to never kleptoparasitising then all effort
goes into finding new food items from the environment, as opposed to only finding
new food items when there are no kleptoparasitic opportunities.

The other extension to the Ruxton & Moody (1997) paper was to assume that
vH can only be increased at the expense of decreasing vf , i.e. that the rates are not
independent. This was expressed in the form:

vf
β1

+
vH
β2

= 1. (1.9)

Hence, they defined an individuals strategy by {vf , p}. They defined “insular”
individuals as those who maximise their prey-finding ability, hence when vH = 0 and
thus vf = β1. In this case handlers would never be detected and so the value of p
chosen would be irrelevant. “Aggressive” individuals are defined as those which look

14



Figure 1-2: Graph of the food uptake rate, γ, as a function of food density, f ,
taken from Broom & Ruxton (1998). For f < 20 kleptoparasitism occurs at every
opportunity, and for f > 20 kleptoparasitism never occurs. Other parameter values
are P = 20, ta = 5,th = 10, vf = 0.01 and vH = 0.05.

for kleptoparasitic opportunities, i.e. vH > 0, and hence vf < β1. In this case it
would not be sensible to search for handlers but then never attempt to steal their
food (i.e. by playing p = 0), so it is assumed that aggressive individuals will always
play p = 1. They then found the evolutionarily stable strategies by considering a
fixed population density and looking at the circumstances for which all individuals
should play either {vf = β1} or {vf < β1}, and which value of vf should be played.

When tafvf > 1 holds, hence when it is optimal never to kleptoparasitise, then
it would not make sense to spend time searching for handlers. Thus when

tafβ1 > 1 (1.10)

then {vf = β1, p = 0} is the only ESS. When handlers are scarce or hard to find then
it can still be optimal to play {vf = β1} even though (1.10) does not hold, this was
shown to be true when

P <
2(1 + thfβ1)

β2th(1− tafβ1)
. (1.11)

When neither (1.10) nor (1.11) hold then the unique ESS was found to be vf =
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β1/(1 + F ) where

F = (
1− tafβ1

2(1 + tafβ1)
)(β2Pth(1− tafβ1)− 2(1 + tafβ1)). (1.12)

Hence increasing any of β2, P or th (which all make handlers easier to find) cause a
decrease in vf .

Although never kleptoparasitising increases the uptake rates for a group of in-
dividuals, in certain conditions this is not evolutionarily stable as if there was an
individual which kleptoparasitised, then this individual would do better than the
others. Hence from their model, Broom and Ruxton found that to always or never
challenge others are generally the best strategies to maximise the uptake rate, and
these occur respectively when food density is low or high (or equivalently when the
fight time is small or large). From this they predicted that small changes in ecolog-
ical conditions can sometimes cause a dramatic change in the aggressive behaviour
of individuals, this can be seen in Figure 1-2. They found the evolutionarily stable
strategy for investment in searching for food and searching for handlers in terms of
the ecological parameters of the model. An equilibrium distribution of individuals
in each of the activity states was found and the population was assumed to be in
this equilibrium; this was proved to be a stable equilibrium in a paper by Luther &
Broom (2004).

1.4.2 Contests as a “War of Attrition”

Ruxton & Broom (1999) extended the Broom-Ruxton model further by dropping the
assumption that contests over resource items are of a fixed duration. They suggest
that the winner of a contest will be the individual who is prepared or able to fight for
the longer time, i.e. the contest is modelled by a “war of attrition” (formally described
by Maynard Smith (1974)). However, individuals which contest for a long time may
win but at the cost of investing a large amount of time when encountering a stubborn
individual. For this model the evolutionary stable strategy will be a combination of
the probability of challenging a handler (p) and the distribution of the lengths of
time an individual is prepared to compete for, g(t).

They show that if two individuals compete for a resource of value V then the
expected net payoff to an individual which selects time m1 in contests where the
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opponent selects time m2, E[m1,m2], is equivalent to

E[m1,m2] =


V
k −m2, m1 > m2

V
2k −m2, m1 = m2

−m1, m1 < m2

(1.13)

Where k is a constant which converts time invested in a contest to the same
currency as the reward. The ESS of this game was previously shown (by Bishop &
Cannings (1976)) to be to play for a time which is selected (independently for each
contest) from an exponential distribution with mean time V

k ,

They let the cost of stealing a food item be the value of the food that could have
been found in a time t, i.e. fvfV t, and thus k = fvfV . They find that the optimal
strategy is one for which ta

2 = 1
2fvf

, i.e. when tafvf = 1. Hence they find that
contests will last on average the same amount of time as it takes on average for an
individual to find a food item. This optimal strategy corresponds to the point where
the uptake rate is independent of whether the individual kleptoparasitises or not.

They then consider when the two searching types are not mutually exclusive, i.e.
when equation (1.9) holds, so the individuals strategy is defined by {vf , p, g(t)}. For
this extension they expect that kleptoparasitism will not be observed as it is optimal
for individuals to maximise their searching effort for food.

1.4.3 The Apple and the Orange Model

The assumption that the distribution of handling times is exponential is relaxed in
Broom & Ruxton (2003). In this paper they consider two scenarios where handling
time takes a fixed interval, th, and then either at the end of this handling time the
whole value of the food it obtained (the “orange” model), or the reward from the
food item is extracted continuously (at a constant rate) throughout the handling time
(the “apple” model). Hence, in these models an individuals decision to enter into a
contest is based on how much handling the food item has already received (thus a
key assumption is that individuals are able to assess this amount). They predict that
in the orange model kleptoparasitic attacks will be focused on prey items near the
end of their handling period and decrease with forager density. Whereas they predict
in the apple model these attacks will be biased towards newly discovered items and
increase with forager density.

Broom & Rychtář (2009) later developed the Broom & Ruxton (2003) apple
model in order to look at the scenario where the defender knows how much handling

17



a food item has received but the challenger does not. This produced mixed strategies
because of the different values of the food items at the time that a defensive choice
is made. They found that this situation often favours the challenger; this is because
handlers often give up small items and thus provide free food to the challenger.

1.4.4 Varying α and Allowing Resistance Choice

Broom et al (2004) then extended the Broom-Ruxton model in two more ways. One
extension was to let the probability, α, of the challenger winning vary (this is a
general case of the assumption in Ruxton & Broom (1999)), and the other extension
was to allow the handler to resist the challenger. In the first part of their paper they
considered the optimal strategies for a searcher who has just encountered a handler
who always resists.

They set ts as the time taken to acquire food after a failed attack, so if the
attacker does not challenge (which happens with probability 1−p) then it is effectively
foraging and thus the average time to acquire food is just ts = (vff)−1. Thus it
is advantageous to challenge if the expected time to gain a food item by always
challenging is less than when an individual never challenges, i.e. if ta/2 + (1−α)ts <
(vff)−1. They found that

ts =
1 + vhtaH/2
vff + αvhH

, (1.14)

thus challenging is advantageous if

vff <
2α
ta
. (1.15)

The mean time taken, te, for a searcher that has just encountered a handler to
begin handling was found to be

te =
1− p
vff

+ p(
ta
2

+ (1− α)(
1

vff + vhH
+

vhHte
vff + vhH

)). (1.16)

They then solved this and found that when ta/2 − α/vf > 0 then te will have
its minimum value when p = 0, and when ta/2 − α/vf < 0 then te will have its
minimum value when p = 1. This result assumes that handlers will always resist, but
if handlers do not resist challenges then it will always be optimal to challenge.

They then considered what the optimal resistance strategies were for a handler
that had just been challenged. Here it is optimal to always resist if the expected
time to begin handling again after resisting a challenge is less than the expected time
taken to find another food item after surrendering food, i.e. when 0.5ta + αts < ts.
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By using (1.14) they found that the condition for resisting to be optimal in a
population when others are also resisting is

vff <
2(1− α)

ta
+ (1− 2α)vhPhr, (1.17)

where hr = H/P is the handling ratio. When the rest of the population is not resisting
then ts = 1

vff+vhH
, so for this case the condition for resistance to be optimal is

vff <
2(1− α)

ta
−
vhPvffth
vffth + 1

. (1.18)

They also found that if the majority of the population were not making challenges
but a handler may be challenged by a mutant aggressor then ts = 1/(vff) and the
condition for resistance is

vff <
2(1− α)

ta
. (1.19)

For general α they find three ESSs to challenge and resist (the hawk strategy),
this is an ESS if (1.15) and (1.17) are satisfied; to challenge but not resist (the
marauder strategy), this is an ESS if (1.18) is not satisfied; and to resist but not
challenge (the retaliator strategy), this is an ESS if (1.15) is not satisfied but (1.19)
is. They also predict that for a given contest time, increasing chance of success for
the challenger always results in the same sequence of ESSs.

1.4.5 Sirot, 2000

Another game-theoretic model of intraspecific kleptoparasitism was made by Sirot
(2000). He assumed that individuals can choose to kleptoparasitise (as in the Broom-
Ruxton model), but also that if an individual is challenged by a kleptoparasite they
can either choose to enter the contest (which takes time and energy) or immedi-
ately surrender their food (as in the Broom et al (2004) extension). The aim of his
model was to predict the proportion of time each animal should be aggressive and
the proportion of time it should avoid confrontation, taking into account ecological
conditions such as food availability and density of competitors.

It was assumed that conflicts always involve only two animals and the two strate-
gies which can be played are:

1. The Hawk Strategy: Challenge and resist the challenges of others;

2. The Dove Strategy: Neither challenge nor resist the challenges of others.
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He lets V be the energy gain from a food item, T be the average conflict duration
for two hawks and C be the energy loss per time unit in a conflict between two hawks.
Thus the average payoff in energy is, V/2 − CT for a conflict between two hawks;
V for a hawk encountering a dove; 0 for a dove encountering a hawk; and V/2 for a
confrontation between two doves.

His model predicts that the level of aggressiveness will progressively increase
with group density and it also predicts that aggressiveness should strongly vary with
ecological conditions, which are predictions consistent with field observations.

1.4.6 Mixed Strategies

Broom & Rychtářs (2007) used adaptive dynamics to investigate individuals which
are allowed to have mixed strategies (i.e. being able to play more than one strategy),
rather than the pure strategies which were studied in previous models. Their model
follows on from that of Broom et al (2004). Their extension allows more flexible
and complex behaviour amongst a population to be considered, where the popula-
tion strategy changes to maximise fitness. They denote an individuals strategy as a
combination of, p, the probability to attack a handler and the probability to retaliate
when attacked by a searcher, r. They assume all individuals in the population play
the same strategy, but this may change if a mutation occurs where a few individuals
in the population adopt a strategy which is close to the original strategy. If this
mutant strategy gives a higher feeding rate then it has an advantage over the original
strategy, and it will eventually take over as the population strategy.

Another follow-on to the 2004 Broom et al model was made by Luther et al (2007),
in this they considered a population of foragers which can have one of two types of
behaviour, those that forage and steal and those that only forage. It is assumed the
latter have a better foraging rate, which relaxes the Broom et al (2004) assumption
that searching for kleptoparasitic opportunities has no cost (this is more realistic, see
Shealer et al (2004)). They find that there are ESSs based on the overall population
density; if it is low there is an ESS consisting of only foragers, when it is high then
there is an ESS consisting of only kleptoparasites and if it is in-between then there
is an ESS consisting of both pure foragers and stealers.

They found that it is theoretically possible for obligate kleptoparasites (which
abandon their ability to find food themselves) to persist providing that the population
also contains pure foragers to actually find food items. However, there are no known
populations in which a significant fraction are obligate kleptoparasites, Luther et al
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(2007) suggest that this may be because there is no set of ecological circumstances
in which obligate kleptoparasites would evolve.

1.4.7 A Stochastic Model

The models discussed so far have been deterministic and hence assume that the
population is large. However, in small populations individual movements between the
subpopulations have a larger effect on transition rates than in larger populations and
can often give quite different results in the expected proportion of the population on
each site. Yates & Broom (2007) adapted the Broom-Ruxton model where individuals
are not allowed decisions, to find a stochastic model which was able to deal with
small populations exhibiting kleptoparasitism. They compared this to the original
deterministic model and also considered a normal approximation to the stochastic
model. Broom et al (2010) later solved the stochastic model explicitly to find the
distribution of the population over the states.

1.5 Modelling Interspecific Kleptoparasitism

Although interspecific kleptoparasitism is widespread, theoretical models of klep-
toparasitism focus on the intraspecific case. In this project we will develop a game-
theoretic model of the behavioural decisions of a host species exploited by a klep-
toparasite exerting a constant parasitism pressure, defined to be the rate at which
hosts with food are challenged by the parasite. The model will be a modification
of the published intraspecific models discussed earlier and will be used to determine
the optimal host strategy/strategies for different combinations of parameters. We
will consider the case when the host species can choose to fight to retain its food or
immediately surrender its food (as in Broom et al (2004) and Sirot (2000)). As in
the intraspecific case there will be possible extensions to be made which may make
the model more realistic.

In order to account for a different type of food item we will consider the apple
model (as described in Broom & Ruxton (2003)) and see what affect this would have
on the hosts decision to defend food. As suggested in the study by Vickery & Brooke
(1994) there is an energy cost in the avoidance responses of flying at a higher altitude,
thus another extension will be to consider the affects of the host using an avoidance
response. Further, we will consider the optimal strategies for the parasite when it
has the choice of kleptoparasitising or not (which could be influenced by avoidance
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responses of the host). We can make this extension more realistic by assuming that
the parasite has a finite searching capacity, as in Broom & Ruxton (1998).
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Chapter 2

A Basic Model for Interspecific

Kleptoparasitism

In this chapter we will develop a basic game-theoretic model of the behavioural
decisions of a host species which is exploited by a kleptoparasitic species. We will use
the model to determine the optimal host strategies for different ecological conditions.
The pay-off for a host strategy, q, will depend upon the cost of being in a contest, the
cost of finding food items and the parasitic pressure (which is defined to be the rate
at which hosts with food are challenged by the parasite). We will think of costs in
terms of energy loss, which will be proportional to time expenditure. We will assume
that if one strategy has a higher pay-off than another, then this will translate into a
fitness advantage for the genes that code for this strategy.

2.1 The Model

We will consider a large population of hosts and parasites, the hosts and parasites
have constant population densities of N and P respectively. The hosts are split
into three subpopulations according to their activity: a density searching for food
items S, a density handling food items H and a density involved in a contest with a
parasite A. It is assumed that there is an excess of parasites. Hosts searching find
food items at a rate of vff , where f is the population density of food items. After
a food item is found the host begins to handle the food and this takes a time taken
from an exponential distribution with mean th. In this handling time the host is
vulnerable for a parasite to try and steal the food item. It is also assumed that the
parasite will always try to steal food if it encounters a host handling food; therefore
the parasitic pressure is just the rate at which the parasite encounters handlers,
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which is taken as vhH. When a parasite encounters a host the host can decide (with
probability q) to resist the attack and thus be in a contest for a fixed time taken from
an exponential distribution with mean ta, or immediately surrender its food item.
After a contest there is a clear winner who takes the entire food item. An illustration
of the transitions between the three different subpopulations of hosts can be seen in
Figure 2-1.

Figure 2-1: Transitions between the three subpopulations of searchers, handlers and
those involved in an aggressive encounter. Transition rates are in bold.

As in the extension to the intraspecific Broom-Ruxton model by Broom et al
(2004), we have allowed the probability of the host winning to vary, i.e. (1 − α) ∈
[0, 1]. In the intraspecific case Broom et al (2004) suggest the handler may be at
a disadvantage because it has to fight whilst holding on to the food item and also
because the parasite may be able to surprise the handler; on the other hand the
handler may be at an advantage because the time taken for the parasite to approach
the handler might give it a chance to escape, or else make the parasite use more
energy trying to catch the handler.

Therefore we have:

dS

dt
=
H

th
− vffS + (1− q)vhHP + α

A

ta
, (2.1)

dH

dt
= −H

th
+ vffS − vhHP + (1− α)

A

ta
, (2.2)

dA

dt
= qvhHP −

A

ta
, (2.3)

N = S +H +A. (2.4)
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Parameter Units Default Value Value Range
N hosts/hectare 20 1− 100
P predators/hectare 20 1− 100
f prey/hectare 10 1− 100
vf hectare/seconds 0.01 0.001− 1
vh hectare/seconds 0.05 0.001− 1
th seconds 10 1− 100
ta seconds 5 1− 100

Table 1: Default parameter values and their range within which values are chosen.

Hence at equilibrium (justification for later assuming that the population is at
this equilibrium state is given in Appendix A) we have

S∗ =
N(1 + vhPth − vhPthq + qvhPthα)

1 + vffthtaqvhP + vffth + vhPth − vhPth + qvhPthα
, (2.5)

H∗ =
vffthN

1 + vffthtaqvhP + vffth + vhPth − vhPthq + qvhPthα
, (2.6)

A∗ =
vffthtaqvhPN

1 + vffthtaqvhP + vffth + vhPth − vhPthq + qvhPthα
. (2.7)

2.2 Parameter Values

By considering the parameter values chosen in Holmgren (1995), Ruxton & Moody
(1997) and Broom & Ruxton (1998), we will use the default parameter values and
their ranges given in Table 1. These values were more or less arbitrarily chosen by
Holmgren (1995), where no units were given and little biological interpretation was
given. We will use the units given by Luther & Broom (2004). Note: Here we have
chosen th and ta to be measured in seconds, but perhaps in different circumstances
(e.g. for larger prey items) then these should be measured in minutes.

In Figure 2-2 (a)–(d) we have used these parameters to show how the population
densities of each subpopulation change with time. We have set the initial population
densities for each subpopulation to be S0 = 20, H0 = 0 and A0 = 0 (we will assume
that initially none of the host population have found any food). We have let q = 0 and
α = 1/2 in Figure 2-2 (a) and q = 1 and α = 1/2 in Figure 2-2 (b). It can be seen that
when the host never resists there will be a much higher searcher density than handler
density, this is because the hosts are being encountered (and surrendering their food
item) at a higher rate than they find food. If we were to increase vf then we would
find that the handler density would increase, and the searcher density decrease, and
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for high enough vf the handler density would be higher than the searcher density.
When the host always resists then the number of aggressive individuals increases and
the number of searchers decreases, but because the probability of winning is 1/2 then
there are still more searchers than handlers at equilibrium. The steady state solution
when α = 1/2 and the default parameters are used is S∗ = 10, H∗ = 12

3 , A∗ = 81
3

when q = 1, and S∗ = 181
3 , H∗ = 12

3 , A = 0 when q = 0. In Figure 2-2 (c) we have
looked at when the host always resists and always loses, and in Figure 2-2 (d) when
the host always resists and always wins. When hosts always win contests we find
that the number of handlers is the same as the number of searchers at equilibrium.

2.3 The Uptake Rate

To consider the pay-off for a strategy we can find the uptake rate, γ, this is the rate at
which an individual makes the transition from a handler back to a searcher. This rate
is effectively the same as the host population per capita rate of food items consumed
(as in Broom & Ruxton (1998)), i.e. γ = H∗

thN
. Therefore the optimal strategy, q, is

the one which maximises γ. As in Broom & Ruxton (1998) we will assume that the
system has reached dynamic equilibrium.

Thus, from equation (2.6) we find that the uptake rate as a function of the host
strategy, q, is

γ =
vff

1 + vffth + vhPth(vffqta + 1− q(1− α))
. (2.8)

Thus, in order to maximise γ we need to minimise vffqta + 1− q(1− α), hence the
optimal strategy depends upon the values of vf , f , α and ta. We will now examine
what affect individual parameters have on maximising γ.

Although handling hosts are more likely to be encountered when the number
of parasites is very high, their pay-off when encountered is not dependent on how
many other parasites there are, and so the value of P has no impact on the optimal
strategy. This also makes sense even if there are no parasites because hosts are
never encountered so their decision to defend food or not is irrelevant. Similarly,
for changes in th or vh it does not matter what choice of q is made, as the optimal
strategy only depends upon vffta. This makes sense because if the handling time or
the rate parasites encounter handlers are low then there wont be opportunities for
kleptoparasitism so it wont matter whether the host defends its food or not.

We can consider what effect the average time spent in an aggressive encounter
has on the choice of strategy. When ta > (1 − α)/vff then the optimal strategy is
q = 0, i.e. if the time in an aggressive encounter is long then it is optimal for an
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Figure 2-2: Plots of the population density of searchers (blue), handlers (green) and
those involved in aggressive interaction (red) as a function of time. (a) Setting q = 0,
α = 1/2; (b) q = 1, α = 1/2; (c) q = 1, α = 1; (d) q = 1, α = 0. The initial
population densities for each subpopulation are S0 = 20, H0 = 0 and A0 = 0. Other
parameter values are taken as the default values f = 10, P = 20, vf = 0.01, vh = 0.05,
th = 10, ta = 5.

individual to surrender its food. Alternatively if ta < (1−α)/vff it is optimal when
q = 1, i.e. when the time in an aggressive encounter is very small then it is optimal
to always resist in a fight. These results are illustrated in Figure 2-3, where it is clear
that γ is maximised at either q = 0 or q = 1. We can see at a threshold value of
ta = (1− α)/vff any value of q gives the same value for γ.
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Figure 2-3: Plot of the uptake rate, γ, as a function of q with different values for the
time spent in an aggressive encounter. ta = 1 (blue), ta = 5 (magenta) and ta = 10
(red). Other parameter values are taken as P = 20, f = 10, vf = 0.01, vh = 0.05,
th = 10, α = 1/2.

Figure 2-4: Plot of uptake rate, γ, as a function of q with different values for the rate
a searcher looks for food items. vf = 0.001 (blue), vf = 0.01 (magenta) and vf = 1
(red). Other parameter values are taken as P = 20, f = 10, vh = 0.05, th = 10,
ta = 5, α = 1/2.

We can also consider what affect the rate at which hosts encounter food items
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has in the choice of strategy. If vff < (1− α)/ta then q = 1 is optimal. This makes
sense because if there is a low rate of finding food items (because of either a low
searching for food rate or a low food density), then an individual which has secured
a food item should want to resist a parasite trying to steal its food. Alternatively if
vff > (1 − α)/ta then the optimal strategy is q = 0. This makes sense because the
time cost of finding food items is likely to be smaller than the time cost of being in
a contest, hence it would be sensible to avoid contests. These results are illustrated
in Figure 2-4 and Figure 2-5.

Figure 2-5: Plot of uptake rate, γ, as a function of q with different values for the
density of food items. f = 1 (blue), f = 10 (magenta) and f = 100 (red). Other
parameter values are taken as P = 20, vf = 0.01, vh = 0.05, th = 10, ta = 5, α = 1/2.

2.4 Minimising the Time Expenditure

We will now consider the different options for a handler that has just been challenged
by a parasite and the time expenditure for each option. The optimal strategy will be
the one which minimises time expenditure, which translates into energy use.

One option for an encountered handler is to immediately surrender its food (with
probability 1− q) and return to searching for another food item, where the expected
time to find another food item is 1

vff
. Alternatively the individual could resist the

challenge (with probability q) and enter into a contest lasting for an average time of
ta. After this contest the individual could win (with probability 1− α) and straight
away go back to handling the food item, or it could lose and then go back to searching
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and then find food at an expected time of 1
vff

. These different sequences of events
are shown in Figure 2-6.

Figure 2-6: Probability tree for a handler who has been encountered by a parasite;
showing contest time and the times to become a handler again, (times in bold), and
the probabilities of resisting and winning a contest.

Figure 2-7: Plot of the mean time for an encountered individual to begin handling
again, τ , as a function of q with different values for the lengths of contests. ta = 1
(blue), this corresponds to when vffta < 1 − α; ta = 5 (magenta), this corresponds
to when vffta = 1 − α; ta = 10 (red), this corresponds to when vffta > 1 − α.
Other parameter values are taken as P = 20, f = 10, vf = 0.01, vh = 0.05, th = 10,
α = 1/2.

Therefore the mean time, τ , taken for a handler that has just been encountered
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by a parasite to begin handling again is

τ = (1− q) 1
vff

+ q(ta + α
1
vff

) =
1
vff

+ q(ta −
1− α
vff

). (2.9)

Thus there is a linear relationship between q and τ , hence to find the value of
q which minimises τ we just need to know the sign of the gradient, i.e. the sign of
ta − 1−α

vff
, this is illustrated in Figure 2-7. If vffta > 1 − α (which corresponds to

the gradient being positive) then it is optimal to play q = 0 in order to minimise τ ,
i.e. never resist. If vffta < 1− α then it is optimal to play q = 1, i.e. always resist.
When vffta = 1− α then any value of q chosen gives the same τ value.

These results agree with those found in the previous section. Before we found
that q = 0 is the optimal strategy when ta → ∞ or vff → ∞ (in either case
vffta > 1−α), and q = 1 is the optimal strategy when ta → 0 or vff → 0 (in either
case vffta < 1− α). We can also see that the choice of q does not matter when the
default parameters are used, as using these gives vffta = 1− α.

2.5 Implications for the Uptake Rate

When vffta > 1−α then the optimal strategy is q = 0, and so the maximum uptake
rate is

γ1 =
vff

1 + vffth + vhPth
, (2.10)

hence for this condition it does not matter what the value of α is.

Similarly when vffta < 1 − α then the optimal strategy is q = 1, and so the
maximum value for the uptake rate is

γ2 =
vff

1 + vffth + vhPth(vffta + α)
. (2.11)

Note that these are Holling Type II functional responses with extra terms in
their denominator. Hence, the uptake rate decelerates due to saturation when the
food density is high. This is realistic because we would expect the host to reach a
processing food limit when there is a lot of food available.

Hence when vffta < 1 − α hosts should always resist a kleptoparasitic attack
because either the rate at which they find food is low and/or the time in an aggressive
encounter is low enough for the contest to not be too much of a cost. On the
other hand, when it is very easy for the host to find more food and/or the cost of
an aggressive encounter is high then hosts should always surrender their food in a
kleptoparasitic attack. From Figure 2-8 we can see that the gradient of the line
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chances slightly around the threshold value of f = 20(1 − α), when food density is
low (f < 20(1 − α)) then the uptake rate decelerates more rapidly as food becomes
more plentiful than it does when food density is high (f > 20(1 − α)). We can also
see that there is no change in the value of the uptake rate as the optimal strategy
moves from q = 1 to q = 0. Thus, around f = 20(1−α) the choice of strategy doesn’t
make very much impact to the host’s uptake rate. Perhaps for food densities close to
this threshold food density it could be observed that there was a mix of behaviours
in the host population, as one type of behaviour would only be very slightly more
advantageous than the other.

This result is quite different from that found in the intraspecific case by Broom
& Ruxton (1998) where they predicted that there would be a dramatic step change
in both behaviour and uptake rate as food becomes more difficult to find. This is
because in the intraspecific case changing strategy to never kleptoparasitising will
mean that the whole population is now only finding new food items, rather than
only doing this when there are no kleptoparasitic opportunities, thus there will be a
significant change in uptake rate. In our interspecific case, the amount of new food
items the host finds from the environment will not depend on whether they resist or
not. Hence for food densities around f = 20(1 − α), the threshold between q = 1
being an optimal strategy and q = 0 being the optimal strategy, the uptake rate will
not change.

Figure 2-9 shows the uptake rate as a function of food density for the case when
α = 0 (the host always wins), again we can see that there is no change in uptake
rate as the optimal strategy moves from q = 1 to q = 0. Although in this case the
change in curvature is slightly different. In the plot where q = 1, the uptake rate
sharply increases with food density and then decelerates. In this case the hosts are
always resisting challenges and then always winning them, and so there will be a high
proportion of handlers in the population. Hence, it makes sense that increasing the
density of food makes less of a difference to the uptake rate than in does in the case
where α = 1/2.

Hence, for different ecological conditions the optimal strategies are either {q = 0}
or {q = 1}. When the chance of a host winning a contest is low then it is only for
very low food densities when resisting a contest is a good strategy. On the other
hand, even if the host always wins contests then there is still a threshold food density
when it is no longer optimal to always resist challenges. Figure 2-10 shows how the
uptake rate changes with α and f .
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Figure 2-8: Plot of the uptake rate, γ, as a function of food density, f . The blue
line is where q = 1 and the black where q = 0. For f > 10, vffta > 1 − α and
handlers should never resist a contest, q = 0. For f < 10, vffta < 1−α and handlers
should always resist a contest, q = 1. The optimal strategy for each food density
is represented by a smooth line. Parameter values are taken as P = 20, vf = 0.01,
vh = 0.05, th = 10, ta = 5, α = 1/2.

Figure 2-9: Plot of the uptake rate, γ, as a function of food density, f , when the host
species always win contests. The blue line is where q = 1 and the black where q = 0.
For f > 20, vffta > 1 − α and handlers should never resist a contest, q = 0. For
f < 20, vffta < 1 − α and handlers should always resist a contest, q = 1, here we
have also set α = 0. The optimal strategy for each food density is represented by a
smooth line. Parameter values are taken as P = 20, vf = 0.01, vh = 0.05, th = 10,
ta = 5.
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Figure 2-10: Plot of the uptake rate, γ, as a function of food density, f , and the
probability of the parasite winning α. We have taken q = 1 so we need to look at
the non-shaded area of the graph (which is where vffta < 1 − α holds). Parameter
values are taken as P = 20, vf = 0.01, vh = 0.05, th = 10, ta = 5.

2.6 Evolutionarily Stable Strategies.

Maynard Smith & Price (1973) define an Evolutionarily Stable Strategy (ESS) as
a strategy such that if most individuals in a population adopt it, then there is no
’mutant’ strategy that would give a higher reproductive fitness. We have found unique
optimal strategies for different environmental conditions, q = 0 and q = 1, hence these
are the ESS’s for their respective conditions. In more detail, if vffta > 1 − α then
the ESS is q = 0, because if there was an individual playing another value of q (a
’mutant’ strategy) then this individual would have a lower uptake rate and τ would
be higher. Thus natural selection would not act on increasing the frequency of alleles
for the mutant strategy, so it could never take over a population of individuals playing
q = 0. The same argument holds to show that q = 1 is the ESS when vffta < 1−α.

In the following chapters we will relax some of the assumptions of the basic model
to make it more biologically plausible.
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Chapter 3

A Different Food Type

In this chapter we will drop the assumption that handling prey items takes a time
randomly drawn from an exponential distribution with mean th, and then all the
food value is obtained. Here we will consider the case when the amount of previous
handling a food item has received has implications on how much food value will be
obtained.

As in Broom & Ruxton (2003) we will look at the “apple” food item and find the
conditions for which resistance is optimal. The “apple” food item is one for which
handling takes a fixed time th and the reward from the food item is extracted con-
tinuously (and at a constant rate) throughout handling. Our notation and approach
will be similar to that in Broom & Ruxton (2003). We will take h(x) as the popu-
lation density of handlers that are handling a food item that still requires a further
handling time , x. Thus when a searcher encounters a food item it enters h(th). We
also have

H =

th∫
x=0

h(x)dx. (3.1)

If a handler is encountered by a searching parasite (which to begin with we will
assume will always try and steal the food item) then the probability that the host
will resist the attack is q(x). We will define a(x) as the population density of hosts
in aggressive interaction over a food item that still requires a further handling time,
x. Hence, like for H we have

A =

th∫
x=0

a(x)dx. (3.2)
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We will also take

q =
1
th

th∫
x=0

q(x)dx. (3.3)

Hence from (2.8) we have

H

N
=

vffth
1 + vffth + vhPth(vffqta + 1− (1− α)q)

(3.4)

where q satisfies (3.3).

3.1 The Apple Model

For this model we should have that when the remaining handling time tends to zero,
then q(x) should also tend towards zero. If most of the food value has been obtained,
then if challenged it would be sensible to surrender the remaining item and not waste
time fighting. We also have that if q(th) = 0 is an optimal strategy, then q(x) = 0
∀x ∈ [0, th] is an optimal strategy (as if not resisting a fight over a whole food item
is optimal, it will never be optimal to resist over a partial food item). By a similar
argument if resisting is ever a good strategy then q(th) = 1.

We will take Xa as the critical amount of time remaining between playing q(x) = 0
(which is optimal when x < Xa) and q(x) = 1 (which is optimal when x > Xa). If
Xa > th then the optimal strategy is always q = 0. Hence we have

th∫
x=0

q(x)dx =

Xa∫
x=0

0dx+

th∫
Xa

1dx = th −Xa. (3.5)

We can consider when a handler of type h(Xa) is encountered by a host, hence
resisting or not have equal results. If we look at the case when the individual decides
to resist, then it can win with probability 1 − α and go back to handling the food.
If it gets challenged again then we will assume that now x < Xa, so it will surrender
the food. If we find the ratio of the expected reward to the expected time to obtain
this reward, this will be the long-term average reward rate for challenging in these
circumstances, this is

(1− α)Xa

ta + (1− α)Xa
. (3.6)

Hence we have that the long-term rate of food uptake for 0 < Xa < th as

H

N
=

(1− α)Xa

ta + (1− α)Xa
. (3.7)
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Hence for 0 < Xa < th, using (3.4), (3.5) and (3.7), we have

(1− α)Xa

ta + (1− α)Xa
=

vffth
1 + vffth + vhPth((1−Xa/th)(vffta + α− 1) + 1)

, (3.8)

which gives

(1− α)vhP (1− α− vffta)Xa
2 + (1− α)vhP (

1
vhP

+ th(vffta + α))Xa

− vffthta = 0. (3.9)

Which can be solved in Maple to find (when α = 1/2)

Xa =
1

2vhP (2vffta − 1)
(2 + 2vhPthvffta + vhPth

±
√

4 + vhPth(4 + 4v2
ff

2t2a(vhPth − 8) + 4vffta(6 + vhPth) + vhPth)).

(3.10)

We can see that when 2vffta − 1 = 0 there will be a discontinuity, this corresponds
to the point in our basic model where the choice of q has no impact on the uptake
rate.

Figure 3-1: Plot of the critical handling time remaining, Xa, as a function of food
density. Other parameter values are taken as P = 20, vf = 0.01, vh = 0.05, th = 10,
ta = 5, α = 1/2.

Figure 3-1 shows a plot of the critical handling time remaining as a function of
food density. At the ESS, if a handler is encountered it resists if its food item has
more than Xa handling time remaining, and surrenders the food item if the time
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Figure 3-2: Plot of the critical handling time remaining, Xa, as a function of α. Other
parameter values are taken as f = 10, P = 20, vf = 0.01, vh = 0.05, th = 10, ta = 5.

remaining is less than Xa. We can see that when food density increases Xa also
increases, so resisting contests becomes less frequent. This makes sense because if
there is more food around then individuals should be more inclined to surrender
their food item and look for another. We can see from the graph that Xa is always
significantly less than its upper limit of th = 10, and in fact for f ∈ [0, 100], Xa < 3,
hence there is a larger range of handling time remaining for which resisting a contest
over a food item is optimal. Thus if it is equally likely that a parasite will challenge
a host handling a food item of any handling time remaining, then resisting attacks
will be more frequent in the population than surrendering attacks.

Figure 3-2 shows how the critical handling time remaining changes with the prob-
ability of the host losing the contest, α increases, with our default parameters. We
can see that Xa exponentially increases with α. Hence, when the probability of win-
ning is likely (α < 1/2), then hosts will resist contests, even if the food item has
a very small handling time remaining. When the probability of winning is unlikely
(α > 1/2) then it becomes optimal to only resist for food items with large handling
times remaining. When α = 0.953 it is optimal to never resist kleptoparasitic attacks.
Thus we have a similar change in behaviour as in our basic model, except in this case
the behaviour change is not as clear cut; when vffta < 1 − α it is almost always
optimal to always resist kleptoparasitic attacks, and when vffta > 1−α it gradually
becomes less and less optimal to resist kleptoparasitic attacks.

If we look at Figure 3-3 we can see when P = 5 there is only one value for Xa for
any food density. As the parasite density increases there becomes points where there
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are two values for Xa ≤ 10 for each food density value. For P = 10, for example, we
have a similar situation to in Broom & Ruxton (2003), where for the lower part of the
graph Xa increases and resistance becomes less common as food density increases.
The upper part of the graph starts at Xa = th and then decreases with increasing
food density. At a critical food density the upper and lower parts of the graphs meet.

Figure 3-3: Plot of the critical handling time remaining, Xa, as a function of food
density for different parasite density values ranging from 5 to 20. Other parameter
values are taken as vf = 0.01, vh = 0.05, th = 10, ta = 5.
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Chapter 4

Including an Avoidance

Response

Avoidance responses are known to exist in nature, as mentioned in the introduction.
The use of an avoidance response by the host will have an energy cost, which could
also mean a decreased chance of winning a contest. The benefits to the host of
using an avoidance response could include a decreased rate of being encountered by
parasites while handling food, and possibly an increase in the chance of the host
winning the contest.

For example, boobies are known to fly at a higher altitude on their way back
to the roost as a way to avoid kleptoparasitsm by frigatebirds (Vickery & Brooke,
1994; Le Corre & Jouventin, 1997). Using this avoidance response may make their
journey take longer and also the increased use of energy may make them less efficient
if they do become attacked by a frigatebird. However, by flying high the rate at
which boobies encounter frigatebirds may decrease. Also, flying high may increase
the boobies’ chance of winning if a contest does occur because frigatebirds may have
used a lot of energy chasing further away Boobies and thus be less efficient in a
contest.

Hence, in this chapter we will consider another host strategy, r, which will be the
probability of a host using an avoidance response when handling a food item. When
a host is not using an avoidance response we will still set the rate of encountering
handlers, the probability of the parasite winning a contest and the time taken to
handle food items as vhH, α and th respectively.
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4.1 The Model

We will assume that when an avoidance response is used the rate at which hosts
handling food items encounter parasites decreases, thus we will now take this rate
to be (1 − λ)vhP , where λ ∈ (0, 1] is some constant. We will also assume that the
probability of a parasite winning a contest (previously α) will be affected by the use
of an avoidance response. When an avoidance response is used this probability is
increased (by a factor of a) because of the loss of efficiency by the host and decreased
(by a factor of b) because of the loss of efficiency by the parasite, as explained above,
hence this probability is now (1 + a − b)α. However, for simplicity we will assume
that these two effects are equal and so a = b. Hence the probability that a parasite
will win a contest is just α. A further assumption will be that the use of an avoidance
response increases the time taken for a host to handle a food item (e.g. boobies flying
higher have a longer flight path as the journey is not as direct). Hence we will now
take this time to be (1 + s)th, where s > 0 is some constant.

It should be noted that if the use of an avoidance response increases the handling
time for the host then this will give the parasite more chance of encountering the
handling host, even though the use of an avoidance response should also decrease
this chance. However, we will assume that this decrease in chance of encounter is
much higher than its increase and thus treat λ and s as independent of one another.

The transitions between the subpopulations are summarised in Figure 4-1; we
have now divided the handling subpopulation into those using an avoidance response,
H2, and those not, H1. Hence, by including the possiblility of using an avoidance
response we have the system of equations;

dS

dt
=

2α
ta
A−vffS+((1−q)vhP +

1
th

)H1 +((1−q)(1−λ)vhP +
1

th(1 + s)
)H2, (4.1)

dH1

dt
= (1− r)vffS − (vhP +

1
th

)H1 +
1− α
ta

A, (4.2)

dH2

dt
= rvffS − ((1− λ)vhP +

1
(1 + s)th

)H2 +
1− α
ta

A, (4.3)

dA

dt
= qvhPH1 + q(1− λ)vhPH2 −

2
ta
A. (4.4)

We can look at the case when the whole population uses an avoidance response.
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Figure 4-1: Transitions between the subpopulations of searchers, handlers using an
avoidance response, handlers not using an avoidance response and those involved in
an aggressive encounter. Transition rates are in bold.

In this case we have

dS

dt
=
α

ta
A− vffS + ((1− q)(1− λ)vhP +

1
th(1 + s)

)H2, (4.5)

dH2

dt
= vffS − ((1− λ)vhP +

1
(1 + s)th

)H2 +
1− α
ta

A, (4.6)

dA

dt
= q(1− λ)vhPH2 −

1
ta
A, (4.7)

S +H2 +A = N. (4.8)

4.2 Optimal Strategies

We can find the uptake rate for this population of hosts using an avoidance response
at steady state, which will now be H2

∗/N(1 + s)th.

(4.7) : A∗ = taq(1− λ)vhPH2
∗, (4.9)

(4.8) : S∗ = N − (1 + taq(1− λ)vhP )H2
∗, (4.10)
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(4.5)− (4.6) : −2vffS∗ + ((2− q)(1− λ)vhP +
2

(1 + s)th
)H2

∗ + (2α− 1)
1
ta
A∗ = 0,

(4.11)

=⇒ γ =
H2

∗

N(1 + s)th
=

vff

1 + (1 + s)th(vff + (1− λ)vhP (1 + q(vffta + α− 1)))
.

(4.12)

As before, to maximise this uptake rate we need to also minimise the time ex-
penditure. We will assume that an individual will always use an avoidance response.
Thus the average time taken for an encountered individual to begin handling again
will be the same as in the previous chapter (because using an avoidance response has
no effect on the probability that the host will win a contest, the time taken for it to
find food, or the time taken in an aggressive encounter), i.e.

τ =
1
vff

+ q(ta +
α− 1
vff

). (4.13)

Therefore, as before it is optimal never to resist, q = 0, when vffta > 1− α and
always to resist, q = 1, when vffta < 1 − α. Hence when vffta > 1 − α holds the
uptake rate is

γ1 =
vff

1 + (1 + s)th(vff + (1− λ)vhP ))
. (4.14)

and when vffta < 1− α holds the it is

γ2 =
vff

1 + (1 + s)th(vff + (1− λ)vhP (vffta + α))
. (4.15)

The plot of the uptake rate as a function of food density when an avoidance
response is used and when one is not is shown in Figure 4-2 for a few different
combinations of λ and s values. When we consider a “bad” avoidance response, i.e.
one for which the handling time is greatly increased and the encounter rate isn’t
decreased by much, for example when s = 2, λ = 0.5, we can see that the uptake
rate is never higher than when not using an avoidance response. On the other hand
when we consider a “good” avoidance response, i.e. one where the handling time
is slightly increased and the encounter rate is heavily decreased, for example when
s = 0.1, λ = 0.9, we find that the uptake rate is always higher than in the case where
an avoidance repsonse is not used.

We can now look at the conditions for which the value of the uptake rate when
using an avoidance response is higher than when one is not used, i.e. the conditions
for which r = 1 is the optimal strategy. When q = 0 the value of the uptake rate
when using an avoidance response is higher than its value when one is not used, (2.10)
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Figure 4-2: Plot of the uptake rate, γ, as a function of food density, f . When an
avoidance reponse is never used (black line) and when one is always used (green, red
and blue lines) for different values of s and λ. Green line: s = 2, λ = 0.5; Blue line:
s = 0.1, λ = 0.9; Red line: s = λ = 0.5. When f > 10, q = 0. When f < 10, q = 1.
Other parameter values are taken as P = 20, vf = 0.01, vh = 0.05, th = 10, ta = 5,
α = 1/2.

< (4.14), when

1 + th(vff + vhP ) > 1 + (1 + s)th(vff + (1− λ)vhP ). (4.16)

Hence, when

s <
λvhP

vff + (1− λ)vhP
and vffta > 1− α (4.17)

the optimal strategy is {q = 0, r = 1}, but when

s >
λvhP

vff + (1− λ)vhP
and vffta > 1− α (4.18)

the optimal strategy is {q = 0, r = 0}.
Similarily when q = 1 the uptake rate when using an avoidance response is higher

than its value when an avoidance response is not used, (2.11) < (4.15), when

1 + thvff + thvhP (vffta + α) > 1 + (1 + s)th(vff + (1− λ)vhP (vffta + α)). (4.19)

Hence, when

s <
λvhP (vffta + α)

vff + (1− λ)vhP (vffta + α)
and vffta < 1− α (4.20)
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the optimal strategy is {q = 1, r = 1}, but when

s >
λvhP (vffta + α)

vff + (1− λ)vhP (vffta + α)
and vffta < 1− α (4.21)

the optimal strategy is {q = 1, r = 0}.
The area where the use of an avoidance response is optimal in the cases where

the host population never and always resists are are shown in Figures 4-3 and 4-4
respectively, for these we have taken α = 1/2. We can see that when q = 1 using an
avoidance response is optimal when the food density is low and the value of λ is high
(corresponding to a low rate of parasites encountering handling hosts). When q = 0
there is larger range of food densities and values of λ for which using an avoidance
response is optimal.

Figure 4-3: Plot of the region within the parameters λ, f and s where the use of
an avoidance response maximises the uptake rate (shaded). In this case individuals
never resist, q = 0, and vffta > 1− α. Other parameter values are taken as P = 20,
vf = 0.01, vh = 0.05, th = 10, ta = 5, α = 1/2.
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Figure 4-4: Plot of the region within the parameters λ, f and s where the use of
an avoidance response maximises the uptake rate (shaded). In this case individuals
always resist, q = 1, and vffta < 1−α. Other parameter values are taken as P = 20,
vf = 0.01, vh = 0.05, th = 10, ta = 5, α = 1/2.
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Chapter 5

Including Parasite Strategies

In the intraspecific case Broom & Ruxton (1998) considered the optimal p strategy,
which was the probability that an individual will choose to kleptoparasitise. In the
previous sections we were setting p = 1, i.e. if a parasite encountered a handling host
it would always try and steal the food, and found the optimal q value. In this section
we will look at the optimal parasitic strategies for different environmental conditions.
Since when hosts never resist contests it will always be beneficial for the parasite to
kleptoparasitise, we will just consider the case where the host always resists (q = 1)
and the parasite can choose to kleptoparasitise (with probability p) or not.

5.1 The Model

We will assume that the searching parasites only kleptoparasitise the host species,
and the parasitic population is split up into searchers (SP ), handlers (HP ) and those
in an aggressive contest (AP ), hence SP + HP + AP = P . We will now refer to the
subpopulations of hosts as SH , HH and AH . Note that the subscript “H” denotes
that a subpopulation of hosts, and the subscript “h” denotes a property associated
with handling. We will also assume that the parasities eat the same food items as
the hosts, and that they both encounter these food items at the same rate (i.e. vff).
Another assumption is that the average time taken to handle a food item is the same
for both the hosts and the parasites (i.e. th). These assumptions are for simplicity,
although they are probably not very realistic. The transition rates between the
subpopulations of both the host and the parasite are shown in Figure 5-1.

Hence, for the hosts we have

dSH
dt

=
1
th
HH + α

1
ta
AH − vffSH , (5.1)
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Figure 5-1: Transitions between the subpopulations of searchers, handlers and those
involved in an aggressive encounter for both host and parasite populations. Here hosts
always resist contests and parasites can choose to kleptoparasitise with probability, p.
Transition rates are in bold. The dashed red line represents where kleptoparasitism
occurs.

dHH

dt
= vffSH −

1
th
HH + (1− α)

1
ta
AH − pvhHHSP , (5.2)

dAH
dt

= pvhHHSP −
1
ta
AH , (5.3)

and for the parasites we have

dSP
dt

=
1
th
HP + (1− α)

1
ta
AP − pvhHHSP − vffSP , (5.4)

dHP

dt
= − 1

th
HP + α

1
ta
AP + vffSP , (5.5)

dAP
dt

= pvhHHSP −
1
ta
AP . (5.6)
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5.2 Optimal Parasite Strategies

Thus we can consider what value of p is optimal for the parasites when the hosts
are always resisting contests. To do this, as before, we can look at maximising the
uptake rate, γP = H∗

P
Pth

, of the parasites. We must first find an expression for H∗
H ,

using Maple, at dynamic equilibrium we find

H∗
H =

vffN

vff + 1
th

+ S∗P pvh(vffta + α)
, (5.7)

we can see that if the number of searching parasites which always kleptoparasitise
tends to infinity then the number of handling hosts will tend towards zero.

For the parasitic system of equations at dynamic equilibrium we have:

(5.6) : A∗
P = tapvhH

∗
HS

∗
P , (5.8)

(P = S∗P +H∗
P +A∗

P ) : S∗P = P −H∗
P − tapvhH∗

HS
∗
P =⇒ S∗P =

P −H∗
P

1 + tapvhH
∗
H

,

(5.9)

(5.4)− (5.5) :
2
th
H∗
P + (1− 2α)

1
ta
A∗
P − (pvhH∗

H + 2vff)S∗P = 0, (5.10)

(5.8) :
2
th
H∗
P − 2αpvhH∗

HS
∗
P − 2vffS∗P = 0. (5.11)

From Figure 5-2 we can see that the average time taken for a parasite which has
just encountered a host handling food to begin handling again (in an environment
where hosts always resist challenges) is

to = (1− p)ts + p(ta + (1− α)ts), (5.12)

where ts is the average time taken for a searching parasite to begin handling again.
This is

ts =
1

vff + vhH
∗
H

+
vhH

∗
H

vff + vhH
∗
H

to. (5.13)

Hence, we can find the average time taken for a parasite which has just started
handling a food item to begin handling again, this is

TP = th + ts = th +
1 + pvhH

∗
Hta

vff + pαvhH
∗
H

. (5.14)

Which is more complicated than before because we have a HH term, and this is
also dependent on p, in the equation. However, we can show numerically that pHH
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Figure 5-2: Probability trees for a parasite which has just had the opportunity to
steal food off a handling host (upper) and a parasite which has just started searching
for food (lower). Showing contest time and the time to find food, (times in bold),
and the probabilities of stealing food, winning contests, and finding a handling host
or a food item when searching for food.

Figure 5-3: pHH against p. Parameter values are taken as P = 20, N = 20, f = 10,
vf = 0.01, vh = 0.05, th = 10, ta = 5 and α = 1/2.

increases when p increases for our default parameters (Figure 5-3). Thus to find the
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conditions for which TP in minimised we can effectively ignore the H∗
H term, as the

same inequalities will hold. Hence p = 0 is the optimal strategy if

1
vff

<
1 + vhta
vff + αvh

(5.15)

which corresponds to vffta > α. On the other hand p = 1 is the optimal strategy if

1
vff

>
1 + vhta
vff + αvh

(5.16)

which corresponds to vffta < α.
Hence, when vffta > α we have that

H∗
H =

vffN

vff + 1/th
and S∗P = P −H∗

P , (5.17)

(5.11) :
1
th
H∗
P − vff(P −H∗

P ) = 0. (5.18)

Thus the uptake rate for this condition is

γP,1 =
H∗
P

Pth
=

vff

1 + thvff
. (5.19)

We can solve (5.7), (5.9) and (5.11) in Maple to find an expression for the uptake
rate for any p. Figures 5-4 (a)–(c) show how the uptake rate is affected by various
parameters.

Using default parameters and α = 1/2, we can find an expression in Maple for
the uptake rate when p = 1 as a function of f . This is plotted, along with the p = 0
case, in Figure 5-5.

In the Broom & Ruxton (1998) paper they find the same uptake rate value for
when vffta > α holds (note: in their paper they use ta/2 as the mean contest time).
In their paper then they are also looking at the optimal parasite strategy {p} and
assume that the hosts that they are challenging will always resist. Thus it makes sense
that when kleptoparasitism never occurs the uptake rate for the parasite should be
the same for both the inter- and intraspecific case. When kleptoparasitism always
occurs and vffta < α Broom & Ruxton (1998) find in the intraspecific case that the
uptake rate for the parasite is

γth =
−(C + 1) +

√
(C + 1)2 + 4CD

2D
, (5.20)

where C = thfvf and D = 2taPvh (because they use ta/2).
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Figure 5-4: The uptake rate for the parasite against p, varying different parameters.
(a) Varying food density, blue: f = 2, magenta: f = 10, red: f = 50. (b) Varying
vf , blue: vf = 0.001, magenta: vf = 0.01, red: vf = 0.1. (c) Varying ta, blue: ta = 1,
magenta: ta = 5, red: ta = 10. Other parameter values are taken as P = 20, N = 20,
f = 10, vf = 0.01, vh = 0.05, th = 10, ta = 5 and α = 1/2.

5.3 Including an avoidance response

In this section we will consider the case where the host population can use an avoid-
ance response or not and is also able to resist or not. The transitions between
subpopulations for both the hosts and the parasites can be seen in Figure 5-6. When
an avoidance response is not used then we can just set s = λ = 0.

Hence we have

dSH
dt

=
1

(1 + s)th
HH + p(1− q)(1− λ)vhHHSP + α

1
ta
AH − vffSH , (5.21)

dHH

dt
= vffSH −

1
(1 + s)th

HH − p(1− λ)vhHHSP + (1− α)
1
ta
AH , (5.22)

dAH
dt

= pq(1− λ)vhHHSP −
1
ta
AH , (5.23)
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Figure 5-5: Plot of the uptake rate, γ, as a function of food density, f . The blue
line is where q = 1 and the black where q = 0. For f > 10, vffta > α and parasites
should never kleptoparasitise, p = 0. For f < 10, vffta < α and parasites should
always kleptoparasitise, p = 1. Hosts always resist contests. The optimal strategy
for each food density is represented by a smooth line. Parameter values are taken as
P = 20, N = 20, vf = 0.01, vh = 0.05, th = 10, ta = 5 and α = 1/2.

dSP
dt

=
1
th
HP − p(1− λ)vhHHSP + (1− α)

1
ta
AP − vffSP , (5.24)

dHP

dt
= − 1

th
HP + p(1− q)(1− λ)vhHHSP + α

1
ta
AP + vffSP , (5.25)

dAP
dt

= pq(1− λ)vhHHSP −
1
ta
AP . (5.26)

At dynamic equilibrium we find that:

(5.23) : A∗
H = tapq(1− λ)vhH∗

HS
∗
P , (5.27)

(N = S∗H +H∗
H +A∗

H) =⇒ S∗H = N − (1 + tapq(1− λ)vhS∗P )H∗
H , (5.28)

(5.21)−(5.22) :
2

(1 + s)th
H∗
H+p(2−q)(1−λ)vhH∗

HS
∗
P+(2α−1)

1
ta
A∗
H−2vffS∗H = 0,

(5.29)

=⇒ H∗
H =

vffN
1

(1+s)th
+ vff + p(1− λ)vhS∗P (1 + q(α− 1 + vffta))

. (5.30)
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Figure 5-6: Transitions between the subpopulations of searchers, handlers and those
involved in an aggressive encounter for both host and parasite populations. Here
hosts always use an avoidance response. Transition rates are in bold. The dashed
red line represents where kleptoparasitism occurs.

From the equations for the parasite population we have

(5.26) : A∗
P = tapq(1− λ)vhH∗

HS
∗
P , (5.31)

(P = S∗P +H∗
P +A∗

P ) =⇒ S∗P =
P −H∗

P

1 + tapq(1− λ)vhH∗
H

, (5.32)

(5.24)− (5.25) :
2
th
H∗
P − (2− q)p(1− λ)vhH∗

HS
∗
P + (1− 2α)

1
ta
A∗
P − 2vffS∗P = 0,

(5.33)

=⇒ 2
th
H∗
P + 2p(1− λ)vhH∗

HS
∗
P (−1 + q − αq)− 2vffS∗P = 0, (5.34)

H∗
P =

−thP (2p(1− λ)vhH∗
H(−1 + q − αq)− 2vff)

2 + 2p(1− λ)vhH∗
H(taq − th(−1 + q − αq)) + 2thvff

. (5.35)

Hence, when parasites never kleptoparasitise, p = 0, we find the uptake rate for
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the host and the parasites respectively as

γH =
H∗
H

N(1 + s)th
=

vff

1 + (1 + s)thvff
, (5.36)

γP =
H∗
P

Pth
=

vff

1 + thvff
. (5.37)

To find the uptake rates when parasites always kleptoparasitise we will need to
use Maple to solve (5.30), (5.32) and (5.34).

In this section we will not be considering the conditions for minimising the time
expenditure, we will just be looking at maximising the uptake rate.

Plots of the uptake rate for the parasites and hosts with varying α can be seen
in Figures 5-7 –5-9. In Figures 5-7 and 5-8 we have used a low food density value of
f = 1. In Figures 5-9 (a) and (b) we have looked at at high food density value of
f = 100. We have also assumed hat if an avoidance response is used by a host then
it will be a “good” one, i.e. one for which s = 0.1 and λ = 0.9.

5.3.1 Optimal strategies for the parasite for low food densities.

We can see from Figure 5-7 that the best scenario for the parasite (in terms of
maximising its uptake rate) is when the host never resists contests and does not use
an avoidance response, and the parasite always kleptoparasitises (the red line), which
is an obvious conclusion for low food densities.

We can also see that when the probability of winning is greater than a value α1,
then it is always optimal to kleptoparasitise. If p = 1 and q = 0 then the uptake
rate for the parasite is independent of α (because contests never even occur) and is
always lower when the host uses an avoidance response than when it doesn’t. This
result makes sense because the parasite will not be encountering hosts as frequently
so there won’t be as many handling parasites.

We also observe that when the host always resists and α < α1 then it is optimal
for the parasite to never kleptoparasitise. When the parasite does steal food however,
the parasite has a higher uptake rate when the host uses an avoidance response than
it does when the host doesn’t use an avoidance response. If α is low then there will
be more handling hosts in the population because they are more likely to win the
contests, and thus if p = 1 then there will be more hosts for the parasites to exploit.
Hence this could increase the number of handling parasites (and thus γP ) because
there will be more contests. We can see that when p = q = 1 and α → 0 in (5.35)
then HP is greater when s, λ 6= 0, i.e. when an avoidance response is used.
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We can also see that when α < α2 other than when p = 1, q = 0 and r = 0, the
parasites uptake rate is greatest when p = 1, q = 0 and r = 1, however when α > α2

this is greatest when p = 1, q = 1 and r = 0. Thus, when a parasite is likely to win a
contest then it benefits from the host resisting but not using an avoidance response,
because in this case it will probably win and also encounter hosts at a higher rate.
When the parasite is less likely to win a contest (α < α2) then it is best for the
parasite to never be resisted. We can find that α1 = 0.05 and α2 = 0.26.

Figure 5-7: Uptake rates for the parasite when the probability of it winning, α, is
varied. When an avoidance response is used (r = 1) we take s = 0.1 and λ = 0.9, we
have also set f = 1. Black line: p = 0 (this gives the same uptake rate regardless of
the value of q or r); red line: p = 1, q = 0, r = 0; magenta line: p = 1, q = 0, r = 1;
blue line: p = 1, q = 1, r = 0; green line: p = 1, q = 1, r = 1. Other parameter
values are taken as P = 20, N = 20, vf = 0.01, vh = 0.05, th = 10 and ta = 5

5.3.2 Optimal strategies for the host for low food densities.

For the host population the best scenario is obviously when the parasite never klep-
toparasitises and when no avoidance response is used (using one would have no bene-
fits if p = 0). For p = 1 we can see from Figure 5-8 that when an avoidance response
is used (the magenta and green lines) and α > α3 then the uptake rate for the host
is always higher than when one is not used (the blue and red lines). When α < α3
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Figure 5-8: Uptake rates for the host when the probability of it winning, 1 − α, is
varied. When an avoidance response is used (r = 1) we take s = 0.1 and λ = 0.9, we
have also set f = 1. Black line: p = 0, r = 0; black dashed line: p = 0, r = 1; red
line: p = 1, q = 0, r = 0; magenta line: p = 1, q = 0, r = 1; blue line: p = 1, q = 1,
r = 0; green line: p = 1, q = 1, r = 1. Other parameter values are taken as P = 20,
N = 20, vf = 0.01, vh = 0.05, th = 10 and ta = 5.

and p = 1 then the uptake rate is higher when the host always resists.

When p = 1 and r = 1 and α < α4 it is best for the host to always resist contests,
but when the chance of the host winning is very low (α > α4) it becomes optimal for
the host to never resist contests.

When p = 1 and r = 0 the same thing happens, but this time the threshold
α value between always and never resisting, α5, is slightly higher. Hence when an
avoidance response is not used it is only for very low probabilities of winning that a
host should decide not to resist contests anymore. We find α3 = 0.08, α4 = 0.97 and
α5 = 0.99.

5.3.3 Optimal strategies for the parasite for high food densities.

When we look at high food densities we can see from Figure 5-9 (a) that it is best
for the parasite to kleptoparasise when the host never resists (obviously). Otherwise
it is always optimal not to steal food.
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When the parasite does steal food however we can see that that the uptake rate
is higher when the host always resists and uses an avoidance response (the green
line) than when the host always resists and never uses an avoidance response (the
blue line). This could be accounted for because of the fact that when there is a high
food density then obtaining food from foraging would be more profitable than from
stealing it. So when a host uses an avoidance response the parasite has a decreased
chance of encountering kleptoparasitic opportunities, and thus it will mostly forage
for its own food, and hence the parasites uptake rate will be higher than when the
host does not use an avoidance response and thus gets in to costly contests more
often.

5.3.4 Optimal strategies for the host for high food densities.

From Figure 5-9 (b) we can see that for p = 1, q = 1 and r = 0 (the blue line) the
uptake rate of the host actually increases as their probability of winning decreases for
high food density. However for p = 1, q = 1 and r = 1 (the green line) the uptake rate
of the host decreases (very slightly) as its probability of winning decreases. Perhaps
this is because when α is high then the parasite has a good chance of winning and
becoming a handler (and thus meaning less searching parasites in the population),
and also because there is a high food density then the rate of finding food and thus
moving from SP to HP will also be higher. Hence, handling hosts will have less
attacks by kleptoparasites and also because there is high food densities there will be
a high transition rate between SH and HH .

On the other hand when the probability of the parasite winning is low and no
avoidance response is used then the parasite population in the SP subgroup will be
high so there will be a higher threat from kleptoparasites and the uptake rate will be
less. When an avoidance response is used (and p = 1 and q = 1) then the uptake rate
of the host decreases with it’s probability of winning. This could be because there
will be less aggressive encounters happening in the first place (which accounts for the
uptake rate changing only slightly with α), so although food is found at a high rate
because food density is high, there are more SP in the population than there would
be if an avoidance response was not used.
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Figure 5-9: Uptake rate as a function of probability of winning. When an avoidance
response is used (r = 1) we take s = 0.1 and λ = 0.9, here we have set f = 100.
(a) The parasites uptake rate; (b) the hosts uptake rate. Black line: p = 0, r = 0;
black dashed line: p = 0, r = 1; red line: p = 1, q = 0, r = 0; magenta line: p = 1,
q = 0, r = 1; blue line: p = 1, q = 1, r = 0; green line: p = 1, q = 1, r = 1. Other
parameter values are taken as P = 20, N = 20, vf = 0.01, vh = 0.05, th = 10 and
ta = 5. Note: in graph (b) the green line also represents the black dashed line.

5.4 Optimising Searching

We will now drop the assumption that parasites have a fixed rate of encountering
handling hosts. We will now assume that the parasites have a finite capacity for
searching which they need to divide between searching for food items and searching
for handling hosts. Broom & Ruxton (1998) describe how in certain wading birds
this is more realistic since detecting prey items involves looking down, but observing
other species involves looking sideways, thus there is a trade-off between effectiveness
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in these two activities. As in Broom & Ruxton (1998) we will express the relationship
between searching for food items and searching for handling hosts by

vfP
β1

+
vh
β2

= 1 (5.38)

(note that before the rate of searching for food items was the same in both the
parasite and the host populations, this rate is now vfP for parasites and vfH hosts).
Hence the parasites strategy is now defined by {vfP , p}. We will define “insular”
parasites as ones which only look for food items, hence vh = 0 and thus vfP = β1.
Insular parasites would never encounter handlers, thus the value of p chosen would be
irrelevant. “Aggressive” parasites are defined as those which look for kleptoparasitic
opportunities (and hence play p = 1), so vH > 0, and thus vfP < β1.

As in Broom & Ruxton (1998) we will now find the ESSs by considering a fixed
population density and looking at the circumstances for which all parasites will either
be Aggressive or Insular.

When tafvfP > 1 − α holds we previously found that the parasite should play
p = 0, thus for this condition the parasite should not waste any time searching for
handling hosts, and hence the only ESS is {vfP = β1, p = 0}.

When tafvfP < 1 − α holds then we found that the parasite should play p = 1,
we show in Appendix B that for this case {vfP = β1} can still be an ESS when the
following hold

f > −2(5qβ2 − 10β2 + β1)
β1(1 + 100qβ2)

, (5.39)

(where β1 ≤ 10β2 since f ≥ 0) or (in an alternative form)

q < −β1f − 20β2 + 2β1

10β2(10β1f + 1)
, (5.40)

(where β1 <
20β2

f+2 since 0 ≤ q).
Thus we have seen the conditions for which insular parasitism is an ESS. When

tafvfP < 1− α holds and (5.39) does not hold, then the optimal strategy is {vfP <
β1, p = 1}. However it becomes very difficult to find the conditions for which aggres-
sive parasitism is an ESS, and thus we have left this out.
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Chapter 6

Discussion

6.1 Conclusions

In the basic model, where if a parasite encounters a handling host it will always
challenge it, we found that a host should always resist kleptoparasitic attacks when
vffta < 1 − α, and should never resist kleptoparasitic attacks when vffta > 1 − α.
When vffta = 1− α then it will take an encountered host the same average amount
of time to begin handling again regardless of whether it resists the challenge or not.
Hence, behaviour change for the host solely relies on the ratio of time in an aggressive
encounter to the time taken to find food items. If food is easy to find or fight time is
long, then the host should never resist attacks; when food is hard to find and fight
times are short, then the host should always resist kleptoparasitic challenges. We have
shown that when a host changes between always and never resisting kleptoparasitic
attacks, then there is no change in the uptake rate. We find that the uptake rate is
maximised when p = 1 if vffta < 1−α, and maximised when p = 0 if vffta > 1−α,
and for these conditions the average time to become a handler after being encountered
is also minimised. In other words, the strategy which optimises individual pay-off,
for any of the environmental conditions considered, also optimises the uptake rate
for the population. This makes sense since in our model the choice of strategy by an
individual host should make no difference to the other hosts. In Broom & Ruxtons
(1998) work on intraspecific kleptoparasitism, however, they find that the uptake rate
is higher when no kleptoparasitisism occurs, but when vffta < α it is evolutionarily
stable to always kleptoparasitise. This is because if one individual in a population of
non kleptoparasites switched to kleptoparasitism then the others in the population
would be worse off.

We then looked at when the amount of previous handling a food item has already
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received has implications on how much food value will be obtained. We consid-
ered when handling takes a fixed time, th, and the reward is extracted continuously
throughout its handling. This is different from in our basic model where handling
took a fixed time and then the whole food value was obtained, and adds another
factor to the hosts’ decision of whether it is optimal to resist a kleptoparasitic attack
or not. We found that if a handler is challenged over a food item which still requires
a further amount of handling time, x, then if x < Xa, where

Xa =
1

2vhP (2vffta − 1)
(2 + 2vhPthvffta + vhPth

±
√

4 + vhPth(4 + 4v2
ff

2t2a(vhPth − 8) + 4vffta(6 + vhPth) + vhPth)).

(6.1)

then it is optimal for the host to surrender the food item. Alternatively, if x > Xa

(with Xa as above) then it is optimal for the host to resist the challenge. We found
that when vffta < 1 − α then for most values of x it is optimal to resist contests.
When vffta > 1 − α then there becomes less values of x for which it is optimal
to resist contests. We found that when the probability of the host winning in low
(α ≥ 0.953) then it is never optimal to resist contests for any value of x. Thus the
conditions for always resisting contests or never resising contests to be optimal, are
generally the same even when considering a different type of food item to in our basic
model.

We have also included the possibility of the host using an avoidance response. We
found that if the host always surrenders kleptoparasitic attacks then it should use an
avoidance response if s < ss, and not use one if s > ss, where

ss =
λvhP

vff + (1− λ)vhP
. (6.2)

On the other hand, if the host always resists kleptoparasitic attacks then it should
use an avoidance response if s < sr, and not use one if s > sr, where

sr =
λvhP (vffta + α)

vff + (1− λ)vhP (vffta + α)
. (6.3)

We then allowed the parasite to choose whether to kleptoparasitise or not, and
found the optimal strategies for the parasite when the host always resists attacks
(when the host never resists attacks it will always be optimal for the parasite to
kleptoparasitise). We found when vffta > α it is optimal for the parasite to never
kleptoparasitise, and when vffta < α it is optimal for the parasite to always klep-
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toparasitise. These are the same conditions as found in the intraspecific case by
Broom & Ruxton (1998), this makes sense since the only difference that we have is
that the parasite is not kleptoparasitised by other parasites, and hence the pay-offs
of stealing food or not should not be affected.

We then looked at the optimal strategies for the host and parasite when the host
was able to resist or not and use an avoidance response or not and the parasite was
able to kleptoparasitise or not. Using our default parameters, we found that for the
parasite in an environment with low food density (f = 1) the optimal strategy is
p = 1 when q = 0. On the other hand, when the host always resists, if α < 0.05
then the optimal parasite strategy is p = 0, and if α > 0.05 then the optimal parasite
strategy is p = 1. In high food densities (f = 100) if q = 0 then the optimal parasite
stategy is p = 1 for any value of α, but if q = 1 then it is p = 0 for any value of α.
Hence these results agree with the conditions for p = 0 or p = 1 to be optimal as
found in the previous section.

Hence when there is no parasitic pressure then it is optimal for the host to never
use an avoidance response, we can see that this keeps with our earlier findings of
when s > ss or s > sr then is it optimal never to use an avoidance response. These
hold since when there is no parasitic pressure then vhP = 0 and hence sr, ss = 0. It
makes sense that a host shouldn’t waste energy using an avoidance response when
there is no parasitic threat. Using our default parameters, we found that low food
densities when p = 1 and α < 0.97 then the optimal host strategy is {q = 1, r = 1},
for these conditions we find that s < sr holds. When α > 0.97 then the optimal
host strategy switches to {q = 0, r = 1}, and here we find s < ss holds. In our basic
model we found that q = 1 should be the optimal host strategy when vffta < 1−α,
which for these conditions is equivalent to α < 0.95, and likewise q = 0 is the optimal
host strategy when α > 0.95. Hence it could be estimated that the same conditions
as in the basic model are needed for determining whether resisting contests or not is
optimal. For high food densities we find that {q = 0} is the optimal host strategy
when p = 1 whether an avoidance response is used or not, for these conditions s > ss

holds, and we also find that vffta > 1− α and hence this also agrees with our basic
model.

We have also considered when parasites have a finite capacity for searching, and
looked at the conditions for which dedicating all efforts to searching for new food
items is an ESS, when tafvfP < 1− α holds. This is when

q < −β1f − 20β2 + 2β1

10β2(10β1f + 1)
, (6.4)
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(where β1 <
20β2

f+2 since 0 ≤ q).

6.2 Extensions and Limitations

Our model assumes that all individuals are intrinsically identical, however this may
not always be an accurate assumption. Individuals could vary in their ability to find
food, their ability in a contest (and therefore their probability of winning and the
time taken in a contest) and the time they take to handle food items, thus strategies
could vary depending on the individual. For example a juvenile host may do better
to always surrender food even if food densities are low, because it may be a lot
weaker than the parasite and have no chance in winning in a contest. Also, from the
study by Ridley & Child (2009) where juvenile pied babblers were observed to be
more frequently attacked by kleptoparasites, we could also assume that the encounter
rate should be different for individual hosts. Perhaps parameters could be seen as
functions of age, with very young or very old hosts having lower rates of finding food,
a lower probability of winning in a contest and longer handling times.

As mentioned earlier, our analysis in the later chapters has assumed that when
a host uses an avoidance response then it will be a “good” one. This is probably
quite unrealistic and could be extended to look for the conditions needed for host
and parasite strategies to be optimal for a whole range of different types of avoidance
response. We also didn’t consider what the effect of using an avoidance response
would have on other hosts not using an avoidance response. It would be of interest
to see what the conditions were for r = 0 being an ESS. It might be expected that if
the whole population played r = 0, and a rare mutant plays r = 1, then the mutant
strategy could actually take over the resident strategy because kleptoparasites would
be more likely to encounter individuals playing r = 0.

An extension of this interspecific model for kleptoparasitism would be to look at a
structured population model for the hosts, as it could be expected that certain host
species forage and handle food in groups. Group handling could be an avoidance
response as observed in boobies by Le Corre & Jouventin (1997) and also Vickery
& Brooke (1994), which would mean that if a group was small in size, or if a host
handled alone then it would have an increased risk of kleptoparasitism (and a possible
decrease in risk for the other groups). Also, for larger groups there would be more
intraspecific competition for resources within the group. Thus it might be expected
that hosts have very different intake rates of food depending on the size of their
group, and hence it would be unrealistic to take this rate as equal for the whole host
population as we did before.
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In our basic model we found the optimal strategies as ones which minimise the
time taken for a handler which has just been encountered by a kleptoparasite to start
handling food again. Perhaps as a extension we could allow contests to also have a
cost associated with physical harm to the host (due to injury), and look for optimal
strategies which minimise this too.

Finally, since the parameter values used here were taken from a paper that gave
no empirical evidence to suggest that they or the units used are correct, it would be
worth finding experimental values for various species. It also might be interesting to
compare results for different pairs of host and parasitic species. Our assumption that
vf and th are the same for hosts and parasites will probably be inaccurate, since we are
considering different species which will have different foraging and handling abilities.
Hence it would be worth checking with real data how inaccurate this assumption is,
and changing the analysis accordingly.
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Appendix

A. Checking Equilibrium state

In our previous models we have assumed that the population has an equilibrium
state and when analysising we have assumed that the population is at this state.
Luther & Broom (2004) point out that if we are considering a bird population at the
beginning of the day (when they are all searchers), then we need to know whether
the equilibrium will have been reached by the end of the day, i.e. do the population
spend most of the day in this state or are they still converging towards it when they
return to their nests at night? In this section we will check whether the equilibrium
state found in Chapter 2 is stable, and whether the population converges to this
equilibrium quickly.

If we consider a small perturbation of the population from the equilibrium (where
∗ denotes the subpopulation at equilibrium), so that

S = S∗ + εs, (6.1)

H = H∗ + εh, (6.2)

A = A∗ − εh− εs. (6.3)

we can see whether or not the equilibrium state is stable by seeing if these disturbances
of the population when it is in its equilibrium state decay to zero.

Substituting these into our basic model equations (2.1)-(2.4) we have

ds

dt
=

1
ε

(
dS

dt
− dS∗

dt
) = (

1
th

+ (1− q)vhP −
α

ta
)h+ (−vff −

α

ta
)s = as+ bh, (6.4)

dh

dt
=

1
ε

(
dH

dt
− dH∗

dt
) = (− 1

th
− vhP −

1− α
ta

)h+ (vff −
1− α
ta

)s = cs+ dh. (6.5)

Hence we have the Jacobian matrix

J =

[
−vff − α

ta
1
th

+ (1− q)vhP − α
ta

vff − 1−α
ta

− 1
th
− vhP − 1−α

ta

]
, (6.6)
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where tr(J) = −vff − α
ta
− 1

th
− vhP − 1−α

ta
< 0 and det(J) = 1

ta
(1/th + vffvhP +

qvhP (α− 1 + vffta) > 0. Hence the equilibrium state is stable.
We can see from the Figures 2-2 that the equilibirum population densities are

reached relatively quickly (they take about 40 seconds), and this would change very
slightly for different sets of parameter values.
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B. When is {vfP = β1} an ESS?

We will look at a mixed population of parasites playing two different strategies
for vfP , and find the conditions for when a large population of parasites (of density
P1) playing {vfP } cannot be invaded by another initially rare population of parasites
(of density P2) playing {ufP }, for any possible ufP . We have SP,1+HP,1+AP,1 = P1,
SP,2 +HP,2 +AP,2 = P2 and P = P1 +P2. From (5.21)–(5.23) and because P1 >> P2

dSH
dt

=
1

(1 + s)th
HH + p(1− q)(1− λ)vhPHHSP,1 + p(1− q)(1− λ)uhPHHSP,2 + α

1
ta
AH − vfHfSH

≈ 1
(1 + s)th

HH + p(1− q)(1− λ)vhPHHSP,1 + α
1
ta
AH − vfHfSH , (6.1)

dHH

dt
= vfHfSH −

1
(1 + s)th

HH − p(1− λ)vhPHHSP,1 − p(1− λ)uhPHHSP,2 + (1− α)
1
ta
AH

≈ vfHfSH −
1

(1 + s)th
HH − p(1− λ)vhPHHSP,1 + (1− α)

1
ta
AH , (6.2)

dAH
dt

= pq(1− λ)vhPHHSP,1 + pq(1− λ)uhPHHSP,2 −
1
ta
AH

≈ pq(1− λ)vhPHHSP,1 −
1
ta
AH . (6.3)

Hence from (5.30) we have

HH =
vfHfN

1
(1+s)th

+ vfHf + p(1− λ)vhPSP,1(1 + q(α− 1 + vfHfta))
. (6.4)

Since (5.24)–(5.26) will be the same for the two parasite populations (with their
respective encounter rates) (5.32) becomes

SP,1 =
P1 −HP,1

1 + tapq(1− λ)vhPHH
, SP,2 =

P2 −HP,2

1 + tapq(1− λ)uhPHH
, (6.5)

and (5.34) becomes

2
th
HP,1 + 2p(1− λ)vhPHHSP,1(−1 + q − αq)− 2vfP fSP,1 = 0, (6.6)
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2
th
HP,2 + 2p(1− λ)uhPHHSP,2(−1 + q − αq)− 2ufP fSP,2 = 0. (6.7)

If strategy vfP is better than strategy ufP , then P1 will have a higher proportion
of handlers than in P2, i.e. when HP,1/P1 > HP,2/P2. Taking p = 1, we can solve
equations (6.4)–(6.7) using Maple to find that this occurs when

β1

10β1f + 1
>

ufP f + 20uhP + 2ufP − 10quhP
f + 2 + 200uhP f + 10ufP f2 + 20ufP f

. (6.8)

Where we have taken r = 0, α = 1/2, vfH = 0.05, ta = 5, th = 10 and N = 20
for simplicity. We have also taken the case when vfP = β1, i.e. the P1 population of
parasites is insular, and thus we have also taken vhP = 0. Hence from (6.8) we find
that insular parasites are using a better strategy than aggressive parasites when

f > −
2(5quhP − 10uhP − ufP + β1)

β1 − ufP + 100quhPβ1
= −2(5qβ2 − 10β2 + β1)

β1(1 + 100qβ2)
, (6.9)

or (in an alternative form)

q <
−β1f − 2β1 + ufP f + 20uhP + 2ufP

10uhP (10β1f + 1)
= −β1f − 20β2 + 2β1

10β2(10β1f + 1)
, (6.10)

where we have also substituted uhP = β2(1− ufP /β1).
Since f ≥ 0

−2(5qβ2 − 10β2 + β1)
β1(1 + 100qβ2)

≤ 0, (6.11)

must also hold. Hence β1 ≤ β2(10 − 5q) ≤ 10β2. Furthermore, since 0 ≤ q we must
also have

0 < −β1f − 20β2 + 2β1

10β2(10β1f + 1)
, (6.12)

which holds when β1 <
20β2

f+2 .
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