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Abstract

Place, boundary vector, head-direction and grid cells located in the hippocampus
provide neural representations of space. This representation acts as a scaffold for
learning about the environment, and develops independently of spatial experience.
Investigating the properties of spatial firings in hippocampal cells from young animals
may yield insights into how this scaffold emerges and develops.
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1 Introduction

How we perceive our environment and our place in that environment has been questioned
for centuries. Through the developments of neuroscience, Kant’s argument that some of
our spatial representation exists before environmental experience (as opposed to derivation
from sensory impression alone) can be tested.

Investigation into whether or not the brain has an underlying cognitive map of location
started with the work of Tolman (1948). The discovery of place cells (O’Keefe & Nadel,
1978) with spatially localised firings suggested that the hippocampus and its surrounding
areas play a role in spatial representation. From there, the more recent discovery of grid
cells in the medial entorhinal cortex by Hafting et al (2005) has suggested that an underlying
metric for the estimation of location exists. Grid cells fire in a very regular pattern which
could unfeasibly be because of individual association with features in the environment, and
hence suggests that they act as a framework for the external spatial environment.

This cognitive map exists independently of exploration of the environment (O’Keefe &
Nadel, 1978) and hence investigation into the firings properties of hippocampal cells in young
animals could give us an insight into how this map emerges and develops.

This report will give a review of the methods used to obtain and analyse recordings of
hippocampal cells. Data collected from rat pups between the ages of 16 and 30 days will be
analysed. The number and the orientation of maximal Fourier components, as well as the
percentage of spatially periodic cells will be found for each of the different ages.

2 Hippocampal Cells

The neuronal firing properties in the hippocampus of rodents have largely been the subject
of experimentation when investigating spatial representation. This is done by recording the
firing patterns of cells simultaneously with the animal’s spatial location as it forages for
food in a familiar enclosure. Cells are recorded from different sections of the hippocampus
(see Figure 1 for locations), and different sections have a different composition of cell type.

Place, boundary vector, head-direction and grid cells have a temporal organisation known
as theta phase precession. The interaction of these cells makes up the neural representation
of space and self-location within the space (Burgess & O’Keefe, 2011).

2.1 Place, Boundary Vector and Head-direction Cells

Place cells are fired whenever the animal is in a specific region of the environment. This
firing is independent of both the orientation of the animal and any external cues (Jeffery &
Burgess, 2006). Figure 2a shows the firings of a place cell in relation to the location of the
animal in an environment. Boundary vector cells fire whenever an environmental boundary
is near to the animal (Lever et al, 2009) and fire independently of head-direction. These cells
contribute environmental information to place cells, where place cell firing is a thresholded
summation of the boundary vector cells which synapse into it.

Head-direction cells are fired when the animal is facing in a particular direction, inde-
pendent of the animals location (Taube, 1998). These cells are thought to provide a sense
of direction for spatial navigation.
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2.2 Grid cells Elizabeth Gallagher

Figure 1: A schematic section cut perpendicular to the longitudinal axis of the hippocampus.
Adapted from Burgess & O’Keefe (1996).

Figure 2: (a) Place cells in the hippocampus. (b) Grid cells in the medial entorhinal cortex.
Spike locations in shown in red and the rats trajectory shown in black. Taken from Moser,
Kropff & Moser (2008).

2.2 Grid cells

The spatial firings of grid cells form a periodic triangular arrangement (see Figure 2b).
These cells are found in the medial entorhinal cortex (mEC) and pre- and parasubiculum,
and have multiple spatial firing fields (Fyhn et al, 2004).

Different grid cells can be characterised by the spacing between their fields, the orien-
tation relative to an external reference axis (the definition of orientation shown in Figure
3a) and their phase. Neighbouring grid cells in the mEC have a similar grid spacing and
orientation (see Figure 3b), but their grid phase can be very different. Furthermore dorsally
located cells have a smaller grid spacing than ventrally located cells (Figure 3b) (Hafting
et al, 2005). Figure 3c illustrates how most of the environment explored by an animal is
covered by the firings of different grid cells, with offset grids.
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Figure 3: (a) The orientation of grids, Φ: the angle between a row of peaks and a camera-
defined horizontal line. (b) Vector illustration of orientation; red lines show dorsally located
cells, blue lines show ventrally located cells. (c) Superposition of three nearby grid cells’
firing fields. Taken from Jeffery & Burgess (2006).

3 Analysis of Recordings

The firing rate of hippocampal cells (often from the superficial layers of the medial part
of the dorsocaudal mEC and adjacent parasubiculum) are recorded simultaneously with
the animals position as it moves around an environment. These cells are recorded by a
microdrive implant loaded with four tetrodes. As there are multiple unit recordings from
the tetrodes, single cells can be identified by manual cluster-cutting (see the supplementary
materials for Krupic et al (2012) for details). The animal’s position and direction are
measured by tracking two LEDs which are fixed onto the animal.

The number of spikes fired in a section of the environment (2.5cm2 bins in the case of
Krupic et al (2012)) are divided by the time the rat spent there, and this information is
used to produce an unsmoothed firing rate map. Smoothed rate maps are then found by
applying a smoothing method (such as adaptive, boxcar or circular disc smoothing). Figure
4 shows the unsmoothed and smoothed rate map for a grid cell.

The spatial periodic firing patterns of the cells are made up of plane waves (bands) from
a discrete set of orientations and wavelengths. Hence the firing pattern can be used to
classify the type of cell being recorded.

3.1 2D Fourier Spectral Analysis

Cells which have a significant spatial periodicity in their spatial firing patterns can be
identified by two-dimensional Fourier spectral analysis. The cells’ spatial firing-rate is the
summation of several Fourier components, which are periodic spatial bands with unique
wavelengths and orientations.

The 2-D Fourier spectrogram can be calculated as:

F [ly, lx] =
1

frmean
√
MxNy

N−1∑
n=0

M−1∑
m=0

f [m,n]e−2πi
(

mly
M + nlx

N

)
, (1)

where f [m,n] is the unsmoothed firing rate map, with the mean firing rate subtracted
and zero-padded (to increase spatial resolution) to have size Mx×Ny = 256×256. F [ly, lx] is
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3.2 Spatially Periodic Cells Elizabeth Gallagher

Figure 4: Representation of data from a grid cell (rat 1475, trial 091007d, tetrode 3, cell
1).a) Locations of spikes fired. b) Bins visited by rat. Unsmoothed (c) and boxcar smoothed
(with kernel size 7) (d) rate maps. Low to high frequencies are shown in dark blue to dark
red respectively, white represents no recordings from this bin.

a matrix of the Fourier components corresponding to unique plane waves specified by (ly, lx).
frmean is the mean firing rate of the whole trial and Mx and Ny are the width and length of
bins in the original firing rate map before zero-padding, dividing by frmean

√
MxNy allows

for comparison between firing rate maps from different sized environments and between cells
with different firing rates.

3.2 Spatially Periodic Cells

If the cells’ maximal Fourier component is higher than 95% of that in spatially shuffled
data, then the cell can be classed as a spatially periodic cell (SPC) (see Figure 5a). The
shuffled data is found by wrapping the time-shifted spike train around the position data.
The maximum Fourier power, maxP [ly, lx], is:

P [ly, lx] =
√
F 2
real[ly, lx] + F 2

imag[ly, lx]. (2)

Figure 5b shows the distribution of SPCs and the types of SPCs in the recordings from
Krupic et al (2012).

Spatially periodic grid cells usually have three main Fourier components with similar
wavelengths and with orientations at 60◦ from one another (see Figure 5c). Non-grid SPCs
tend to have a greater range of relative orientations and wavelengths (Krupic et al, 2012).

3.3 Stability

The stability of the firing patterns in familiar environments, between successive trials on the
same day and between successive trials on different days, can be considered. This stability
is measured by calculating the Pearson product-moment correlation coefficient between the
rate maps.

Krupic et al (2012) found that grid-cell firing patterns and the orientations of their
Fourier components were more stable, on both comparisons, than those of spatially periodic
non-grid cells.
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3.4 Orientation Elizabeth Gallagher

Figure 5: a) Histogram of maximum normalised Fourier power. The mean threshold ±
standard deviation of 95th percentile values from shuffled data are shown in red. b) Com-
position of data from Krupic et al (2012). Proportion of spatially periodic cells (SPC) in
all of the cells (left); proportional of grid cells (GC), conjunctive grid cells (conj. GC),
head-direction correlates (HD) and others in the spatially periodic cells only (right). c) 2D
Fourier spectrogram with wave vectors shown in white (bottom left) and the main Fourier
components. Taken from Krupic et al (2012).

The stability across different environments can also be considered. From the recordings of
Krupic et al (2012), 11% of the SPCs changed from grid cells to non-grid cells (or vice versa)
between trials in the same environment, and 32% changed across different environments.

3.4 Orientation

From the analysis of Krupic et al (2012) the Fourier components of grid cells are aligned
and orientated at 60◦ to one another. Furthermore, the orientations of spatially periodic
non-grid cells are aligned with those of the grid cells, but also include other orientations
(Figure 6a). Figures 6b & c show the distributions of the orientations of grid cells and of
spatially periodic non-grid cells found. 65% of the cells in the mEC were spatially periodic,
and of these 48% were grid cells. In the PaS 79% were spatially periodic, however here only
18% were grid cells.

It is suggested that the mEC’s anatomical inputs prefer components at 60◦ and the
parasubiculum might represent an intermediate stage in the construction of stable grids
from periodic bands (Krupic et al, 2012).
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Figure 6: a) Histogram of the orientations of the main Fourier components of grid cells
(black) and nongrid spatially periodic cells (red) in a single rat. Distributions of the relative
orientations of the Fourier components of all the grid cells (b) and all the spatially periodic
non-grid cells (c) from all rats analysed. Taken from Krupic et al (2012).

4 Spatial Representation with Age.

Hafting et al (2005) found that grid fields exist from the beginning of environmental explo-
ration and furthermore prevail with landmark removal, but how much of a spatial map an
animal is born with and how much is learnt from experience is unknown.

Anatomical development of the hippocampus continues up until rats are seven weeks old,
and hence rats under P40 are impaired in spatial navigation tasks. In terms of specificity and
stability of locational firing, it was found that place cell development progresses alongside
spatial navigation development, but head-direction cells develop fully before hippocampus
maturation (Martin & Berthoz, 2002).

Wills et al (2010) looked at the emergence and development of place, head-direction and
grid cells when rat pups first began to explore their environment, which was typically at
the age P16 (postnatal day 16). A similar pattern was found in several properties of these
cells with age. The proportion of cells, their stability over time (measured from one trial
to the next) and quality of spatial encoding (by using the spatial information per spike)
were measured. It was found that both directional and place cells have significant adult-like
amounts for these properties from P16 and in place cells they also increase with development.
Significant amounts of grid cells, however, appear at P20 and level off at P22 (see Figure
7).

The data used for our analysis was taken from the recordings of hippocampal pyramidal
cells and medial entorhinal cells from 42 male Lister Hooded rats between the ages of P16 and
P30. Detailed information of the experimental procedure can be found in the supplementary
material for Wills et al (2010). Cells were classed as grid cells if they had a gridness score
(a definition of this can be found in the supplementary material of Krupic et al (2012)) of
more than 0.3.

4.1 Cell Inclusion.

Of 2847 cell recordings, 1119 were selected for analysis. These satisfied the following condi-
tions:
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4.1 Cell Inclusion. Elizabeth Gallagher

Figure 7: Patterns of three properties of directional (green), place (red) and grid (blue) cells
with age. Mean percentage of cells per rat (a), stability (b) and quality of spatial encoding
(c), as a function of age (solid lines). Dashed lines show the p = 0.05 significance level for
the mean value for each cell type based on spike-shuffled data. Adapted from Wills et al
(2010).

1. Spatial information, Rayleigh vector and gridness score have all been calculated;

2. the rat was recorded in a familiar environment;

3. the recording was probably taken from the EC1, EC2, EC3 or parasubiculum (each
with certainty 2/3 or 3/3);

4. the length of the path taken by the rat was more than 45;

5. the number of spikes fired was more than 100;

6. the position data wasn’t too sparse.

We found the percentage of bins that the rat had been in to find whether or not the
position data was not too sparse. This was done by first trimming the position data and
then calculating the percentage of visited bins in the trimmed environment, if this was over
80% the cell was included (see Figure 8).

Figure 8: An example of trimming, before (left) and after (right). From the position data
of trial 031007a, tetrode 3, cell 2. 56.57% of the trimmed environment has position data.
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4.2 Reflections Elizabeth Gallagher

4.2 Reflections

Some of the data was corrupted by misinformation from reflections on the edge of the
environment. This would cause the readings to falsely say that the rat had been in a
position bin here. Hence, the position recordings were put through a filter to remove the
false positions. If 80% or more of a row or column of bins were identified as 0 (i.e. the rat
hadn’t been there) then the whole row was converted to reading that the rat had not been
there. This process was applied outwards in until the first row or column of less than 80%
unvisited bins appears. Hence if there was a row or column in the centre of the environment
where the rat happens to never visit, it would not be converted to a row or column of
unvisited bins. Figures 9a & b show this filtering process.

Figure 9: Reflection filtering. a) Illustration of how reflection filtering works, before (left)
and after (right). Row 5 and column 4 remain unchanged even though they have more than
80% unvisited bins. b) Smoothed rate map for 121107g, tetrode 2, cell 2. Before (left) and
after (right) the application of reflection filtering.

4.3 Fourier Components

The Fourier power spectrum was found for each cell. It was normalised to be between 0 and
1 for ease of comparison. Figure 14 shows the Fourier power plots for ten rats with ages
separately coloured. The mean Fourier power for both grid and non-grid cells per age for
each rat were also found (Figures 15 and 16).

The maximum Fourier components were found for each cell, this was done by a process
of smoothing the power spectrum and then finding maxima (this process can be seen in
Figure 10). The distribution of the angles of the maximum components follows a general
pattern in both the grid and non-grid cells (see Figure 11), with peaks at around 10◦, 90◦
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4.3 Fourier Components Elizabeth Gallagher

and 170◦ in both. There was not much diversion from this trend when looking at ages
separately either (see Figures 17 and 18).

Figure 10: Examples of finding maxima for a grid (rat 1475, trial 081007a, tet 3, cell 1) (a)
and non-grid cell (rat 1514, trial 071207e, tet 2, cell 2) (b). Smoothed rate maps shown
on left and Fourier power shown on right. Fourier power (black), Fourier power smoothed
(blue), maximum peaks (minimum distance between peaks taken as 20) (red points).
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4.4 Spatially Periodic Cells Elizabeth Gallagher

Figure 11: Distribution of maximum Fourier components of grid (above) and non-grid (be-
low) cells

4.4 Spatially Periodic Cells

The spike data was shuffled 1000 times and the maximum Fourier component was taken each
time. The 95th percentile was found for these 1000 maximum Fourier components. Cells
were classed as spatially periodic if their maximum Fourier power was over this percentile.
Of the cells analysed, 18% were classed as spatially periodic. 43% of grid cells were classed
as spatially periodic and 14% of non-grid cells were classed as spatially periodic. The
percentage of cells which were spatially periodic increased with age (see Figure 12). In non-
grid cells the number which were spatially periodic didn’t change much with age, however
in grid cells the number seemed to increase with age (see Figure 13).

Figure 12: Percentage of SPCs for each age.
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4.4 Spatially Periodic Cells Elizabeth Gallagher

Figure 13: Percentage of SPCs for grid cells (above) and non-grid cells (below), for each
age. Ages where no data is available is marked with ‘N/A’.
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5 Discussion

This report has aimed to review some of the standard analysis details of the firing rates of
hippocampal cells as an animal moves about an environment. Some analysis on the data
of young rats has been made; the number and orientations of maximal Fourier components
and the percentage of spatially periodic cells (SPCs) have been considered for each age.

The maximum Fourier components for both grid and non-grid cells followed a trend in
their orientation, with peaks about at every 80◦. There did seem to be a slight shift to a
smaller oscillation period in the grid cells, perhaps being closer to the 60◦ oscillation reported
in other work. It was found that for grid cells the percentage of SPCs increased with age,
however in non-grid cells this percentage did not change much with age (furthermore the
percentage of SPCs was generally higher for grid cells). This could correspond to the result
of Wills et al (2010) where certain properties (proportion, stability and quality) of grid cells
(unlike place and head-direction) appeared at P20. This suggests that adult-like properties
of grid cells develop with age rather than appear from the onset.

Due to the time limitations of this project we were not able to calculate the number
of Fourier components greater than the 95th percentile of spike shuffled data. It would
have been of interest to see if there was any trend with age in the number of main Fourier
components in spatially periodic grid and non-grid cells. This could be compared with the
results of Krupic et al (2012) where grid cells usually had three and non-grid cells had one
to four. Also, it would have been more interesting to look at the orientations of components
greater than this threshold with age, rather than the method used in this report to find
maximal Fourier components used.

Another extension could include looking at spatial periodicity and gridness in the en-
torhinal cortex and parasubiculum separately. It would interesting to test the suggestion
found in Krupic et al (2012) that the parasubiculum acts as a sort of stage between periodic
bands and stable grids. This could be done by looking at the proportion of SPCs which are
grid cells in each of these areas for every age.

In conclusion, trends in the firing properties of hippocampal cells as a rat develops could
lead to a better knowledge of which aspects of neural representation exist before experience,
and those which emerge with development and/or exploration. This report has attempted
to find some of these trends.
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Figure 14: Fourier power plots. Dashed lines represent non-grid cells (gridness scores are
less that 0.3), solid lines represent grid cells. Rat 1475 (a), 1493 (b), 1499 (c), 1514 (d),
1547 (e), 1578 (f), 1610 (g), 1612 (h), 1628 (i) and 1630 (j). Age represented by colour (see
key).
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Figure 15: Mean Fourier power for non-grid cells (dashed lines, gridness scores less that
0.3), and grid cells (solid lines). Rats 1475, 1493, 1499, 1500, 1514, 1527, 1528, 1529, 1547,
1551, 1553 and 1555 reading from left to right, top to bottom. Age represented by colour
(see key).
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Figure 16: Rats 1563, 1564, 1565, 1578, 1579, 1610, 1611, 1612, 1628, 1630 and 1638.
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Figure 17: Distribution of maximum Fourier components of grid cells for each age.
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Figure 18: Distribution of maximum Fourier components of non-grid cells for each age.
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