
CoMPLEX

University College London

Mini Project 3

Understanding The Mathematics of HIV
Transmission In Concentrated Settings

Dimitrios Voulgarelis

Supervisors: Dr Jasmina Panovska-Griffiths, Dr Zindoga Mukandavire & Prof
Charlotte Watts

Abstract

In this project we will look at how mathematical modeling can enhance our understanding
of the HIV transmission between FSWs and clients in concentrated settings. Initially we
present a review of the various available modeling approaches to date and then develop
and study a theoretical framework in which to explore the key aspects that drive the HIV
transmission between female sex workers (FSWs) and their clients. Using analytical tools
(steady-state analysis, complicated algebraic manipulations) and numerical analysis we
explore the effect of model key parameters (sexual activity rates and retirement rates) on
HIV prevalence and R0. Our results point towards the key drivers of HIV transmission
between these two groups how they can be used to fight HIV transmission.
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Chapter 1

Introduction

HIV infection remains a global issue with over 34 million people living with HIV world-
wide [41]. HIV disease progresses in three stages: the acute infection stage, the clinical
latency stage and the AIDS stage [4]. During the early period of infection (acute in-
fection stage) large amounts of the HIV virus are being produced in your body. The
virus uses CD4 cells to replicate and destroys them in the process. CD4 cells are a type
of helper T cells responsible for signaling when invaders enter and hence vital for the
adaptive immune system of the organism. Because of their destruction by the HIV virus
the CD4 count can fall rapidly in the initial stage of HIV progression until eventually
hosts immune response begins to bring the level of virus back down to a level called a
viral set point, which is a relatively stable level of virus in your body. At this point, your
CD4 count begins to increase, but it may not return to pre-infection levels. Following
this initial stage is a much longer one called latent period, where the virus produces no
symptoms, but the HIV virus remains active and can reproduce albeit at slower pace
[4]. The person remains infectious but less than in the initial stage. The second clinical
latency stage can last a long time. If treatment with anti-retroviral drugs (ART) is taken
the infected person may remain in this stage, is less infectious and may never progress
to the last AIDS stage. ART is normally available when CD4 count falls below 350
cells/mm3. The third and final stage is AIDS occurs when the CD4 count drops further
and remains below 200 cells/mm3. This stage is characterized with a severely damaged
immune system and hence the body becomes vulnerable to opportunist infections. Most
of HIV diagnosis occurs after the initial infectious stage and when the person enters the
second clinical latency stage of progression. The asymptotic nature of the initial stage
makes the early capture of HIV difficult and this in turn makes the disease difficult to
control.

In different settings across the world the transmission of the HIV virus occurs amongst
different population groups. In concentrated settings the transmission of HIV is generally
between different high-risk groups (female sex workers and their clients, men who have
sex with men or injection drug users) with the HIV prevalence amongst the general popu-
lation remaining low and below 1% [5]. In generalized settings the HIV prevalence in the
general population is greater than 1% and transmission can occur among all population
groups [5].
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There have been many worldwide studies that looked at the behavioral, epidemio-
logical, social and cost aspects of HIV transmission and hence potential intervention.
Avahan, funded by Bill and Melinda Gates Foundation from 2003, represents the largest
HIV prevention intervention targeting FSWs, MSM and IDUs in 63 districts in India
and aiming to reduce the HIV transmission and prevalence among these high-risk groups
[19]. Specifically Avahans aim in targeting female sex workers (FSWs) was to increase
their consistency of condom use, and as a consequence reduce HIV transmission between
FSWs and clients, and subsequently the general population. To achieve this, the Avahan
programme provides community support and funds large-scale surveys to access its im-
pact and cost. Avahan funding included a large-scale programme evaluation. Specifically,
a series of district level cross-sectional integrated behavioral and biological surveys (IB-
BAs) were conducted [2][3]. These datasets have been previously combined with extensive
mathematical modeling to assess Avahans impact [27][33]. We note that even though the
collected data from studies such as Avahan are crucial in understanding the nature of HIV
transmission based on behavioral, epidemiological and cost data, the impact of different
interventions requires analytical studies such as to understand the cost-effectiveness of
different interventions and how to optimally design them (e.g. which components are
crucial etc) [27].

Therefore, mathematical and computational modeling is essential in the study and
fight against HIV transmission. One of the prime uses of modeling is to gain better
understanding of the transmission dynamics of the infection both in within-host and
population scenarios. Using a modeling framework defined by theoretical mathematical
equations we can design a unique framework for comparing the effect and significance
of various model parameters, testing possible hypothesis, evaluating the efficiency of in-
terventions for prevention of HIV transmission, aid the design of controlled programs in
different settings as well as quantifying the socioeconomic effects of the infection. These
aspects cannot be conducted in as part of epidemiological or behavioral studies or tested
with any other means.

Mathematical modeling of HIV is mainly conducted in two different levels, within-
host and population level. A review of previous models in both of these categories is
outlined in Chapter 2. The former modeling approach allows the study of the disease
progression and behavior of the infection within the human body, with a potential to
explore its dynamics, temporal evolution and stages and response to drug and therapy
in general. This type of modeling is essential in order to understand the disease itself in
a molecular level and aids towards the goal of finding a cure. The latter models focus
on the HIV transmission between and within different population groups and explore the
various risk factors and how to potentially reduce these and hence reduce the risk of HIV
transmission and increased HIV prevalence or incidence. This category of mathematical
models is vital for research regarding prevention mechanisms as well as monitoring the
outbreak of an epidemic.

One of the most important factors concerning a disease is its ability to spread within
a population. If the spread can be controlled then the infection will not reach pandemic
state and can be constraint. One of the key things in halting the spread of infections
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such as HIV, is the rate at which additional (secondary) infections can originate from the
primary infection. If no secondary infections can occur, or they occur and are controlled
then the spread of the infection can also be controlled. A parameter that can capture this
analytically is the reproduction number R0 defined as the number of secondary infections
produced due to an individual entering a disease free population. Within the mathemat-
ical models for HIV transmission (as well as other infectious diseases) the value of R0

controls the fate of the epidemic [11], with R0 value less than 1 yielding a disease-free
steady state and controlled epidemic whereas a value of R0 greater than 1 allows for a
secondary spread of the infections and the HIV reaching an endemic steady state. Due
to the importance of this parameter vast amount of research has focused this parameter
both for within-host and population models.

Within this project we will look at how mathematical modeling can aid our under-
standing of the HIV transmission between FSWs and clients in concentrated settings.
We will first review, in Chapter 2, the various available modeling approaches available to
date and then use the gained knowledge, in Chapter 3, to develop and study a theoretical
framework in which to explore the key aspects that drive the HIV transmission between
female sex workers (FSWs) and their clients. Specifically we will use analytical tools
(steady-state analysis, complicated algebraic manipulations) and numerical analysis to
explore the effect of model key parameters (sexual activity rates and retirement rates)
on HIV prevalence and R0. Our results will be used to interpret the key drivers of HIV
transmission between these two groups and we will discuss how this is important in the
quest against HIV.
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Chapter 2

Review of HIV Models

Mathematical and computational modeling plays an important role in the quest to gain
a better understanding of the complex processes that control the progression of HIV and
affect the transmission of HIV in different setting and between populations. Construct-
ing mathematical models allows for theoretical framework to be developed in which the
transmission dynamics of the infection both in within-host and between different popu-
lations can be studied.

Mathematical modeling of HIV is mainly conducted in two different levels: the cellular
level i.e. within a human host or on population level i.e. between different society
subpopulations. In the remainder of this chapter we outline the characteristics of these
two modeling levels, present different mathematical and computational approaches used
as well as highlight the difference between them.

2.1 Within-Host Models

The within-host modeling is generally associated with the immunological properties of
the HIV disease progression and focus on understanding the response of the organism
to the virus. Different analytical approaches have been used to undertake such cellular
level modeling including applications of ordinary differential equations (ODEs), stochas-
tic differential equations (SDEs), delay differential equations (DDEs) as well as partial
differential equations (PDEs). In each of these systems a simplified network of differential
equation are used to describe the temporal (ODEs) or spatio-temporal (PDEs) evolution
of the HIV virus in absence or presence of noise (SDEs) and sometimes considering the
effect of temporal delay in progression (DDEs)

The most basic model formulated is a simple system of ordinary differential equa-
tions describing the dynamical evolution of the virus population and the (infected and
uninfected) CD 4+ cell population. The main characteristics of these equations are the
rate of influx of new (uninfected) cells, the natural and the infection-related death rate,
the infection rate as well as the virus clearance rate. All these terms constitute the ba-
sic formulation which has two steady states, the infection-free and the infected steady
state.R0 < 1 yields that the systems will reach the infection-free steady state and R0 > 1
the opposite. Many variations-additions have been made to this simple model, in the con-

5



text of ODEs. One of the basic added features was the return of cells to the uninfected
state due to the observation that there are infected cells that are not yet producing virus
[29]. This was approached in different ways. Rong et al. [32] added an eclipse class, where
the cell are not producing any virus and return to the uninfected class at a constant rate,
whereas Chandra and Srivastava simulated the return of cells from the infected class itself
(without introducing a new class) [35]. Furthermore, a different variation was the intro-
duction of non-linear interaction between uninfected cells and virus by Wang and Song
[38], in contrast to the vast majority of mathematical models use a linear interaction term
proportional to the concentration of virus and uninfected cells. Their non-linear terms
would account for saturation in high virus concentrations and enhanced interaction in the
case of small viral load or multiple exposures. Using numerical analysis they confirmed
the stability of the two steady states for R0 < 1 or R0 > 1. Despite the simplicity of
ODE models useful insights were provided by their analysis and data were successfully
fitted.

In addition to ODEs there are two more approaches used extensively in infectious
diseases modeling that are still part of the deterministic regime. These are delay differen-
tial equations (DDEs) and partial differential equations (PDEs). As discussed previously
there is the period where the cells are infected but not yet infectious (do not produce
virus)[4]. This means that there is an intrinsic delay that needs to be taken into account
when modeling HIV. As a result a number of researchers focused on DDEs to model the
dynamics of the infections. Initially, this delay was modeled by Perelson et al. [29] with
the addition of a fourth class of cells, the latently infected cells. Culshaw and Ruan [9]
simplified the model by including three classes and using discrete delay to model the
non-infectious stage. They found that the system can exhibit reach dynamics depending
on the parameter assumptions and that despite the fact that some parameters can give
the appropriate stability, independently of the delay, in certain cases delay-dependent
oscillations can occur. Finally, to account for the different rates of virion production by
the cells and the different death rate, Nelson et al. [26] used PDEs to create an age-
structured model for HIV where the above are time-dependent. They showed that this
model is a generalization of the standard ODE models used before and found two steady
states (uninfected and infected).

In order to account for fluctuations in the system and explicitly include noise, stochas-
tic models are also extensively used to simulate HIV dynamics. Since the majority of
biological phenomena have a degree of randomness this type of modeling seems appro-
priate. The randomness stems from the complexity of biological phenomena and hence
from the fact that the same setting can often produce different results (same number of
cells and virions interacting yields different end-situations). These models are particu-
larly important for the early stages of HIV dynamics and the calculation of extinction
probabilities. Tuckwell and Le Corfec incorporated noise in the standard equations and
added stochasticity to the mechanisms that control infection as well as movement across
the different classes of cells, to model the early dynamics of HIV [36]. Additionally
they examined the effect of different parameters using perturbation. Another example of
stochastic models used in early stages is the model by Pearson et al. [28]. They tested two
different ways of viral production, continuous and in bursts. This separation is impossible
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using deterministic models since for a certain set of parameter values there exists a single
realization and so continuous versus in burst would give the exact same results. What
was show is that these two types not only have different early dynamics but also different
extinction probabilities. Finally, Dalal et al. [10] posed a deterministic ODE model of
HIV dynamics including the effect of Highly Active Antiretroviral Treatment (HAART).
HAART inhibits the process of virus particle formation [10] and as a results keeps the
viral load low and the CD4+ levels high. Stochastic death rates were then added to both
CD4+ cells and virions due to the randomness introduced by various biological phenom-
ena that drive their death. They proved that the model possesses non-negative solutions
and that in certain cases it approaches asymptotically the disease-free equilibrium.

2.2 Population Models

The population models of HIV transmission focus on exploring the key drivers of HIV
infection among different population groups. These models are compartmentalized with
different compartments representing different society population groups. And a number
of different mathematical tools can be used to study the transmission among different
compartments.

The vast majority of population (transmission) models are based on the basic SIR
(susceptible-infected-recovered or dead) model introduced by Kermack and McKendrick
[20]. This is a system of three ODEs describing the evolution of the three populations and
was used to model, among many other infectious diseases, HIV transmission. One of the
first deterministic ODE models for HIV was proposed and explored by May et al. [22].
They introduced two simple models of homosexual men, one with a closed (constant)
population and the other with a varying population by including constant immigration
and death rates. Another very important aspect of their work was incorporating the effect
of non-homogeneous mixing by dividing the population is subpopulation with different
mixing. They derived analytical expression for the simplest model but numerical simula-
tion was needed for the more complicated models (varying population, non-homogeneous
mixing). A similar model was studied by Hyman and Stanley [18] focusing mainly on the
initial stages of the epidemic and the effect of random or like prefers like mixing, con-
cluding that different mixing was a very strong effect on the dynamics of the epidemic.
Later models studied heterogeneous populations and particularly high risk groups, which
drive the infections, such as that of female sex worker and male clients [24],[31].

Moreover, as with within-host modeling, PDE and SDE models are used for determin-
istic population models as well. A good example for this kind of modeling is the paper by
Garnett and Anderson [15]. They extended previous literature and proposed a two-sex
PDE model stratified by age and sex activity. They concluded that the mixing patterns
among age and sex activity classes play a crucial role on the demographic impact of the
disease and can substantially affect its course. Regarding DDEs, a very interesting paper
by Mukandavire et al. [25] proposed the use of discrete delay differential equations to
model the incubation period explicitly, in contrast to previous papers. The model was
then solved numerically to identify the effect of the incubation period on the dynamics of
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HIV epidemic and what was found is that long incubation period comes with increased
HIV/AIDS prevalence ratio.

Alongside deterministic models (ODEs, PDEs, DDEs) stochastic methods are used
to model HIV epidemiology. This type of methodology is particularly interesting when
trying to include environmental randomness (noise) or simulate complex interactions. For
the latter, a very interesting and promising approach is the use networks (graph theory)
to represent the interactions/relations of the population. Dala et al. [10] introduced noise
(stochasticity) to a system of equations describing AIDs and condom use by the means
of parameter perturbation, hence creating a system of SDEs. Their results indicated
that the system processed biologically relevant solution and that noise helped stabilize
the system. Furthermore, they concluded that noise did not affect the importance of
critical parameter such as condom use. In a more computational rather than mathemat-
ical approach, Gray et al. [16] performed a stochastic stimulation to study the effect
of antiretroviral therapy and vaccines on HIV dynamics. What they found is that over
a period of 20 years there can be a substantial decrease in HIV infection by combining
ART and low efficiency vaccines, but this is highly dependent on the behavior of both
HIV-positive and HIV negative individuals. Behavioral disinhibition due to treatment
(vaccines, ART) could substantially decrease its effectiveness. Regarding stochastic sim-
ulations using networks, one of the first papers using this approach was proposed by
Morris and Kretzschmar [23], to explore the effect of concurrent relationships and the
different with sequential monogamy in HIV transmission. Concurrent relationships ad-
mitted dramatic changes in the early stages of the epidemic and rapid increase in the
number of infected and the speed of infection. A more complicated stochastic network
simulation was conducted by Sloot et al. [34]. Using complex networks they included
all the different types of HIV spreading (homosexual, heterosexual, drug users) and their
results were in agreement to real data.

Mathematical and computational modeling of infectious diseases and more specifically
of HIV is a very promising field. Although such research has been conducted for several
decades there are still large unexplored or underexplored areas. It is clear that mathemat-
ics and informatics offer more and more useful tools and methods to answer important
questions in both internal and external level each with its benefits and drawbacks. In the
following chapter a model for the HIV transmission between female sex worker FSW and
their clients is presented and analyzed with the main focus placed on the importance of
relative populations or sexual activity rates and retirement rates.

Motivated by the modeling reviewed here, in this project we have focused on using
deterministic system of ODEs to describe the HIV transmission between female sex worker
FSW and their clients. This framework is motivated by the core group theory analyzed
in [29] and which explores whether a core group can be responsible for HIV transmission
or is it the interplay between different interactions and key processes that drives the
infection. In the following chapter a simple model is presented and analyzed using steady-
state analytical and numerical solutions with the main focus placed on the importance
of relative populations or sexual activity rates and retirement rates. The data for the
models parameters are drawn from the Avahan dataset and our results are discussed in
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Chapter 3

Mathematical Model for HIV
Transmission Between FSWs and
Their Clients

3.1 Overview

In this chapter we develop and study two simple deterministic ODE models for HIV
transmission between FSWs and their clients. The first model accounts for keeping the
population of FSWs and their clients constant in time, whereas in the second model we
allow for influx of new individuals in each population group and hence the second model
is a variable population model. In the literature the difference between these two models
is often discussed with the former model chosen for ultimately due to simplicity. Our
aims in developing both models is to explore how different are the results on the two
models.

Each model is comprised of four compartments: susceptible and infected populations
of FSWs and susceptible and infected clients. We assume a movement from susceptible
to infected compartments with HIV infection and once and individual is infected becomes
infectious. Hence for simplicity we do not account for the latent period of infection. The
steady state solutions of both models are used for our analysis. For the first model (con-
stant populations) an analytical solution for the steady state prevalence is possible due
to the simplicity of the equations in contrast to the variable population models where
numerical solutions are necessary. Parameter values for both models are drawn from the
Avahan data set as used in [27].

The goal of our modeling is to explore the importance of two key parameters, the
retirement rate and the sexual activity rate on HIV transmission between these two
populations. As measures of the level of transmission we will use HIV prevalence in
FSWs and clients and their respective R0. Hence, we will focus on exploring how the
number of sexual partners and the retirement rate affect the prevalence ratios and the
partial reproduction number ratios. Simultaneously, we want to investigate if these effects
are different in the fixed and the variable model.
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3.2 Description of Mathematical Model

The general system of differential equations describing the HIV transmission is given
below.

dSc
dt

=KcNc − λcSc + (µ+ δc)Sc (3.1)

dIc
dt

=λcSc − (µ+ γ + δc)Ic (3.2)

dSsw
dt

=KswNsw − λswSsw + (µ+ δsw)Ssw (3.3)

dIsw
dt

=λswSsw − (µ+ γ + δsw)Isw (3.4)

The first term of the susceptible compartments, KiNi, is the influx of individuals which
is given by a constant rate, Ki, times the total population for each group Ni, to repre-
sent in the case of the variable population model the decrease or increase of incoming
individuals due to the increase or decrease of the total population. The second term,
λiSi is the number of individuals leaving the susceptible compartment due to infection
and become infected, hence the negative sign, and is proportional to the total susceptible
population. This is the same as the first term in (3.2,3.4), the number of people entering
the infected population, from the susceptible population, due to the infection. This term
is comprised of the infection rate λi times the total susceptible population Si. The third
term in equations (3.1,3.3) is the individuals leaving the susceptible population for reason
other than infection, specifically due to retirement or death. A similar term is the second
term of the infected population (3.2,3.4) but with the addition of HIV-related mortality
rate.

The force of infection for clients and FSW are given by λc, λsw. We account for the
force of infection to be proportional to the transmission probability (βfm, βfm) and the
rate of sexual activity (Cc, Csw) with respective partners (Isw/Nsw for the clients and
Ic/Nc for the FSWs).

λc =βfmCc
Isw
Nsw

λsw =βmfCsw
Ic
Nc

Additionally let us define for both model Nc = Sc+Ic and Nsw = Ssw+Isw as the total
population of clients and FSWs respectively, equal to the susceptible plus the infected
population for each group. Assuming that sexual activity has 1-1 correspondence we
have:

CcNc = CswNsw (3.5)
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This equation means that the total number of sexual encounters for clients is equal
to the total number of sexual encounters for FSW. From (3.1) let us further define:

ρc =
Cc
Csw

=
Nsw

Nc

(3.6)

3.3 Parameter definition and values

Parameter Description Symbol Model Value References

natural death rate µ 0.02 (50 years) [1]

HIV related death rate γ 0.1 (10 years) [21]

retirement rate for clients δc 0.14 (7.063 years) [2][30]

retirement rate for FSWs δsw 0.17 (5.762 years) [2][30]

clients sexual activity rate Cc
24.8 (FSWs per client
per year)

[2][30]

FSWs sexual activity rate Csw
438.48 (clients per
FSW per year)

[2][30]

rate of individual entering
client susceptible popula-
tion

Kc 0.16 current paper

rate of individual entering
FSW susceptible population

Ksw 0.19 current paper

risk of infection from female
to male

βfm 0.006 [7][8]

risk of infection from male
to female

βmf 0.006 [7][8]

Here, the life expectancy in India has been taken to be 50 year. Furthermore, the influx
rates, Ki, in our model are functions of other model parameters so their value is not
found in a specific reference.
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3.4 Constant Population Model w/ γ << 1

For the constant population model we take Ni to be time-independent (constant) and
we also make a further simplification by assuming that due to treatment the HIV-related
mortality rate is negligible and hence part of the natural death rate. The reason is that
keeping the HIV mortality rate will introduce and Ii term in the Si equation changing
the nature of the model from an SI(R) to an SIS, since individuals will be entering the
susceptible population from the infected population. The ODE system describing our
model is as follows:

dSc
dt

=KcNc − λcSc − (µ+ δc)Sc (3.7)

dIc
dt

=λcSc − (µ+ δc)Ic (3.8)

dSsw
dt

=KswNsw − λswSsw − (µ+ δsw)Ssw (3.9)

dIsw
dt

=λswSsw − (µ+ δsw)Isw (3.10)

By taking dSi

dt
+ dIi

dt
= 0 (Nc, Nsw) we arrive at Ki = µ+ δi.

3.4.1 Non-Dimensionalization of The Model

Non-dimensionalizing the model (3.6)-(3.9) with respect to the population sizes (Ni)
admits the prevalence mode. Let us define Xi = Si

Ni
and Yi = Ii

Ni
. Then, by dividing the

equation for the client and FSW populations by Nc, Nsw respectively, we arrive at the
system of ODEs, that describes the HIV prevalence in susceptible and infected clients
(Xc, Yc) and susceptible and infected FSWs (Xsw, Ysw):

dXc

dt
=(µ+ δc)− βfmCcYswXc − (µ+ δc)Xc (3.11)

dYc
dt

=βfmCcYswXc − (µ+ δc)Yc (3.12)

dXsw

dt
=(µ+ δsw)− βmfCswYcXsw − (µ+ δsw)Xsw (3.13)

dYsw
dt

=βmfCswYcXsw − (µ+ δsw)Ysw (3.14)

Next we analyse this system using steady-state analysis.

3.4.2 Steady-State Solutions

Taking the left hand side of the equations to zero admits the steady state solution for
the system and hence the long-time behaviour. When the time derivative is zero we are
left we a system of four algebraic equations for four unknowns (Xc, Yc, Xsw, Ysw). There
are two solutions that can be found analytically. The first is the disease free equilibrium
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where Xc = Xsw = 1 and Yc = Ysw = 0. The second is the endemic equilibrium where
the infection has not died out but persists. The endemic steady-state solution is:

Xc* =
(µ+ δc)(cswβmf + µ+ δsw)

cswβmf (ccβfm + µ+ δc)
(3.15)

Xsw* =
(µ+ δsw)(ccβfm + µ+ δc)

ccβfm(cswβmf + µ+ δsw)
(3.16)

Yc* =
cccswβmfβfm − (µ+ δc)(µ+ δsw)

cswβmf (ccβfm + µ+ δc)
(3.17)

Ysw* =
cccswβmfβfm − (µ+ δc)(µ+ δsw)

ccβfm(cswβmf + µ+ δsw)
(3.18)

3.4.3 Prevalence Ratio

Using the endemic steady-state solutions for the infected population prevalence (3.17)-
(3.18) and simplifying by taking the transmission probabiliy from males to females, βmf ,
to be equal to the transmission probability from females to males,βfm, (βfm = βmf = β)
we can define the ratio of FSWs and clients prevalence:

Ysw
Yc

=
Csw(Ccβ + µ+ δc)

Cc(Cswβ + µ+ δsw)
(3.19)

3.4.4 Reproduction and Partial Reproduction Numbers

Applying the methodology used in [37] found in Appendix A, we can define the repro-
duction number of our compartmental constant population model as:

R0 =

√
βmfβfmCcCsw

(µ+ δc)(µ+ δsw)
(3.20)

The reproduction number can also be defined as the square root of the multiplied partial
reproduction numbers. The partial reproduction numbers are defined as the number
of secondary infections produced in a disease-free compartment when a single infected
individual is introduced in different compartment. From (3.20), the partial reproduction
numbers are given by:

Rc
0 =

βmfCc
µ+ δc

(3.21)

Rsw
0 =

βfmCsw
µ+ δsw

(3.22)

14



From the above equations for the partial reproduction numbers their ratio is given
by:

Rsw
0

Rc
0

=
Csw
Cc

µ+ δc
µ+ δsw

(3.23)

3.4.5 Description of HIV Prevalence and R0 In Terms of Sexual
Activity and Retirement Rate

Rewritting the infected prevalence with respect to the reproduction numbers we can show
that there is a one to one correspondence in the prevalence and partial reproduction
number ratios.

Yc* =
cccswβmfβfm − (µ+ δc)(µ+ δsw)

cswβmf (ccβfm + µ+ δc)

=

cccswβmfβfm
(µ+δc)(µ+δsw)

− 1

cswβmf

(µ+δc)(µ+δsw)
(ccβfm + µ+ δc)

=
R2

0 − 1

Rsw
0 (Rc

0 + 1)

Following the same procedure we get an equation for the FSW prevalence wrt to repro-
duction numbers:

Ysw* =
R2

0 − 1

Rc
0(R

sw
0 + 1)

Hence. the prevalence ratio is equal to:

Ysw
Yc

=
R2

0 +Rsw
0

R2
0 +Rc

0

(3.24)

This means that Ysw > Yc or Yc > Ysw ⇐⇒ Rsw
0 > Rc

0 or Rc
0 > Rsw

0 .

To explore the effect of the key parameters we are investigating (retirement and sexual
activity rate) we wanted to know what is the dependence of these ratios on ρc = Cc

Csw
and

ρδ = δc
δsw

. There is no way to write the ratios as functions of ρc, ρδ so in order to have an
indication of what the dependence was we further simplified equations (3.19) and (3.23)
by neglecting µ due to the fact that it is an order of magnitude less than the retirement
rates (δ) and explored the conditions on these key parameters in order to have the FSW
prevalence greater than the client prevalence. Let us first start with the prevalence ratio.
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Ysw*

Yc*
> 1 ⇐⇒ Csw(Ccβ + µ+ δc)

Cc(Cswβ + µ+ δsw)
> 1

Csw(Ccβ + µ+ δc) > Cc(Cswβ + µ+ δsw) ⇐⇒

Csw(µ+ δc) > Cc(µ+ δsw) ⇐⇒ Csw
Cc

>
µ+ δsw
µ+ δc

Retirement rates in the current setting are in the order of one over 5-7 years, O(1), in
contrast to the natural death rate which is in the order of one over 50 years. Consequently
we can ignore it and rewritte the above inequality, using the definition of ρc, ρδ, as:

Ysw* > Yc* (3.25)

ρc < ρδ (3.26)

The exact same holds for the partial reproduction number ratio, from (3.23), if we
neglect the natural death rate. Hence, the FSW prevalence and partial reproduction
number is greater than that of the clients if the sexual activity ratio is less than the
retirement rate ratio.

Rsw
0 > Rc

0 (3.27)

ρc < ρδ (3.28)

3.4.6 Contour Plots

The results of section 3.4.5 are also supported by the following contour plots in Figure
3.1 and 3.2. Here, we created contour plot of the two ratios for varying sex act rate
and constant retirement rate and for varying retirement rate and constant sex act rate.
Additionally what they reveal is the type of dependence on the key parameter ratios
(ρc, ρδ)
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(a) (b)

Figure 3.1: (a)Contour plot of partial reproduction numbers ratio with respect to δc, δsw, for
µ = 0.02, β = 0.006, Cc = 25, Csw = 438. (b)Contour plot of partial reproduction numbers ratio
with respect to Cc, Csw, for µ = 0.02, β = 0.006, δc = 0.14, δsw = 0.17.

(a) (b)

Figure 3.2: (A)Contour plot of prevalence ratio with respect to δc, δsw, for µ = 0.02, β =
0.006, Cc = 24, Csw = 438. (B)Contour plot of prevalence ratio with respect to δc, δsw, for
µ = 0.02, β = 0.006, δc = 0.14, δsw = 0.17.

17



From the contour plots we can see that for both ratios there seems to be a proportional
dependence on ρδ and an inverse proportionality to ρc, since for increasing δc or decreasing
δsw the contours get bigger whereas for increasing Cc or decreasing Csw the contours get
smaller. This observation can be summarized mathematically as:

d
Rsw

0

Rc
0

dρδ
> 0

d
Rsw

0

Rc
0

dρc
< 0 (3.29)

dYsw
Yc

dρδ
> 0

dYsw
Yc

dρc
< 0 (3.30)

Regarding the balance of these ratios, what we usually expect is that the prevalence
of FSW is greater than the client prevalence and hence the ratio greater than one and
the same holds for the partial reproduction numbers. It is interesting to see if there
are realistic parameter values where this balance reverts and how it is affected by the
parameters we investigate. To this end we made a contour plot where the ratios are equal
to unity with respect to the sexual activity rate and investigated the effect of varying
the retirement rate. In the following figures the contour line divides the plot into two
parts. The part below the line (right hand corner) represents the region where the ratio
is less than 1 whereas the part above the line (left hand corner) represents the parameter
region where the ratio is greater than 1. Each line is for a different value of δc, δsw in each
plot respectively. What we can see from the plots is that for some values of δs the region
where Yc* is greater than Ysw* is unrealistic since the values of the sex act rate, for the
two groups, are very close. But with decreasing δc or increasing δsw we enter parameter
regions, less than 1, which are more realistic. In addition to these plots in Figure 3.4 we
can see clearly the effect of lowering the client retirement rate and increasing the FSW
rate. So what we notice is that clients who stay in commercial sex for long periods and
FSWs that stay for very short can turn the balance of the ratio.
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(a) (b)

Figure 3.3: (A)Contour plot of prevalance ratio equal to 1 with respect to Cc, Csw, for µ =
0.02, β = 0.006, δsw = 0.17 and different values of δc. (B)Contour plot of partial reproduction
numbers ratio equal to 1 with respect to Cc, Csw, for µ = 0.02, β = 0.006, δc = 0.14 and different
values of δsw

Figure 3.4: Contour plot of prevalence ratio with respect to δc, δsw, for µ = 0.02, β = 0.006, δc =
0.05, δsw = 0.5.

The graphs for the partial reproduction numbers ratio are exactly the same due to
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the correspondence found in sub-section 3.4.5.

In conclusion, we found that the control of the endemic equilibrium prevalence and
reproduction numbers lies in the balance of the sexual activities ratio and the retirement
rates ratio. Both seem to play a vital role in interchaning the balance between these
ratios. It is interesting to see how this result are affected by a variable population model
with the inclusion of HIV mortality and that is what we investigate in the next section.

3.5 Variable Population Model

In order to add complexity to our previous model constant population model we con-
ducted the same analysis for a variable population.To make the model more realistic,
HIV mortality rate was included in the equations and the ODE system describing it is
given by (3.1-3.4).

Let us define Xi, Yi as before. For the case of the variable population, Ni = Ni(t) and
hence S ′(t) = X ′(t)N(t) + X(t)N ′(t). Something similar holds for I(t). Furthermore,
d(S+I)
dt

= dN
dt

. From these two equations, we derive the non-dimensionalized model.

dXc

dt
=Kc − λcXc −KcXc + γYcXc (3.31)

dYc
dt

=λcXc + γY 2
c − (γ +Kc)Yc (3.32)

dXsw

dt
=Ksw − λswXsw −KswXsw + γYswXsw (3.33)

dYsw
dt

=λswXsw + γY 2
sw − (γ +Ksw)Ysw (3.34)

The reproduction number for the variable model is calculated in the Appendix A and is
given by:

R0 =

√
β2CcCsw

(γ + µ+ δc)(γ + µ+ δsw)
(3.35)

The partial reproduction numbers are Rc
0 = βCc

γ+µ+δc
, Rsw

0 = βCsw

γ+µ+δsw
, with their ratio

being:

Rsw
0

Rc
0

=
1

ρc

γ + µ+ δc
γ + µ+ δsw

(3.36)

Comparing (3.36) with (3.23) we can see that the only difference is the HIV-mortality
rate γ. If we assume small HIV mortality rate, due to treatment, and again neglect the
natural death rate, µ, being an order of magnitute smaller than the retirement rate we
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arrive at the same dependency of the partial reproduction number ratio on ρc, ρδ, as for
the constant population model. This cannot be done for the prevalence ratio but we
can infer from the constant population model results that there might be an one to one
correspondence between the two ratios in the variable model as well as and so something
similar to (3.25)-(3.26).

Due to the complexity of the problem the steady-state analysis yields 16 different
solutions. One of these is the disease-free equilibrium and the rest correspond to the
endemic. Only one of the solutions gives realistic values since most of them give either
negative solution or larger than one. A numerical simulation was also conducted for the
full system (ODEs) showing that there is indeed a single endemic equilibrium indepen-
dent of initial conditions. An analytical solution for the steady state was impossible due
to the fact that the algebraic equations had strong non-linearities. Consequently, the
steady-state solution was found numerically.

To compare this model with the previous, constant population, one we created the
same contour plots to check the dependence of this model on the key parameters being
investigated. In Figure 3.5 we see the contour plots of the partial reproduction numbers
ratio with respect to the sexual act rates and the retirement rates the two plots respec-
tively. The similarity with the constant population model, on the dependence in these
parameters, is evident. Again, here there seems to be an inverse proportionality to ρc
and a proportional dependence on ρδ.

(a) (b)

Figure 3.5: (A)Contour plot of partial reproduction numbers ratio with respect to Cc, Csw, for
µ = 0.02, β = 0.006, δc = 0.14, δsw = 0.17. (B)Contour plot ofpartial reproduction numbers
ratio with respect to δc, δsw, for µ = 0.02, β = 0.006, Cc = 24.8, Csw = 438.
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Using numerical simulation we also created the contour plots for the endemic steady-
state prevalence ratio, Ysw*

Yc*
. As with the partial reproduction numbers ratio we see the

similarity with the constant population model and the same dependencies. The differ-
ence is that the non-dimensionalized model for the variable population has no explicit
dependence on the retirement rates and hence the prevalence also has no dependence.
The only dependence can come from Ki if we assume that it is a function of δi. For the
following plot we have assumed that Ki = µ+ δi.

(a) (b)

Figure 3.6: (A)Contour plot of prevalence ratio with respect to cc, csw, for µ = 0.02, β =
0.006,Kc = 0.16,Ksw = 0.19. (B)Contour plot of prevalence ratio with respect to Kc,Ksw, for
µ = 0.02, β = 0.006, Cc = 24.8, Csw = 438.

To conclude, comparing these plots with the constant population models we see that
there is a clear similarity in the effect of the sexual activity and retirement rates on the
two ratios. So assuming that the influx of individuals and variable population sizes seem
not to affect the results, it is the balance between retirement rate and number of sexual
partners that drive the HIV prevalence and whether the endemic HIV infection occurs.

3.6 Results

We examined the effect of sexual act rate and retirement rate (motility) of clients and
FSWs on the HIV prevalence and Ro in commercial sex settings. Our results indicate
that both parameters play an important role in the balance between the prevalence of
both groups and as a result in identifying the group with the higher risk.

What is normally expected is that FSW are the main risk group and hence inter-
ventions tend to target that particular group, but this can turn out to be ineffective if
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there is a low retirement rata for clients and in addition a high for FSW. The shorter
FSW stay in that setting the lower the risk of getting infected is despite having a larger
number of sexual acts per year and the longer clients stay the higher are the chances of
infection. This effect is enhanced when the difference in the sex act rate or alternatively
the difference in the relative populations (balance equation) is not large. In our current
setting (South India) the difference is large since Cc= 24.8 whereas Csw= 438.48, but
for different setting it might not be the case. To conclude, our modeling points towards
the fact that the retirement and sexual activity rates play a vital role since they affect
steady-state prevalence and highlight different groups as the main target of interventions
and consequently they are key for understanding and preventing HIV transmission.

3.7 Discussion

In this project we have focused on using mathematical modeling and analytical studies to
explore the key factors that drive the changes in HIV prevalence and basic reproduction
number R0 in settings where HIV epidemics is concentrated. In such settings most HIV
transmission occurs amongst high-risk population groups such as FSWs and their clients,
MSM or IDUs whereas the general population has HIV prevalence less than 1%. India
has one of the worlds most concentrated HIV epidemics and here the Avahan HIV pre-
vention intervention has been ongoing since 2003 funded by the Bill and Melinda Gates
Foundation.

Our focus in this project has been the HIV transmission between FSWs and their
clients. With the collated knowledge of previous modeling reviewed in Chapter 2, we
formulated a new deterministic model as a system of ODEs to describe the key compo-
nents of this HIV transmission. Two variations of the model were explored: one when
the FSWs and clients population remains constant and one which accounts for influx of
new individual in these populations groups (variable population model). The decision of
whether a constant or variable model is to be used in modeling HIV transmission is a
complex one and each model has its own advantages.

The constant model is obviously simpler and as evident from our analysis can be
solved analytically to capture the long-time steady state solutions. In the case of the
variable model this is not plausible, and instead the stead-state solutions need to be
derived numerically. The reason why we looked at these two models in parallel was to
see if the overall conclusions are different. Our conclusions in Chapter 3 suggest that
indeed the results remain the same for the two models. We note that this is in line
with the conclusions of the work by Panovska-Griffiths et al [27], where incorporating a
variable population instead of constant did not affect the overall results of the modeling
study. We note however that our analysis is limited in its simplicity and therefore fur-
ther analytically and numerical studies are needed to fully discuss the difference between
constant and variable population models. This was not within the scope of this project
and therefore was not discussed here.

The aim of our project was instead to use steady state analysis of the model to ex-
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plicitly study the importance of two key transmission parameters: the retirement rates
and the sexual activity rates of FSWs and clients on HIV transmission between these
two populations. As measures of the level of transmission we used HIV prevalence in
FSWs and clients and their respective R0. Simultaneously, we explored if these effects
are different in the fixed and the variable model.

Our results (3.25-3.28) suggest that it is the balance between the number of sexual
partners and their retirement rates that drives the increase in HIV prevalence and repro-
duction number. For example, using the (3.25-3.27) we can see for the FSW prevalence
and partial reproduction number to be greater than that of the clients their sexual activ-
ity ratio has to be less than the retirement rate ratio. This is also supported by contour
plots in Figure 3.1 and 3.2. Furthermore from these expressions we notice that clients
who stay in commercial sex for long periods and FSWs that stay for very short can turn
the balance of the ratio of reproduction numbers and prevalence and hence drive the HIV
transmission.

In summary the work presented here represents a step towards better understanding
of the key drivers of HIV transmission between FSWs and their clients. Specifically our
results show that the effect from sexual activity and retirement rates are analogous on
HIV prevalence and reproduction number in FSWs and clients: if the former increases so
will the latter. Furthermore it is the balance between sexual activity and retirement rate
seems to drive the increase in these two variables. Numerical simulations of the model
equations were beyond the scope of this project and hence were not included. The next
natural step in this work would be to numerically solve the two systems of equations and
explore how the dynamical behavior changes and if the influence from sexual activity and
retirement rates on HIV prevalence remains the same.
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Appendix A

Reproduction Number For
Compartmental Models

R0 as mentioned in the introduction is defined as the average number of secondary infec-
tion produced from an infected individual when entering a disease-free environment. This
definition is clear for single population models and R0 is generally given by the contact
rate times the infectious period or death-adjusted infectious period, depending on the
model [17]. Hence, it is usually given by the simple formula:

R0 =
βc

γ + µ
(A.1)

Here, βc is infection probability times sexual activity rate so effectively an average
number of infective contacts and γ+µ is the mortality rate plus the HIV related mortality
rate.

The situation is more complicated for models where there is more than one compart-
ments. For these models a more general definition is appropriate where R0 is defined as
the number of new infections produced by a typical infective individual in a population
at a disease free equilibrium [37].Van den Driessche and Watmough [37] addressed this
problem and proposed a general method for calculating R0 for compartmental models.
Their method was used to derive the reproduction number for our models (constant and
variable). Here we derive R0 for the variable population model. The same method is
used to derive it for the constant population model as well.

First let us define Fi as the rate of new infections for compartment i and Vi the
transfer of individuals from compartment i by means other than infection. For our variable
population model there are four compartments, the susceptible client and female sex
workers and the infected.
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dSc
dt

=KcNc − βfmCc
Isw
Nsw

Sc + (µ+ δc)Sc

dIc
dt

=βfmCc
Isw
Nsw

Sc − (µ+ γ + δc)Ic

dSsw
dt

=KswNsw − βmfCsw
Ic
Nc

Ssw + (µ+ δsw)Ssw

dIsw
dt

=βmfCsw
Ic
Nc

Ssw − (µ+ γ + δsw)Isw

From the above definitions we have:

F =


0

βfmCc
Isw
Nsw

Sc

0

βmfCsw
Ic
Nc
Ssw



V =


−KcNc + βfmCc

Isw
Nsw

Sc − (µ+ δc)Sc

(µ+ γ + δc)Ic

−KswNsw + βmfCsw
Ic
Nc
Ssw − (µ+ δsw)Ssw

(µ+ γ + δsw)Isw



To proceed let us also define F and V, where F = ∂Fi

∂xj
(x0) and F = ∂Vi

∂xj
(x0). Only

the infected compartments are taken into account for this calculation, so {i,j,k}=Ic, Isw.
x0 is the value of the population in each compartment at the disease free equilibrium, so
in this case x0 = (1, 0, 1, 0). From these formulas we can see that the {i,j} component of F
gives the rate at which infected individuals from compartment j produce new infections
in compartment i and the {j,k} component of V −1 gives the time an individual from
compartment k spends at compartment j. Hence, FV −1 admits the average number of
new infections in compartment i produced by an individual introduced in compartment
k. This is called the next generation matrix [37] and its spectral radius gives R0 for the
system. In our particular model F and V are:

F =

 0 βfmCc

βmfCsw 0



V =

 (µ+ γ + δc) 0

0 (µ+ γ + δsw)
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FV −1 is then given by:

FV −1 =

 0
βfmCc

(µ+γ+δsw)
0

βmfCsw

(µ+γ+δc)
0



This matrix admits a double eigenvalue and its square root gives the spectral radius
and hence the reproduction number:

R0 =

√
βmfβfmCcCsw

(γ + µ+ δc)(γ + µ+ δsw)

Following the exact same procedure we can find the reproduction number for the
constant population model defined as:

R0 =

√
βmfβfmCcCsw

(µ+ δc)(µ+ δsw)

31


	Introduction
	Review of HIV Models
	Within-Host Models
	Population Models

	Mathematical Model for HIV Transmission Between FSWs and Their Clients
	Overview
	Description of Mathematical Model
	Parameter definition and values
	Constant Population Model w/ <<1
	Non-Dimensionalization of The Model
	Steady-State Solutions
	Prevalence Ratio
	Reproduction and Partial Reproduction Numbers
	Description of HIV Prevalence and R0 In Terms of Sexual Activity and Retirement Rate
	Contour Plots

	Variable Population Model
	Results
	Discussion

	Reproduction Number For Compartmental Models

