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Abstract

In the current project two extensively studied examples of pattern formation in
developmental biology will be presented. Their mathematical analysis has provided
evidence on the importance of GRN dynamics for robust and accurate patterning,

essential for correct development. Furthermore, the main emphasis will be put on the
research done for the identification of design principles for these transcription factor

networks and their relevance to the real biological systems will be discussed. The two
examples are the neuronal subtype differentiation in the vertebrate neural tube and the
establishment of the body plan in Drosophila melanogaster from the patterning of the
anterior-posterior axis. Finally, some original modelling will be presenting comparing
the stripe-forming ability of mutual inhibition and cooperativity in a simple 3− gene

network using a new theoretical framework for modelling developmental networks.
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Chapter 1

Gene Regulatory Networks in Real
Biological Systems

Pattern formation plays a crucial and dominant role in developmental biology. It is es-
sential for the differentiation of equivalent cells in the early embryo development. This
spatial differentiation is now known to originate from the production and interpretation
of morphogens. The first major part of pattern formation during development is the mor-
phogen, because morphogens are used by organisms to create polarity along embryonic
axes [18]. In developmental biology they can take different forms and they usually are
transcription factors acting on downstream genes or target genes directly. The simplest
example is a temporally static decaying gradient, but there are cases where the morpogen
gradient dynamics change throughout the development [1]. The second part of pattern
formation, and the main discussion of this project, are the gene regulatory networks
(GRNs), whose role is the interpretation of the morphogens.Gene regulatory networks
are comprised of interconnected morphogen downstream genes which can be transcrip-
tion factors regulating other transcription factors and target genes, forming a complex
circuit. Although other mechanisms were initially believed to drive spatial differentiation
in developmental biology (Affinity-Threshold model), GRNs gained ground and a lot of
interest has been shown for their dynamics and architecture. It is widely accepted nowa-
days that these properties (dynamics & topology) are at the core of pattern formation
and cell differentiation for the early embryonic development. The two main examples of
pattern formation in developmental biology are the patterning of the vertebrate neural
tube and of the embryonic axes in Drosophila melanogaster.

1.1 Vertebrate Neural Tube

During the early development, the vertebrate neural tube consists of neural progenitors.
From the ventral midline of the neural tube Sonic Hedgehog (Shh) is secreted forming
a ventral-dorsal gradient. This gradient is then interpreted to form the expression of
patterns of transcription factors (TFs). The expression of these different factors estab-
lishes the discrete dorsal-ventral progenitor domains that produce the specific subtypes
of motor neurons and interneurons [1]. The basic TFs controlled by the Shh gradient are
the Gli TFs. Normally the Gli protein is converted to GliR, a transcriptional repressor,
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but in the presence of Shh this process is blocked and GliA activator is produced. Due
to the fact that there is a Shh gradient present in the neural tube, high near the ventral
region and low near the dorsal, two opposite gradients of GliA and GliR are formed [4].

The GRN of downstream Shh target genes is considered to play an essential role in
this patterning. To see why the logic of the cross-regulatory network is indeed impor-
tant we must first consider a classical model of morphogen pattern formation called the
Affinity-Threshold model (AT) [22]. In this model there is positive correlation between
the expression range of morphogen target gene and their binding affinity. In the current
systems this would mean that genes expressed more ventrally, where the concentration of
the morphogen is high, must have lower affinity whereas genes that are expressed more
dorsally must have higher binding affinities in order to be able to be expressed in regions
where the morphogen concentration is low. Consequently, increasing the binding affinity
would increase the range of expression of all genes and lowering the concentration would
decrease it.

For the neural tube such correlation between expression range and binding affinity
was not found [4]. Experimental data using in vivo reporter of Gli activity showed that
although more ventrally expressed genes reacted to binding affinity changes according
to the Affinity-Threshold model, the more dorsally expressed genes did not. Decreasing
the binding affinity increased the expression of these genes. These data showed a clear
discordance to the AT model. This could be due to the fact that there are two opposite
gradients acting at the same time and could be partially be explained by differences in
the cooperativity or binding affinity of Gli isoforms. However, there is no evidence of dif-
ferent cooperativity or affinity of Gli isoforms [4] and also the observation of the reporter
activity over the course of development showed that the activity of some genes cannot
be explained by fixed threshold of Gli activity [1]. These can be an indication that a
different mechanism is needed to explain the observed spatial differentiation.

In addition, mathematical and computational modeling provided in silico evidence
that the architecture of the downstream network was not only able to interpret the
morphogen correctly but also to give robustness and accuracy to the patterning. The
mathematical model used was a known statistical thermodynamics formulation [24]. In
this formulation the probability of a gene being turned ON is given by the ratio of all
ON states over all possible states, where ON signifies the gene being expressed. The
states are the bound configuration of the DNA to the RNA and to the TFs [3].Then,
the concentration of the gene products is found using an ODE that includes the effect of
production and degredation.

Pbound =

∑
i=stateswithPbound ωi

1 +
∑

i=allboundstates ωi
(1.1)

d[C]

dt
= α[C]− β[C] (1.2)
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Where ωi =
∏

µKµ[Xµ]
∏

µ,ν cµ,ν . Kµs are the binding affinities, cµ,ν is the coopera-
tivity between two occupied sites, µ, ν are the states bound in state i, α is the production
rate of proteins, β is the degradation rate and finally [C] is the protein concentration of
each transcription factor [3].

Using this model, it was possible to simulate the combinatorial effect of two opposite
transcriptional effectors (GliA, GliR) and of the specified GRN. Two independent bind-
ing sites were used for the effectors, to provide non-linearity. The GRN was comprised
of four mutually repressive genes (Olig2, Nkx2.2, Pax 6, and Irx3). Then using Bayesian
methodology the stripe-forming parameter space was found by comparison to the wild-
type gene expression patterns [3].

The model was able to both reproduce the experimentally observed behavior occurring
when the binding affinity changes and the sharp boundaries of gene expression. Further-
more, the system displayed hysteresis, meaning that after a steady state has been reached
it can be maintained even if the signal is reduced[3]. Hysteresis is memory and confers
robustness in case of decrease of the signaling gradient. In addition to the above, another
modeling approach was used for the description of the neural tube GRN providing again
evidence that the accurate and robust patterning is an emergent property of the underly-
ing network [1]. This other model, despite the fact that it used a different mathematical
approach, again shows hysteresis and proves that the network acts as a buffer to signal
fluctuations, both essential for in vivo reliable patterning. So, it is clear from both the
experimental data and the modelling analysis that GRNs are crucial for the development
of the neural tube.

1.2 Drosophila Melanogaster Body Plan

One of the most widely studied examples of developmental patterning is the anterior-
posterior (head-tail) axis patterning in Drosophila melanogaster. This patterning deter-
mines the different body parts of the adult Drosophila. There are three main gene types
involved in this procedure, maternal effect genes, segmentation genes and homeotic genes.
The maternal effect genes form the protein gradients that are essential for the patterning.
These genes include Bicoid (Bcd), Caudal and Nanos. The first two are mainly related
to anterior development whereas the last is related to posterior. Bicoid and Nanos act
as morphogens of opposite polarity, anterior posterior and posterior-anterior respectively
[19]. The second type of genes, segmentation genes, are themselves divided into three
categories, gap, pair-rule and segment-polarity genes, all responsible for the final segmen-
tation of the embryo. Gap genes are first transcriptionally regulated by maternal effect
genes to establish the primary body plan dividing the embryo in large parts. Gap-genes
act as transcription factors for pair-rule genes which divide the embryo in pairs of seg-
ments. Finally pair-rule genes regulate segment-polarity genes which form the final body
segmentations. These different segments assume their identities through the final type of
genes, homeotic genes, whose role is the transcriptional regulation of genes responsible
for anatomical structures [5].
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Manu et al. explored the ability of Drosophila embryos to reduce the phenotypic
variations [27]. Their analysis revealed that in the core of this process lies the cross
regulation of gap genes and that the Bicoid gradient alone was unable to produce the
gap gene expression borders with the observed variance. A gene circuit was built with
differential equations describing the protein production, degradation and diffusion of the
gap genes hb, Kr, gl and kni. The model circuit shows scaling with respect to egg length
and predicts the variance of the gap gene expression borders. Experimental data from
double mutants for Kni and Kr showed that the deviation of the location of the anterior
hb border and the posterior gl border increased markedly. They also found that the
borders are usually set by one activator and one or two repressors and that the gap
gene network is created by mutual repression interactions among the genes comprising
it. To sum up, the modeling revealed that the small variance of the borders, vital for the
correct development of the embryo, was a property of the GRN. The experimental data
were in agreement to these results, further supporting the essential role GRNs play in
developmental patterning.

5



Chapter 2

Design Principles

The importance of GRNs has led many people to start searching in order to identify
design principles of these networks. To support this approach there are papers suggest-
ing that the dynamics of larger networks can be simulated using only a few essential
components and that larger network are created by the combination and repetition of
smaller networks [12][16]. Design principles are common modular features repeated in
many networks vital for, improving stripe-forming ability, robustness and evolvability,
and they can be specific network motifs (e.g. Feed Forward Loops) or gene interactions
(e.g. auto-regulation ,feedback, mutual repression). Computational modeling of ODEs
describing GRNs play a major role in the research for design principles but it is very
important to find a connection between the in silico results and the in vivo observations.

In a well known paper by Sharp and Cotterell [6] an atlas of gene regulatory networks
was built using computational modeling. To search the design space a mathematical
model describing the gap gene patterning was used whose parameters include strength
of interaction between genes, sign of interactions (inhibition or activation), degradation
rates and finally cell-cell communication. Furthermore, molecular noise was added to
the model to make it more realistic, as robustness to noise is essential for real biological
system. The main purpose of the paper was to identify single stripe-forming networks
with no specific stripe width or location. To this end, all the unique 3-gene topologies
were created and simulated using 30000 randomly chosen parameters for every topology.
From a total of 9710 topologies only 471 produced the desired phenotype. For these
471 different topologies a complexity atlas was created and six distinct stripe-forming
mechanisms were found, three of which are used in real biological systems as shown in
the figure 2.1 (Cotterell et al. 2010[6]).
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Figure 2.1: Six mechanisms - Cotterell et al. 2010)

Only one of the six mechanisms made use of the cell-cell communication, where the
loss of communication between cells rendered the systems useless. The three main design
features employed by the six mechanisms are feed-forward, auto-positive feedback and
negative feedback. A very interesting observation is that four out of six mechanisms
rely on feed forward topology which has been identified as an important feature in other
papers as well, as we shall see later. In that specific feature the 3-gene network has the
ability to split the input into distinct channels and can be reduced to a 2-gene network as
the first gene, the one that reads the morphogen, mimics the behavior of the morphogen
gradient. Hence, the same mechanism can be produced by using two genes and multiple
morphogen inputs. What this shows is that the overabundance of the FFL in this de-
sign space exploration could point to a different design principle, not directly related to
GRNs, which is the use of multiple morphogen inputs [6]. Furthermore, another feature
identified in this paper, which is used in many real biological systems, is the mutual inhi-
bition topology. This is observed in both the Drosophila and the Neural tube patterning
discussed previously. The main benefits identified by this paper are the ability to reach
equilibrium very fast, as well as the evolvability of the motif, since this can be used multi-
ple times in larger networks to give rise to many behaviors. Mutual repression and more
generally negative feedback, which is used by the majority of the mechanisms identified
here, is again one of the features found in a number of papers about design principles
and seems to be essential for developmental patterning. Finally, positive auto-regulation
plays a major role in the majority of the six mechanisms by providing bi-stability and
additional robustness to the gene expression.

The three main design principles identified by Sharp & Cotterell, FFL, mutual repres-
sion and auto-regulation, deserve special attention as several papers have praised their
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role in pattern formation. It is important to point out that the difference between the
three designs is that FFL is a specific topological motif, whereas auto-regulation and
mutual repression are gene interactions within the network. As we will see, these interac-
tions can be added to FFLs to enhance their stripe-forming ability, as was the case of the
above-mentioned paper. The mutual repression mechanism was essentially a FFL with
an added negative feedback between the two downstream genes.

There are eight distinct feed forward loops, four coherent and four incoherent, cate-
gorized according to the sign of the interactions between the three genes that comprise
them. There is one target gene and two pathways. If the pathways have opposite effects
on the target gene then the feed forward loop is called incoherent, otherwise it is called
coherent (Figure 2.2 Ghosh et al. 2005 [10]). FFLs have been considered to be special
since statistics cannot account for their over-abundance in natural systems. Widder et al.
reconstructed the natural abundance of FFLs in transcriptional networks with their anal-
ysis [28]. They showed that the plasticity of these motifs accounts for this phenomenon,
where plasticity is defined as a compromise between specialization and flexibility and
is directly related to evolvability which is defined as a tradeoff between robustness to
mutations and the capability to modify their function due to mutational pressure [28].
These features imply that FFLs could be considered design principles for TF networks in
general as well as for developmental systems in particular.

Figure 2.2: Eight Feed Forward Loop Motifs - Ghosh et al. 2005)

IFFLs have been identified as single stripe generators in several developmental sys-
tems [11]. The combination of IFFL and a feedback, capable of inducing morphogen
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response from the source, provides a stabilization of the expression peak in situations of
increasing or decreasing morphogen input, with application in real systems such as the
vertebrate limb bud development [11]. Finally, it is worth mentioning that there are some
recent papers that have identified IFFLs as the minimal network motifs for stripe forma-
tion [23][20][17]. In one of the most recent papers, the four distinct motifs were also built
synthetically and tested, in order to show that they correspond to the minimal motifs
capable of producing four unique mechanisms found in more complex 3-node networks
[23]. Despite the common reference to IFFLs in these papers, we should notice that there
are some observed differences which might be due to the different mathematical models
used to describe the expression of the genes.

Inhibitory interactions, and more specifically mutual repression seem to be a very
dominant design principle, observed in many real biological systems and tested via math-
ematical and computational modeling.These interactions seem to be capable of providing
spatially restricted gene expression [8]. Sokolowski et al. simulated the effect of mutual
repression using an example from the anterior-posterior patterning of Drosophila [26].
In their model they performed stochastic simulations of a minimal model of repression
between two gap genes, hb and kni. Hb and kni were activated by the maternal regulators
Bicoid and Caudal respectively. They compared the results with a model using only one
gap gene activated by a single morphogen. Their findings showed that mutual repression
enhances robustness against intra-embryonic fluctuations and embryo-embryo variations
in morphogen levels. This is in accordance to experimental observations of double mu-
tant embryos lacking the mutual repression between those genes [26]. To further support
the usefulness of mutual repression they varied several parameters (mutual repression
strength, diffusion constant, hill coefficient, maximum repression level) and observed the
different effect each parameter played in steepness and robustness. Remarkably mutual
repression was able to increase the steepness without increasing the noise of protein ex-
pression, whereas there was a compromise between steepness and noise (precision) when
the cooperativity was increased (increasing hill coefficient) or when the diffusion constant
was lowered. The positive effect of adding mutual repression to network motifs was also
explored by Ishihara & Shibata [13]. Initially, a database search indicated that mutual
inhibition interaction is very common during the early segmentation of the Drosophila
embryo. Then by mathematically modeling the effect of mutual interactions they con-
cluded that mutual repression produces sharp and high expression levels without affecting
the location of the stripe.

A more general exploration of the role of feedback was done by Munteanu et al. [17].
They tested the effect of adding feedback in incoherent feed forward loop motifs finding
some very interesting results that further support the crucial role of mutual inhibition in
particular. An atlas was created by adding all possible feedback to the two downstream
genes of the I1-FFL and I3-FFL (The first and third motifs in figure 2.2 respectively).
No feedback was added to the morphogen reading gene so as not to alter the feed-forward
mechanism. A parameter sampling was then conducted in order to determine the stripe-
producing parameter space. The results showed that with the addition of inhibition
between B and C, thus creating mutual inhibition, there was a very high parametric
volume boost with increasing strength of mutual repression. A maximum value was then

9



reached, and increasing the BC interaction further decreased the parametric volume, but
this decrease was due to parameter space limitations rather than a property of the mu-
tual repression motif. Although adding positive feedback to I3-FFl had no effect on the
parametric space, mutual inhibition in I1 increased it offering robustness and allowed the
system to take new parameter values that produce sharp stripe borders [17].

Regarding auto-regulation, J.P. Lopes et al. provided experimental and mathemati-
cal evidence of its ability to confer switch-like behavior and hence sharpness [15]. They
used as a base the anterior-posterior axes development of Drosophila, and specifically the
expression of the hb gap gene. From experiments they determined that embryos that
are homozygous for a particular allele, responsible for producing proteins incapable of
binding to DNA (no auto-regulation), showed an obvious decrease in sharpness and a
shift in the position of the border, in contrast to wild type or heterozygous embryos.
By developing a reaction-diffusion mathematical model of hb expression, including self-
regulation and cooperative binding of bcd to hb, they were able to produce sharp borders
of hb expression. In case of loss of the self-regulation reaction, bistability was also lost
along with sharpness. Furthermore, although bcd activates and controls the position of
hb expression through cooperative binding it is not sufficient to produce sharp borders.

In a more general view regarding design principles, P. Francois & D. Siggia used in
silico evolution and mutual entropy to predict embryonic patterning and were able to ob-
serve some general design principles of GRNs [9]. To this end, they used mutual entropy
as a fitness function, which is a function of the concentration of genes that define cellular
identity (realizators) and then they ran a mutation-selection evolution algorithm. Prop-
erties of the fitness function are that it favors diversity, i.e. number of realizators, and
uniqueness, i.e. a single cell must express only one realizator. They examined two cases.
In the first case the genes were exposed to a static morphogen gradient that vanished just
before the end of embryogenesis and in the second to a sliding morphogen gradient in
order to model pattern formation during growth. In both cases they observed that real-
izators were auto-regulated so as to keep their expression high after the disappearance of
the gradient. This was achieved by means of bi-stability due to auto-activation, as men-
tioned before. Moreover, the posterior boundaries of genes were controlled by repression
from other genes posterior to them. These findings are in accordance with other papers
focusing on the importance of cross-repressive interactions and auto-regulation.

This chapter about design principles would be incomplete without a discussion of
these principles in the context of real biological systems discussed. Mutual inhibition and
more generally cross-repression (negative feedback) among network genes seems to be a
very common interaction. Apart from gap genes, cross-repressive interactions of larger
networks are also found in the vertebrate neural tube patterning [4]. The theoretical
models described previously regarding the neural tube development used a network of
four genes all connected to each other via negative inhibitory interactions and were able
to produce the desired behavior, as mentioned already (figure 2.3 B Cohen et al. 2013).
The cross-repressive system of the four genes can also be viewed as a system containing
4 IFFLS, two I1-FFLs that link Gli to Nkx2.2 and to Olig2 and two I2-FFLs that link
Pax6, Nkx2.2 and Olig2 [1]. Furthermore, the relevance of these principles to real systems
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is evident from the fact that many of the theoretical papers used real examples for their
modelling and included experimental explorations confirming their hypothesis, such as
the auto-regulation of hunchback in Drosophila, the mutant Drosophila embryos lacking
the mutual repression interaction between kni and hb as well as the database search
regarding the mutual interactions of gap genes during segmentation of the embryo.

(a) (b)

Figure 2.3: (a) Expressions and interactions among genes in drosophila patterning -
Porcher & Dostatni 2010. (b) Neural tube ragulatory network

The approach that GRNs seem to drive the pattern formation during embryonic de-
velopment and is gaining more and more ground. Experimental work gives the oppor-
tunity to observe the behavior of wild type and mutant embryos supporting the role of
GRN dynamics and architecture in interpreting the positional information of morphogens.
Moreover, mathematical and computational modeling provides insight to the dynamics
and properties of these networks, unavailable using any other method. Also, with the
cooperation of life and natural sciences it has been made possible not only to explore the
design space of GRNs but also to built and test them synthetically. A short exploration
of some design principles mentioned follows using a similar model to the one used for
modeling the neural tube.
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Chapter 3

Modelling of A Three-Gene
Network-Mutual Repression vs
Cooperativity

Figure 3.1: Transcriptional factors network

A 3−gene network, depicted above, was used to explore the different effects of cooperativ-
ity and mutual inhibition.A is the morphogen reading gene and B is the target gene.The
mathematical framework used to describe the concentration of proteins is different from
the classical Michaelis-Menten formulation and is a simplification of the thermodynamics
ensemble model described in the neural tube patterning section. A similar exploration
was done in a paper by [26], using another mathematical formulation. Their results
showed that, although both mutual repression and cooperativity were able to steepen the
borders of gene expression, only mutual repression displayed precision by not increasing
the noise in the expression of genes. In the model presented here mutual repression is
not able to produce sharp borders and stripe-like behavior in contrast to cooperativity
which seems to be a promising design principle.

3.0.1 Methods

For the description of the protein concentration of the 3 − gene three ODEs are used
representing the evolution of the concentration with respect to time. In the rhs there

12



are two terms. The first term is the production of the protein and is given by the
probability of the gene being expressed, i.e. the number of ON states over the total
number of states, and the second term the degradation of the protein. Moreover, the
concentration has spatial dependence due to the dependence of the morphogen reading
gene, A, to the morphogen gradient. The gradient is static and decaying from the source
(zero). Regarding the simplification, no mRNA dynamics were used and the degradation
rates are the same for the three genes. The main reason for these simplifications is
the belief that the stripe-forming ability of these systems can be represented by just
including the protein dynamics and that the dominant parameters in stripe-formation
are the interaction rates between the genes. Furthermore, including the full dynamics
and the different rates would overcomplicate the simulation and the interpretation of the
results. The evolution of the protein concentration is given by the following equations:

∂[A]

∂t
=PA − d[A] PA = RA

kM [M ]

1 + kM [M ]
,

∂[C]

∂t
=PC − d[C] PC = RC

kCC [C]

1 + kCC [C] + kAC [A]
,

∂[B]

∂t
=PB − d[B] PB(x) = RB

kBB[B]

1 + kAB[A] + kCB[B] + kBB[B]
.

Where [M ], the concentration of the morphogen, is constant in time and decaying
exponentially in space.

[M ] = M0e
−λx.

To explore the two cases, additions were made to the above equations. For the mutual
repression a term was added in the denominator of PC representing the feedback of B,
Kbc[B]. For the cooperativity the concentration [A] was raised to the power of n,m on
the denominator of PC and PB respectively and [C] was raised to the power of l in the
denominator of PB. The values of n,m were 6 and 2 respectively and the value of l was 5.

The stripe-forming ability was tested by means of Monte Carlo simulations. Initially
a scoring function was created to score the stripes. The desired phenotype for a stripe is
a Low region followed by a High region in the middle and then again by a Low region.
The scoring function works as follows. It computes the value of B[x, t]2 for the low region.
When the concentration goes above 10% of the maximum value of B[x,t] the first Low
region stops and the High region begins. In that region the scoring function calculates
(B[x, t]−1)2 and when that value falls below 10% the second Low region starts and again
B[x, t]2 is calculated. The final score is given by the addition of the scores in these three
regions.The purpose of variable boundaries in the scoring function accounts for stripes of
different width. To summarize:

13



LowRegion : s1 = ([B])2, 0 < x < x1where,B[x1] > 10%max{[B], 0 < x < 1}
HighRegion : s2 = ([B]− 1)2, x1 < x < x2where,B[x2] < 10%max{[B], 0 < x < 1}
LowRegion : s3 = ([B])2, x2 < x < 1.0

Score =s1 + s2 + s3

The final step was the Monte Carlo simulation. To this end, 30000 different sets of
parameter values were sampled using a logarithmic distribution, since a change in small
values of parameters has greater effect than changes in larger values [6]. As it turns out,
from a preliminary investigation, the parameters controlling the auto-regulation of B and
C have a very narrow range. Outside of this range the concentration is very small or very
large. For the rest of the parameters, the range was three order of magnitude for both
cases. Finally, the two features were run separately producing 30000 pairs of scores and
parameters each.

3.0.2 Results

The results of the simulation indicated that cooperativity can be a very strong design
principle of GRNs and arguably better than mutual repression regarding sharp bound-
aries. To support this, the first analysis of the results showed that cooperativity achieved
a much better (lower) score than mutual repression, 4 versus 13. Moreover, mutual repres-
sion produced pulse-like stripes which were not the desired outcome whereas cooperativity
displayed stripes with sharp boundaries.

(a) (b)

Figure 3.2: (a) Protein concentration of 3-gene network with cooperativity. (b) Protein
concentration of 3-gene network with mutual repression between B and C.

Further analysis established even more the advantage of cooperativity over mutual
inhibition. Setting a score equal to 20 as an upper bound for the stripe-forming region of
the parameter space, it was found that 230 different parameters sets were able to produce
a lower score with cooperativity in contrast to 23 with mutual repression. This could
be an indication that cooperativity is much more robust. Apart from the comparison
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some analysis was made to explore the correlation between the score and the different
parameters in both cases. The resulting graphs are shown in figure 3.3, where the x axis
is in logarithmic scale.

Figure 3.3: Correlation of scores and parameter value range in logarithmic scale.

No correlation is observed in most of the parameters for both cases except Kab in
cooperativity and Kbb in both cooperativity and mutual repression. There seems to be a
decrease of the upper limit for the scores, hence an overall improvement, as the strength
of the interaction between A and B is increased but it is a weak relationship. The strong
correlation observed with auto-activation parameter is a consequence of the scoring sys-
tem and of the use of the simplified model, rather than an intrinsic property of the
topology, as will be discussed later.

Finally, with the use of histograms of the stripe-forming parameter sets (score below
20) for the cooperativity case, the distribution of values was found, displaying a corre-
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lation between low score and values in the lower end of the available range. That was
evident in all three interaction rate parameters. This analysis was not conducted for
mutual repression due to the limited amount of data in the stripe-forming region.

Figure 3.4: Histograms of parameter values in the stripe-forming region, where the score
is below 20.

3.0.3 Discussion

The results show that in this new mathematical framework cooperativity could be an
important feature of GRNs. Although the results did not support the importance of
mutual repression discussed in the review it must be pointed out that cross-repressive
interactions are essential for the correct expression of multiple gene networks, like the
neural tube patterning, and that the topology of the network can also play a vital role.
Another aspect of the modeling that needs attention is the scoring system, for example
there where pulse-like stripes in the mutual repression case that had better scores than
normal stripes in the cooperativity case. Obviously this is not desirable and it is an indi-
cation of the deficiencies of the scoring function. Furthermore, although it was possible to
correctly score stripes with different widths but this was not the case for different heights.
That posed a problem to the range of KBB and KCC since they had to be restricted in
order to produce stripes with height close to one. This is also a problem created by
the use of the simplified ODEs. Using the full model, which includes mRNA dynamics,
poses a natural restriction on the height of protein expression without the need for very
narrow auto-regulation parameter ranges. Finally a more efficient simulation method is
needed. With the Monte Carlo simulation a large parameter space is explored to find a
much smaller functioning parameter space. Different methods that can be used and can
be more effective, in this context, are the Sequential Monte Carlo and the Approximate
Bayesian Computation.
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