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Abstract 
 
Bacterial infections such as the male-killing Wolbachia can infect butterflies and cause 
distortions in the operational sex ratio (OSR) of the population by increasing the number of 
females relative to males.  The excess of females leads to increased opportunities for males to 
mate, and alters the optimum sperm allocation strategy.  Mutant males who have a strategy 
which fertilises more eggs than will have an immediate advantage over rival males, and such 
mutations would be expected to fixate rapidly leading to fast evolution of sperm strategy 
towards the new optimum.  This essay presents a model of both female and male mating 
behaviour which is solved using a method of dynamic programming combined with 
simulation to yield the optimal sperm strategy for a given initial OSR.  The results are found 
to correspond with the literature in predicting a rise in female promiscuity with increasing 
OSR until scarcity of males starves females of mating opportunities.  An increase in sperm 
competition is shown to be the price males pay to take advantage of extra mating 
opportunities offered by favourable OSR, and is modelled as a consequence of sperm strategy 
rather than as a driving force. 
 
Introduction 
 
The operational sex ratio (OSR) of a population is the ratio of females to males who 
are available for mating.  Bacterial parasites such as Wolbachia can infect butterfly 
populations (such as Hypolimnas bolina found in southeast Asia and the Pacific 
Islands) and cause distortion of the OSR by either killing male offspring or feminising 
males. 
 
Assuming that the butterfly population has evolved over time to exhibit an optimal 
mating strategy which works for the ‘usual’ OSR of approximately 1:1, the sudden 
shift in OSR to, say, 20:1 or even, in extreme cases, 100:1, will mean that the mating 
strategies are no longer optimal.  This can result in sperm limitation where mated 
females do not have enough sperm to fully fertilize all of their eggs, and a large 
proportion of the female population die without having a chance to mate at all [1].  
Under such conditions it would be expected that any change in male mating behaviour 
in the direction of a more optimal strategy (that is, one which produces more offspring 
than rivals) will very rapidly spread through the population leading to rapid evolution 
of sperm strategy. 
 
The modelling of sperm allocation strategies is a much-studied area with over 35 
years of academic research invested in it: in 1970 Parker [2] suggested that male 
competition in mating can continue after the event since females may re-mate with 
rival males leading to direct competition at the sperm level over egg fertilization.  
Since then much effort has been expended identifying sperm competition in various 
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species (especially insects [3]) and studying the impact of different mating systems on 
sperm allocation strategies [4,5,6] as well how different models of the degree of 
sperm competition (e.g. ‘intensity’ vs. ‘risk’ models) affect sperm allocation strategy 
[7,8,9,10]. 
 
Sperm strategies are strongly dependent on the mating system.  In the case of 
butterflies, males deliver sperm within a spermatophore capsule.  Females extract and 
store the sperm in a sperm storage organ for later use in fertilizing eggs, before re-
mating with another male.  In this way a female can collect the sperm from more than 
one male, giving rise to sperm competition.  The process by which the female selects 
which sperm to use when fertilizing her eggs is not precisely known.  Parker [11] 
describes the possibility of so-called sperm raffles where the choice of sperm to use 
can be random but ‘fair’ (chance of reproductive success is proportional to the sperm 
investment relative to the other males), or ‘loaded’ where the first of last male 
displaces some of his rivals sperm, or the female actively discounts the value of some 
of the sperm within the ‘raffle’. 
 
The use of spermatophores to deliver sperm is a useful feature of butterfly physiology 
because the spermatophore capsule remains in the female reproductive tract until 
death and the size reflects the amount of sperm it contained.  Therefore by extracting 
and measuring spermatophores from mated females it is possible to reconstruct the 
female mating history, and make inferences about the male strategy being played.  
Such practical experiments are necessary to provide a physical basis for the various 
parameters included in sperm models [1,4]. 
 
This essay is primarily concerned with exploring how the optimum sperm allocation 
strategy for butterflies (e.g. H. Bolina) changes when the OSR is distorted due to a 
male-killing bacterial infection like Wolbachia and how this change in strategy affects 
the behaviour of females (their average mating rate) and the size of spermatophores 
males produce in successive matings. 
 
In order to address this question models of both male and female behaviour were 
developed using elements of the models described in the considerable available 
literature [6,8,9,10,11].  The following sections discuss the modelling assumptions 
made and the method of dynamic programming [12] combined with simulation used 
to solve the model. 
 
Model description 
 
In the models the butterflies are treated as rational entities who are aiming to 
maximise their offspring.  Consequently the language used in describing the model 
implies not only consciousness on the part of the butterflies but also the ability to 
devise and follow a strategy through mathematical analysis of the environment.  This 
is clearly not the case in reality and the language of consciousness is used purely for 
convenience and to aid understanding of the model.  It is assumed that under the 
pressure of natural selection the butterflies evolve to make instinctive behavioural 
decisions about mating which are optimal, and when viewed externally are equivalent 
to the mathematical operations described in the model. 
 



David Fallaize, CoMPLEX, UCL  CASE Essay 3 – April 2007 

 
The Female Model 
 
Initially females are virgins with the potential to produce some maximum quantity of 
offspring.  The number of offspring actually produced by each female is assumed to 
follow a ‘diminishing returns’ principle with respect to the amount of sperm she has 
gained.  The proportion of the maximum offspring produced by a given female 
follows [8] and is given by the expression: 
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Where sperm is the level of sperm collected and α is a parameter which controls the 
steepness of the curve. 
 
A female will quit the mating process if she has a certain amount of sperm.  This 
parameter was set to 50% of the sperm carried by one male.  
 
It is assumed that the sperm is allocated on a ‘first come first served’ basis such that 
the first male to contribute sperm benefits from the initial steep region of the curve, 
getting maximum return for the sperm investment, leaving the continually less well-
performing regions of the curve for the late-comers.  This automatically incorporates 
an unfair raffle principle analogous to that described by Parker [11] where late 
arriving sperm are effectively devalued relative to those already in place. 
 
As time progresses, it is assumed that females who choose to continue seeking a mate 
will use some quantity of their resources to do so.  It seems reasonable to suppose that 
this will lead to a decrease in the maximum offspring possible for that female.  To 
account for this the above formula was modified to include a geometric ‘depreciation 
factor’ d: 
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(where t is time.) 
 
The females’ strategy was static, presumed to have evolved over time through natural 
selection.  The strategy is not necessarily optimal when considered against the various 
male strategies in play: a more realistic model would allow evolution of the female 
strategy towards some global optimum over time as the male and female strategies 
interact.  However simulation of the co-optimisation of male and female strategies is 
beyond the scope of this essay. 
 
The Male Model 
 
The mating window for males and females is split into ten time steps.  During each 
time step all butterflies mate at most once – i.e. males and females randomly pair up 
for mating in each time step; any ‘spare’ individuals caused by a non-even sex ratio 
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do not mate in that time step, and no butterfly mates more than once per time step.  
Under these conditions a strategy is defined as ‘given a chance to mate at time step t 
and sperm reserve level s, allocate q sperm’. 
 
At the beginning of the first time step males were assumed to have some fixed 
quantity of sperm, defined as 1.0, which they partition into some number of equal 
sperm quanta (100 sperm quanta for this essay1).  During mating the male may choose 
to allocate any number of his remaining sperm quanta to the female, taking into 
account the current time step and sperm reserves.  Fitness is measured by the number 
of offspring the male may expect from mating with females. 
 
The dynamics of such a strategy is complicated.  The expected payoff from a given 
mating depends on how much sperm the female in question has already collected: if 
mating with a virgin female then the male is benefiting from the steep region of the 
payoff curve and receives good return on his investment, while mating with a non-
virgin female gives increasingly poor return on sperm investment. 
 
In deciding how much sperm to ‘spend’ on a given female the male must also assess 
how likely he is to be able to mate in the future (based on some projection of the OSR 
into the future), and whether it is worth retaining some sperm for future mating 
opportunities when the payoff may have improved.  For example since females 
choose to quit the mating pool once they have a certain threshold of sperm, they leave 
behind virgin (or at least less sperm-rich females) thus the sperm competition from 
the male point of view may decrease in successive time steps, making sperm 
conservation worthwhile.  However this is a bad idea if it is highly unlikely for a male 
to have another opportunity to mate e.g. because it is the last time step being 
modelled, or because the OSR has shifted to make future mating unlikely. 
 
Dynamic Programming 
 
Optimisation of the male model lends itself conveniently to a process of dynamic 
programming described by Mangel and Clark [12].  This is an iterative algorithm 
where a decision of how much of some resource (sperm) to spend at a given time step 
depends on a dynamic state variable (sperm reserve) available to the decision maker 
at each time step.  Dynamic programming algorithms characteristically work 
backwards from the last time step, optimising the resource allocation at each time step 
taking into account the knowledge of the future best-case outcomes calculated in the 
previous iterations of the algorithm. 
 
For sperm modelling the problem arises in calculating the payoff at a given time step.  
As explained above this requires some knowledge of the expected quantity of sperm a 
female already possesses, and the probability of future mating opportunities based on 
the OSR.  However the amount of sperm a female may be expected to have depends 
on the mating history of that female (i.e. what sperm decisions have been made in 
earlier time steps by other males).  This information is unavailable to the algorithm as 
described since it is working backwards in time, not forwards. 
                                                 
1 Varying this parameter would allow modelling of the degree of male control over sperm allocation 
per mating, which is clearly a biologically relevant parameter.  Although not considered for the 
purposes of this essay, the impact of sperm quanta control might be an interesting course for further 
study. 
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In addition the OSR is known only at the beginning of the first time step.  As females 
become satisfied with the sperm they have received, they quit the mating pool which 
lowers the OSR.  Therefore OSR is not a static parameter in this model, but varies 
over time according to the behaviour of both males and females, and is therefore 
dependent on male strategy. 
 
Simulation 
 
In order to solve this problem an element of simulation is introduced in order to allow 
the algorithm to ‘know’ the expected quantity of sperm possessed by any female at 
any given time, and also the OSR at any time step. 
 
The simulation assumes a fixed population of several thousand individuals, with an 
initial female:male OSR which is defined by the user.  Males are given a strategy (as 
defined above) telling them how much sperm to use at a given mating.   
 
For each time step: 
 

1. Females with more sperm than the threshold level (0.5) leave the 
mating pool. 

2. The OSR, based on the number of females remaining, is calculated and 
recorded. 

3. The mean sperm level of each female is calculated and recorded. 
4. Random pairs from the male and female populations are selected for 

mating until one of the populations runs out of individuals. 
5. Within each mating pair, the male allocates sperm to the female 

according to the strategy. 
 
The simulation provides the expected sperm competition and OSR at any time step, 
assuming the male population follows some given strategy.  Running the dynamic 
programming algorithm will give the optimum strategy for one male to play against 
the population of males, assuming that the effect of the mutant’s own strategy on the 
overall distribution of sperm per female and OSR is negligible. 
 
By repeating the simulation with each male having the new strategy as defined by the 
dynamic program, a new time course of female sperm level and OSR is computed, 
which can be used by another iteration of the dynamic programming algorithm, to 
give a further optimised strategy.  In this way the model should reach a point where 
the dynamic programming algorithm can no longer improve on the current male 
strategy, even with the prior knowledge of how everyone else behaves supplied by the 
simulation step.   
 
The evolutionarily stable strategy (ESS) is that which, if adopted by a population, 
cannot be invaded by any competing alternative strategy [13].  Therefore if the 
dynamic programming and simulation process described above is allowed to iterate to 
convergence, the final strategy should be the ESS. 
 
Loops in the optimisation process where the output oscillate between a number of 
strategies are perturbed to encourage convergence at a single solution corresponding 
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to the ESS; if the algorithm returns to these oscillating values after being perturbed it 
may be assumed that the oscillations represent multiple optimal strategies.  In this 
case, the simulated population used to derive average sperm allocation and female 
mating rates is assumed to be composed of an even mix of the optimal strategies 
rather than a single ESS. 
 
Summary of model parameters 
 
Parameters which control the model are summarised in Table 1. 
 

OSR varied from 1.0 to 2.0 (steps of 0.1), 2.0 to 5.0 
(steps of 0.5), 10 to 25 (steps of 5) 

Alpha 0.5 
Female satiety threshold 0.5 
Female depreciation 10% and 0% reduction in maximum offspring 

per time step 
Male depreciation no depreciation 
Sperm quanta 100 
Time steps 10 
Simulation population 
size 

20,000 

Table 1: Summary of model parameters 

Implementation 
 
The model was implemented in python.  See Appendix for source code. 
 
Results 
 
An example strategy produced by the model is illustrated in Figure 1.  The strategy 
indicates how much sperm to allocate given the current sperm level, and current time 
step. 
 

 
Figure 1: Example of an ESS produced by the model 
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Convergence to an ESS 
 
At OSR between 1.0 and 2.0 the model tends to exhibit multiple solutions, while with 
the initial OSR set to above 2 females per male the algorithm rapidly finds an ESS. 
 

OSR  number of 
solutions 

notes 

1.1 2 100% / 73% initial allocation 
1.2 1 79% initial allocation (ESS) 
1.3 2 78% / 70% initial allocation 

Table 2: solution space for OSR close to 1.0 

For OSR less than 1.3 (see Table 2) the solutions are clearly a trade-off between using 
all available sperm and gambling on being one of the few males who gets the chance 
to mate with the small surplus of females – in a population of males who always use 
all sperm at first opportunity, it is better to hold back and vice-versa.  The population 
might arrive at some equilibrium of these two strategies, or more likely one will prove 
more favourable when some other factor is incorporated into the model.  
 
For OSR above 1.3 and below 2.0 there start to appear a large numbers of optimal 
solutions, however on closer inspection they are almost all the same with very minor 
variations – e.g. a 1% difference in sperm allocation for the third time step when the 
male has 50 sperm quanta remaining.  Since the model makes coarse approximations 
about butterfly behaviour, such minor variation in the output is unimportant.  
Although the algorithm fails to find an ESS in the strictest sense, in reality the 
multiple strategies would be indistinguishable from each other. 
 
Average female mating rate 
 
The average number of matings per female is illustrated in Figure 2. 
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Figure 2: Mean copulations per female 
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This agrees with the results of [1] which show that as females become more abundant 
initially the mating rate rises, contrary to what one might expect, until males become 
so rare that sperm limitation takes place. 
 
Spermatophore size 
 
The average spermatophore size for successive mating events is shown in Figure 3 
(model with female depreciation of 10% per time step) and Figure 4 (no female 
depreciation). 
 
At low values of OSR males deliver most of their sperm at the first opportunity, while 
at high values of OSR they conserve some sperm for later mating events.  For values 
of OSR higher than 10 the males are certain to find a mate in all time steps since it is 
impossible for the OSR to fall below 1 given the parameters of the model. 
 
With female depreciation removed (i.e. less incentive to use sperm early due to drop 
in female quality) the ejaculate profile looks more even, as one would expect from 
intuition.  In this case the reason for slightly higher sperm allocation early on is that 
sperm competition is zero at the first time step guaranteeing that the male is getting 
the benefit of the maximum slope of the payoff curve. 
 
 

 
Figure 3 
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Figure 4 

 
It is interesting to note that sperm allocation for the second mating increases as the 
OSR increases (corresponding to a second chance to mate becoming more likely).  
This causes an increase in sperm competition (see Figure 5) (measured as the fraction 
of all sperm that finds itself competing with another male's sperm for fertilization of a 
female's eggs). 
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Figure 5: Sperm competition vs. operational sex ratio 
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This supports the suggestion of Williams et. al. [9] that sperm competition should be 
regarded as a consequence of sperm allocation strategy rather than as a driving force.  
Increased sperm competition, in this model, is the price males pay to benefit from the 
increase in mating opportunity provided by excess females. 
 
Conclusions 
 
The technique of dynamic simulation combined with simulation used in this essay 
allows models of butterfly mating behaviour to be solved, yielding optimal sperm 
strategies for a range of OSR values.  Although the models presented are fairly simple 
with few parameters, the framework developed for this essay offers the possibility of 
investigating the complex interaction between conflicting female and male strategies.  
The results produced seem to correspond reasonably well with those found in the 
extensive literature on this subject. 
 
Biologically speaking it is highly questionable whether one would expect real males 
in the wild to exhibit the optimised strategies calculated here.  The distorted OSR 
produced by a bacterial parasite such as Wolbachia will persist for as long as it takes 
for the butterflies to develop some resistance to the parasite.  It seems unlikely that 
enough mutations could occur to produce a phenotypic effect of the optimum sperm 
model in the time it takes for a mutation to confer parasitic immunity, even taking into 
account the amplification effect of male-inherited traits produced by the biased OSR. 
 
Bearing in mind the above limitation the optimal strategies are useful to the biologist 
mainly as a guide to indicate the general direction in which ‘sperm strategy evolution’ 
would be expected to travel given enough time.  Simulation of sperm strategies gives 
estimates of female mating rates and spermatophore size distributions which can be 
compared with experimental data, allowing the predictions of the model to be tested 
against measurable data. 
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Appendix (model source code) 
 
# butterflies.py 
# dynamic programming and simulation of butterfly 
# sperm allocation strategy. 
# David Fallaize CoMPLEX, UCL 2007 
 
import sys 
import math, random 
import copy 
from simulator import * 
from outputs import * 
 
def chop(x, lower, upper): 
    if x > upper: x = upper 
    if x < lower: x = lower 
    return x 
 
def frange(start, end=None, inc=None): 
    "A range function, that does accept float increments..." 
 
    if end == None: 
        end = start + 0.0 
        start = 0.0 
 
    if inc == None: 
        inc = 1.0 
 
    L = [] 
    while 1: 
        next = start + len(L) * inc 
        if inc > 0 and next >= end: 
            break 
        elif inc < 0 and next <= end: 
            break 
        L.append(next) 
         
    return L 
 
def find_best_strategy(simulation, T): 
    # this is the dynamic programming algorithm 
     
    new_strategy = {}             
    t = T 
    while t > 0: 
 
        new_strategy[t] = {} 
 
        # for each of the possible sperm levels, calculate the best 
        # sperm allocation choice based on expected payoff. 
        sperm_competition = simulation.expected_female_sperm_count(t-1) 
        current_payoff = Female().calc_payoff(sperm_competition, t) 
        #threshold_allocation = Female.threshold(t) - sperm_competition 
         
        for s in range(Male.sperm_quanta+1): # s from 0 to 1 
 
            # given that i currently have s sperm available, iterate through 
            # my possible amounts to allocate, and decide whether it's better 
            # to allocate that sperm now, or later - i.e. find the best total 
            # payoff of sperm now + payoff that leaves us for next timestep. 
            def payoff(a): 
 
                # if i allocate amount of sperm a, that will leave me with 
                # s-a for the next time step, minus depreciation due to cost 
                # of flying around looking for mate. We have already worked out 
                # what the best payoff for that is. 
 
                # best future payoff is the best we can do with this amount of 
                # sperm in the next step, taking into account the odds of actually 
                # being able to mate in the next step by using the simulated OSR 
                sperm_next_time = math.floor((s-a) * Male.depreciation) 
                future = 0.0 
                try: 
                    accumulator = 1.0 
                    for tt in range(t,T): 
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                        prob_of_mating = chop(simulation.OSR[tt+1],0,1) 
                        future += new_strategy[tt+1][sperm_next_time][1] * 
prob_of_mating * accumulator 
                        accumulator *= (1.0 - prob_of_mating) 
                except: 
                    if tt < T: print "argh" 
                    pass 
 
                now = Female().calc_payoff(sperm_competition + a, t) - current_payoff 
                return now + future 
 
            best_now = max([(payoff(a),a) for a in range(s+1)]) 
            new_strategy[t][s] = (best_now[1], best_now[0]) 
 
        # decrement t 
        t -= 1 
 
    # strategy as-is includes payoff information which is now 
    # redundant... 
    new_strategy_stripped = {} 
    for t in new_strategy.keys(): 
        q = {} 
        for s in new_strategy[t].keys(): 
            q[s] = new_strategy[t][s][0] 
        new_strategy_stripped[t] = q 
 
    return new_strategy_stripped 
 
# here's where we actually run the program 
 
# parameters! 
T = 10 
sample_size = 5000 
osr_range = frange(1,2,0.1) + frange(2,5,0.5) + range(5,10,1) + range(10,26,5) 
#osr_range = [1.1, 1.2, 1.3, 1.6] # non-converging OSR values 
 
# init holders 
ejaculate_sizes = {} 
spermatophore_sizes = {} 
sperm_competition = {} 
female_mating = {} 
 
def random_strategy(): 
    # generate a random strategy 
     
    strat = {} 
    for t in range(1,T+1): 
        strat[t] = {} 
        for s in range(1,Male.sperm_quanta+1): 
            strat[t][s] = int(math.ceil(random.random() * s)) 
 
    return strat 
 
def perturb_strategies(strats): 
    # get 'average' strategy of set of looping strategies 
     
    new_strategy = {} 
    for t in range(1,T+1): 
        new_strategy[t] = {} 
        for s in range(1,Male.sperm_quanta+1): 
            new_strategy[t][s] = 0 
            for strat in strats: 
                new_strategy[t][s] += strat[t][s] / len(strats) 
 
    return new_strategy 
 
# loop over range of initial OSR 
for OSR in osr_range: 
    print "OSR=%f" %(OSR) 
 
    new_strategy = random_strategy() 
    tried_strategies = [new_strategy] 
    perturbed_list = [] 
    converged = False 
    iterations = 0 
    while not converged: 
        iterations += 1 
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        # statistical simulation 
        simulation = Population(sample_size, OSR, T, new_strategy) 
         
        # generate new strategy by dynamic programing 
        new_strategy = find_best_strategy(simulation, T) 
 
        # check for convergence 
        print "testing convergence...", 
        if new_strategy not in tried_strategies:# 
 
            # count how many discrepencies 
            discrepencies = 0 
            for t in range(1,T+1): 
                for s in range(1,Male.sperm_quanta+1): 
                    if new_strategy[t][s] != tried_strategies[-1][t][s]: 
                        discrepencies += 1 
            print "failed: %d discrepencies" %(discrepencies) 
 
            # add tried strategy to the list 
            tried_strategies.append(copy.deepcopy(new_strategy)) 
 
        elif new_strategy == tried_strategies[-1]: 
            # converged! same strategy emerges as the last one 
            print "succeeeded!" 
 
            # output all the interesting population statistics stuff 
            write_strategy(new_strategy, OSR) 
 
            ejaculate_sizes[OSR] = [simulation.ejaculate_sizes()] 
            spermatophore_sizes[OSR] = [simulation.spermatophore_sizes()] 
            sperm_competition[OSR] = [simulation.sperm_competition()] 
            female_mating[OSR] = [simulation.average_female_matings()] 
 
            converged = True 
 
        elif new_strategy not in perturbed_list: 
            # seen this strategy already, but haven't tried perturbing 
 
            print "already seen this strategy... try perturbing" 
            idx = tried_strategies.index(new_strategy) 
            strats = tried_strategies[idx:] 
            new_strategy = perturb_strategies(strats) 
            perturbed_list += strats 
             
            tried_strategies = tried_strategies[:idx] 
            tried_strategies.append(copy.deepcopy(new_strategy)) 
             
        else: 
            # seen this strategy, tried perturbing it, still end up looping 
            # therefore must be multiple stable states 
 
            idx = tried_strategies.index(new_strategy) 
            print "loop! strategies: %d-%d are optimal" %(idx+1, 
len(tried_strategies)) 
            ctr = 0 
             
            for a_solution in tried_strategies[idx:]: 
                ctr+=1 
                write_strategy(a_solution, OSR, ctr) 
 
            simulation = Population(sample_size, OSR, T, tried_strategies[idx:]) 
            ejaculate_sizes[OSR] = [simulation.ejaculate_sizes()] 
            spermatophore_sizes[OSR] = [simulation.spermatophore_sizes()] 
            sperm_competition[OSR] = [simulation.sperm_competition()] 
            female_mating[OSR] = [simulation.average_female_matings()] 
 
            converged = True 
 
    print "converged after %d iterations" %(iterations) 
    write_csv("spermatophore_size", spermatophore_sizes) 
    write_csv("ejaculates", ejaculate_sizes) 
    write_csv2("sperm_competition", sperm_competition) 
    write_csv2("female_mating", female_mating) 
 
# simulator.py 
# dynamic programming and simulation of butterfly 
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# sperm allocation strategy. 
# David Fallaize CoMPLEX, UCL 2007 
 
import sys 
import math, random 
 
class Population: 
 
    def __init__(self, size, OSR, T, strategy): 
 
        self.T = T 
        self.strategy = strategy 
 
        # OSR is the number of females per male 
        males = int(math.floor(size / (1 + OSR))) 
        females = int(size - males) 
        F = [Female() for i in range(females)] 
 
        # handle multiple strategies in population 
        if type(strategy) is list: 
            self.M = [] 
            males_per_strategy = math.floor(males / len(strategy)) 
            for s in strategy: 
                self.M += [Male(s) for i in range(males_per_strategy)] 
        else: 
            self.M = [Male(strategy) for i in range(males)] 
 
        self.OSR = {} 
        self.sperm_histogram = {} 
        self.final_females = [] 
                 
        # given this ratio of males to females, and the optimum male 
        # strategy as supplied, calculate the OSR vs t 
        for t in range(T+1): 
 
            # construct the list of active females. Note that males never  
            # leave the mating pool as it is always in their interest to run 
            # interference against other males who want to mate in order to 
            # reduce any chance of sperm competition. 
            self.final_females.extend([f.sperm_holder for f in F if not 
f.still_mating(t)]) 
            F = [f for f in F if f.still_mating(t)] 
 
            females = len(F) 
            males = len(self.M) 
            self.OSR[t] = float(females) / males 
             
            # construct sperm histogram for this time point 
            self.sperm_histogram[t] = [f.sperm_count for f in F] 
 
            # now carry out the mating for this time step 
            if t < T: 
                n = min(males, females) 
                for f,m in zip(random.sample(F, n), random.sample(self.M, n)): 
                    f.add_sperm(m.give_sperm(t+1)) 
                for m in self.M: m.depreciate() # allow male depreciation 
                 
            # that completes one time step (i.e. one iteration of mating) 
            # at the start of the next time step (t+1) the females have the 
            # opportunity to quit if they think they have enough sperm. 
 
        self.final_females.extend([f.sperm_holder for f in F]) 
 
    def expected_female_sperm_count(self, t): 
        try:    expect = float(sum(self.sperm_histogram[t])) / 
len(self.sperm_histogram[t]) 
        except: expect = 0 
        return expect 
 
    def average_female_matings(self): 
        return float(sum([len(spermatophores) for spermatophores in 
self.final_females])) / len(self.final_females) 
 
    def sperm_competition(self): 
        total_sperm = sum([sum(spermatophores) for spermatophores in 
self.final_females]) 
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        in_competition = sum([sum(spermatophores) for spermatophores in 
self.final_females if len(spermatophores) > 1]) 
        return float(in_competition) / total_sperm 
 
    def ejaculate_sizes(self): 
 
        # init counters 
        hist,ctr = {},{} 
        for t in range(1,self.T+1): 
            hist[t] = 0.0 
            ctr[t] = 0.0 
         
        # for each of the males... 
        for m in self.M: 
            # loop over their mating events, and build average 
            # sperm allocation for sequential mating events 
            for idx in range(len(m.mating_history)): 
                hist[idx+1] += m.mating_history[idx] 
                ctr[idx+1] += 1 
 
        # calculate averages 
        output = [] 
        for t in range(1,self.T+1): 
            if ctr[t] != 0: 
                output.append(hist[t] / ctr[t]) 
 
        return output 
 
    def spermatophore_sizes(self): 
         
        # init counters 
        hist,ctr = {},{} 
        for t in range(1,self.T+1): 
            hist[t] = 0.0 
            ctr[t] = 0.0 
         
        # for each of the females... 
        for f in self.final_females: 
            # loop over their mating events, and build average 
            # sperm allocation for sequential mating events 
            for idx in range(len(f)): 
                hist[idx+1] += f[idx] 
                ctr[idx+1] += 1 
 
        # calculate averages 
        output = [] 
        for t in range(1,self.T+1): 
            if ctr[t] != 0: 
                output.append(hist[t] / ctr[t]) 
 
        return output 
          
class Male: 
 
    total_sperm = 1.0 
    sperm_quanta = 100 
    depreciation = 1.0 # no male depreciation taken into account 
 
    def __init__(self, strategy): 
        self.sperm_count = Male.sperm_quanta 
        self.strategy = strategy 
        self.mating_history = [] 
 
    def quanta_to_sperm(cls, q): 
        return (q / float(cls.sperm_quanta)) * cls.total_sperm 
    quanta_to_sperm = classmethod(quanta_to_sperm) 
 
    def give_sperm(self, t): 
 
        # figure out how much sperm we should allocate according 
        # to the current strategy we're following.  Note that this 
        # will depend on both the time t and the amount of sperm we 
        # currently have available (the totally ideal strategy might 
        # not be possible if females are in short supply, and males 
        # do not have the opportunity to mate every time they would like) 
        if self.sperm_count > 0: 
            sperm_to_donate = self.strategy[t][self.sperm_count] 
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        else: 
            sperm_to_donate = 0 
             
        self.sperm_count -= sperm_to_donate 
        self.mating_history.append( sperm_to_donate ) 
         
        return sperm_to_donate 
 
    def depreciate(self): 
 
        # cause a depreciation in sperm due to 'cost of living'     
        self.sperm_count = math.floor(self.sperm_count * Male.depreciation) 
        return 
     
class Female: 
     
    sperm_potency = 0.5 
    depreciation = 0.9 
    threshold = 0.5 
 
    def __init__(self): 
        self.sperm_holder = [] 
 
    def add_sperm(self, sperm): 
        self.sperm_holder.append(sperm) 
 
    def sperm_count(self): 
        return sum(self.sperm_holder) 
    sperm_count = property(sperm_count) 
 
    def calc_payoff(sperm, t): 
 
        # convert sperm quanta to an actual amount of sperm 
        actual_sperm = Male.quanta_to_sperm(sperm) 
 
        # depreciation of female quality over time 
        dep_factor = Female.depreciation ** (t-1) 
 
        return (1 - math.exp(-actual_sperm / Female.sperm_potency)) * dep_factor 
    calc_payoff = staticmethod(calc_payoff) 
 
    def calc_still_mating(sperm, t): 
        return Male.quanta_to_sperm(sperm) < Female.threshold 
    calc_still_mating = staticmethod(calc_still_mating)     
 
    def still_mating(self, t): 
        return self.calc_still_mating(self.sperm_count, t) 
           

 
 


