
David Fallaize, CoMPLEX, UCL CASE Essay 3 – April 2007

Optimal Sperm Strategies for Male
Butterflies when Females are Abundant

Supervisors: Dr Max Reuter (Department of Biology, Galton Lab, UCL)

Dr Greg Hurst (Department of Biology, Galton Lab, UCL)

3,580 words

Abstract

Bacterial infections such as the male-killing Wolbachia can infect butterflies and cause
distortions in the operational sex ratio (OSR) of the population by increasing the number of
females relative to males. The excess of females leads to increased opportunities for males to
mate, and alters the optimum sperm allocation strategy. Mutant males who have a strategy
which fertilises more eggs than will have an immediate advantage over rival males, and such
mutations would be expected to fixate rapidly leading to fast evolution of sperm strategy
towards the new optimum. This essay presents a model of both female and male mating
behaviour which is solved using a method of dynamic programming combined with
simulation to yield the optimal sperm strategy for a given initial OSR. The results are found
to correspond with the literature in predicting a rise in female promiscuity with increasing
OSR until scarcity of males starves females of mating opportunities. An increase in sperm
competition is shown to be the price males pay to take advantage of extra mating
opportunities offered by favourable OSR, and is modelled as a consequence of sperm strategy
rather than as a driving force.

Introduction

The operational sex ratio (OSR) of a population is the ratio of females to males who
are available for mating. Bacterial parasites such as Wolbachia can infect butterfly
populations (such as Hypolimnas bolina found in southeast Asia and the Pacific
Islands) and cause distortion of the OSR by either killing male offspring or feminising
males.

Assuming that the butterfly population has evolved over time to exhibit an optimal
mating strategy which works for the ‘usual’ OSR of approximately 1:1, the sudden
shift in OSR to, say, 20:1 or even, in extreme cases, 100:1, will mean that the mating
strategies are no longer optimal. This can result in sperm limitation where mated
females do not have enough sperm to fully fertilize all of their eggs, and a large
proportion of the female population die without having a chance to mate at all [1].
Under such conditions it would be expected that any change in male mating behaviour
in the direction of a more optimal strategy (that is, one which produces more offspring
than rivals) will very rapidly spread through the population leading to rapid evolution
of sperm strategy.

The modelling of sperm allocation strategies is a much-studied area with over 35
years of academic research invested in it: in 1970 Parker [2] suggested that male
competition in mating can continue after the event since females may re-mate with
rival males leading to direct competition at the sperm level over egg fertilization.
Since then much effort has been expended identifying sperm competition in various

David Fallaize, CoMPLEX, UCL CASE Essay 3 – April 2007

species (especially insects [3]) and studying the impact of different mating systems on
sperm allocation strategies [4,5,6] as well how different models of the degree of
sperm competition (e.g. ‘intensity’ vs. ‘risk’ models) affect sperm allocation strategy
[7,8,9,10].

Sperm strategies are strongly dependent on the mating system. In the case of
butterflies, males deliver sperm within a spermatophore capsule. Females extract and
store the sperm in a sperm storage organ for later use in fertilizing eggs, before re-
mating with another male. In this way a female can collect the sperm from more than
one male, giving rise to sperm competition. The process by which the female selects
which sperm to use when fertilizing her eggs is not precisely known. Parker [11]
describes the possibility of so-called sperm raffles where the choice of sperm to use
can be random but ‘fair’ (chance of reproductive success is proportional to the sperm
investment relative to the other males), or ‘loaded’ where the first of last male
displaces some of his rivals sperm, or the female actively discounts the value of some
of the sperm within the ‘raffle’.

The use of spermatophores to deliver sperm is a useful feature of butterfly physiology
because the spermatophore capsule remains in the female reproductive tract until
death and the size reflects the amount of sperm it contained. Therefore by extracting
and measuring spermatophores from mated females it is possible to reconstruct the
female mating history, and make inferences about the male strategy being played.
Such practical experiments are necessary to provide a physical basis for the various
parameters included in sperm models [1,4].

This essay is primarily concerned with exploring how the optimum sperm allocation
strategy for butterflies (e.g. H. Bolina) changes when the OSR is distorted due to a
male-killing bacterial infection like Wolbachia and how this change in strategy affects
the behaviour of females (their average mating rate) and the size of spermatophores
males produce in successive matings.

In order to address this question models of both male and female behaviour were
developed using elements of the models described in the considerable available
literature [6,8,9,10,11]. The following sections discuss the modelling assumptions
made and the method of dynamic programming [12] combined with simulation used
to solve the model.

Model description

In the models the butterflies are treated as rational entities who are aiming to
maximise their offspring. Consequently the language used in describing the model
implies not only consciousness on the part of the butterflies but also the ability to
devise and follow a strategy through mathematical analysis of the environment. This
is clearly not the case in reality and the language of consciousness is used purely for
convenience and to aid understanding of the model. It is assumed that under the
pressure of natural selection the butterflies evolve to make instinctive behavioural
decisions about mating which are optimal, and when viewed externally are equivalent
to the mathematical operations described in the model.

David Fallaize, CoMPLEX, UCL CASE Essay 3 – April 2007

The Female Model

Initially females are virgins with the potential to produce some maximum quantity of
offspring. The number of offspring actually produced by each female is assumed to
follow a ‘diminishing returns’ principle with respect to the amount of sperm she has
gained. The proportion of the maximum offspring produced by a given female
follows [8] and is given by the expression:

�
�

�

�
�
�

�

�
−=

−
α

sperm

eOffspring 1

Where sperm is the level of sperm collected and α is a parameter which controls the
steepness of the curve.

A female will quit the mating process if she has a certain amount of sperm. This
parameter was set to 50% of the sperm carried by one male.

It is assumed that the sperm is allocated on a ‘first come first served’ basis such that
the first male to contribute sperm benefits from the initial steep region of the curve,
getting maximum return for the sperm investment, leaving the continually less well-
performing regions of the curve for the late-comers. This automatically incorporates
an unfair raffle principle analogous to that described by Parker [11] where late
arriving sperm are effectively devalued relative to those already in place.

As time progresses, it is assumed that females who choose to continue seeking a mate
will use some quantity of their resources to do so. It seems reasonable to suppose that
this will lead to a decrease in the maximum offspring possible for that female. To
account for this the above formula was modified to include a geometric ‘depreciation
factor’ d:

t
sperm

deOffspring �
�

�

�
�
�

�

�
−=

−
α1

(where t is time.)

The females’ strategy was static, presumed to have evolved over time through natural
selection. The strategy is not necessarily optimal when considered against the various
male strategies in play: a more realistic model would allow evolution of the female
strategy towards some global optimum over time as the male and female strategies
interact. However simulation of the co-optimisation of male and female strategies is
beyond the scope of this essay.

The Male Model

The mating window for males and females is split into ten time steps. During each
time step all butterflies mate at most once – i.e. males and females randomly pair up
for mating in each time step; any ‘spare’ individuals caused by a non-even sex ratio

David Fallaize, CoMPLEX, UCL CASE Essay 3 – April 2007

do not mate in that time step, and no butterfly mates more than once per time step.
Under these conditions a strategy is defined as ‘given a chance to mate at time step t
and sperm reserve level s, allocate q sperm’.

At the beginning of the first time step males were assumed to have some fixed
quantity of sperm, defined as 1.0, which they partition into some number of equal
sperm quanta (100 sperm quanta for this essay1). During mating the male may choose
to allocate any number of his remaining sperm quanta to the female, taking into
account the current time step and sperm reserves. Fitness is measured by the number
of offspring the male may expect from mating with females.

The dynamics of such a strategy is complicated. The expected payoff from a given
mating depends on how much sperm the female in question has already collected: if
mating with a virgin female then the male is benefiting from the steep region of the
payoff curve and receives good return on his investment, while mating with a non-
virgin female gives increasingly poor return on sperm investment.

In deciding how much sperm to ‘spend’ on a given female the male must also assess
how likely he is to be able to mate in the future (based on some projection of the OSR
into the future), and whether it is worth retaining some sperm for future mating
opportunities when the payoff may have improved. For example since females
choose to quit the mating pool once they have a certain threshold of sperm, they leave
behind virgin (or at least less sperm-rich females) thus the sperm competition from
the male point of view may decrease in successive time steps, making sperm
conservation worthwhile. However this is a bad idea if it is highly unlikely for a male
to have another opportunity to mate e.g. because it is the last time step being
modelled, or because the OSR has shifted to make future mating unlikely.

Dynamic Programming

Optimisation of the male model lends itself conveniently to a process of dynamic
programming described by Mangel and Clark [12]. This is an iterative algorithm
where a decision of how much of some resource (sperm) to spend at a given time step
depends on a dynamic state variable (sperm reserve) available to the decision maker
at each time step. Dynamic programming algorithms characteristically work
backwards from the last time step, optimising the resource allocation at each time step
taking into account the knowledge of the future best-case outcomes calculated in the
previous iterations of the algorithm.

For sperm modelling the problem arises in calculating the payoff at a given time step.
As explained above this requires some knowledge of the expected quantity of sperm a
female already possesses, and the probability of future mating opportunities based on
the OSR. However the amount of sperm a female may be expected to have depends
on the mating history of that female (i.e. what sperm decisions have been made in
earlier time steps by other males). This information is unavailable to the algorithm as
described since it is working backwards in time, not forwards.

1 Varying this parameter would allow modelling of the degree of male control over sperm allocation
per mating, which is clearly a biologically relevant parameter. Although not considered for the
purposes of this essay, the impact of sperm quanta control might be an interesting course for further
study.

David Fallaize, CoMPLEX, UCL CASE Essay 3 – April 2007

In addition the OSR is known only at the beginning of the first time step. As females
become satisfied with the sperm they have received, they quit the mating pool which
lowers the OSR. Therefore OSR is not a static parameter in this model, but varies
over time according to the behaviour of both males and females, and is therefore
dependent on male strategy.

Simulation

In order to solve this problem an element of simulation is introduced in order to allow
the algorithm to ‘know’ the expected quantity of sperm possessed by any female at
any given time, and also the OSR at any time step.

The simulation assumes a fixed population of several thousand individuals, with an
initial female:male OSR which is defined by the user. Males are given a strategy (as
defined above) telling them how much sperm to use at a given mating.

For each time step:

1. Females with more sperm than the threshold level (0.5) leave the
mating pool.

2. The OSR, based on the number of females remaining, is calculated and
recorded.

3. The mean sperm level of each female is calculated and recorded.
4. Random pairs from the male and female populations are selected for

mating until one of the populations runs out of individuals.
5. Within each mating pair, the male allocates sperm to the female

according to the strategy.

The simulation provides the expected sperm competition and OSR at any time step,
assuming the male population follows some given strategy. Running the dynamic
programming algorithm will give the optimum strategy for one male to play against
the population of males, assuming that the effect of the mutant’s own strategy on the
overall distribution of sperm per female and OSR is negligible.

By repeating the simulation with each male having the new strategy as defined by the
dynamic program, a new time course of female sperm level and OSR is computed,
which can be used by another iteration of the dynamic programming algorithm, to
give a further optimised strategy. In this way the model should reach a point where
the dynamic programming algorithm can no longer improve on the current male
strategy, even with the prior knowledge of how everyone else behaves supplied by the
simulation step.

The evolutionarily stable strategy (ESS) is that which, if adopted by a population,
cannot be invaded by any competing alternative strategy [13]. Therefore if the
dynamic programming and simulation process described above is allowed to iterate to
convergence, the final strategy should be the ESS.

Loops in the optimisation process where the output oscillate between a number of
strategies are perturbed to encourage convergence at a single solution corresponding

David Fallaize, CoMPLEX, UCL CASE Essay 3 – April 2007

to the ESS; if the algorithm returns to these oscillating values after being perturbed it
may be assumed that the oscillations represent multiple optimal strategies. In this
case, the simulated population used to derive average sperm allocation and female
mating rates is assumed to be composed of an even mix of the optimal strategies
rather than a single ESS.

Summary of model parameters

Parameters which control the model are summarised in Table 1.

OSR varied from 1.0 to 2.0 (steps of 0.1), 2.0 to 5.0
(steps of 0.5), 10 to 25 (steps of 5)

Alpha 0.5
Female satiety threshold 0.5
Female depreciation 10% and 0% reduction in maximum offspring

per time step
Male depreciation no depreciation
Sperm quanta 100
Time steps 10
Simulation population
size

20,000

Table 1: Summary of model parameters

Implementation

The model was implemented in python. See Appendix for source code.

Results

An example strategy produced by the model is illustrated in Figure 1. The strategy
indicates how much sperm to allocate given the current sperm level, and current time
step.

Figure 1: Example of an ESS produced by the model

David Fallaize, CoMPLEX, UCL CASE Essay 3 – April 2007

Convergence to an ESS

At OSR between 1.0 and 2.0 the model tends to exhibit multiple solutions, while with
the initial OSR set to above 2 females per male the algorithm rapidly finds an ESS.

OSR number of
solutions

notes

1.1 2 100% / 73% initial allocation
1.2 1 79% initial allocation (ESS)
1.3 2 78% / 70% initial allocation

Table 2: solution space for OSR close to 1.0

For OSR less than 1.3 (see Table 2) the solutions are clearly a trade-off between using
all available sperm and gambling on being one of the few males who gets the chance
to mate with the small surplus of females – in a population of males who always use
all sperm at first opportunity, it is better to hold back and vice-versa. The population
might arrive at some equilibrium of these two strategies, or more likely one will prove
more favourable when some other factor is incorporated into the model.

For OSR above 1.3 and below 2.0 there start to appear a large numbers of optimal
solutions, however on closer inspection they are almost all the same with very minor
variations – e.g. a 1% difference in sperm allocation for the third time step when the
male has 50 sperm quanta remaining. Since the model makes coarse approximations
about butterfly behaviour, such minor variation in the output is unimportant.
Although the algorithm fails to find an ESS in the strictest sense, in reality the
multiple strategies would be indistinguishable from each other.

Average female mating rate

The average number of matings per female is illustrated in Figure 2.

Mean Female Matings vs. OSR

0

1

2

3

4

5

6

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
logn(OSR)

M
ea

n
fe

m
al

e
m

at
in

gs

female depreciation = 0.9
no depreciation

Figure 2: Mean copulations per female

David Fallaize, CoMPLEX, UCL CASE Essay 3 – April 2007

This agrees with the results of [1] which show that as females become more abundant
initially the mating rate rises, contrary to what one might expect, until males become
so rare that sperm limitation takes place.

Spermatophore size

The average spermatophore size for successive mating events is shown in Figure 3
(model with female depreciation of 10% per time step) and Figure 4 (no female
depreciation).

At low values of OSR males deliver most of their sperm at the first opportunity, while
at high values of OSR they conserve some sperm for later mating events. For values
of OSR higher than 10 the males are certain to find a mate in all time steps since it is
impossible for the OSR to fall below 1 given the parameters of the model.

With female depreciation removed (i.e. less incentive to use sperm early due to drop
in female quality) the ejaculate profile looks more even, as one would expect from
intuition. In this case the reason for slightly higher sperm allocation early on is that
sperm competition is zero at the first time step guaranteeing that the male is getting
the benefit of the maximum slope of the payoff curve.

Figure 3

David Fallaize, CoMPLEX, UCL CASE Essay 3 – April 2007

Figure 4

It is interesting to note that sperm allocation for the second mating increases as the
OSR increases (corresponding to a second chance to mate becoming more likely).
This causes an increase in sperm competition (see Figure 5) (measured as the fraction
of all sperm that finds itself competing with another male's sperm for fertilization of a
female's eggs).

Sperm Competition vs. OSR

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 5.0 10.0 15.0 20.0 25.0
OSR (females per male)

S
pe

rm
 C

om
pe

tit
io

n
(f

ra
ct

io
n

of
 a

ll
sp

er
m

 w
hi

ch
 e

nc
ou

nt
er

s
co

m
pe

tit
io

n)

female depreciation = 0.9
no depreciation

Figure 5: Sperm competition vs. operational sex ratio

David Fallaize, CoMPLEX, UCL CASE Essay 3 – April 2007

This supports the suggestion of Williams et. al. [9] that sperm competition should be
regarded as a consequence of sperm allocation strategy rather than as a driving force.
Increased sperm competition, in this model, is the price males pay to benefit from the
increase in mating opportunity provided by excess females.

Conclusions

The technique of dynamic simulation combined with simulation used in this essay
allows models of butterfly mating behaviour to be solved, yielding optimal sperm
strategies for a range of OSR values. Although the models presented are fairly simple
with few parameters, the framework developed for this essay offers the possibility of
investigating the complex interaction between conflicting female and male strategies.
The results produced seem to correspond reasonably well with those found in the
extensive literature on this subject.

Biologically speaking it is highly questionable whether one would expect real males
in the wild to exhibit the optimised strategies calculated here. The distorted OSR
produced by a bacterial parasite such as Wolbachia will persist for as long as it takes
for the butterflies to develop some resistance to the parasite. It seems unlikely that
enough mutations could occur to produce a phenotypic effect of the optimum sperm
model in the time it takes for a mutation to confer parasitic immunity, even taking into
account the amplification effect of male-inherited traits produced by the biased OSR.

Bearing in mind the above limitation the optimal strategies are useful to the biologist
mainly as a guide to indicate the general direction in which ‘sperm strategy evolution’
would be expected to travel given enough time. Simulation of sperm strategies gives
estimates of female mating rates and spermatophore size distributions which can be
compared with experimental data, allowing the predictions of the model to be tested
against measurable data.

References

1. Charlat, S., Reuter, M., Dyson, E.A., Hornett, E.A., Duplouy, A., Davies, N.,

Roderick, G.K., Wedell, N., Hurst, G.D.D. (2007). “Male Killing Bacteria Trigger
a Cycle of Increasing Male Fatigue and Female Promiscuity.” Current Biology 17,
273-277

2. Parker, G.A. (1970) “Sperm competition and its evolutionary consequences in the
insects.” Biol. Rev. 45: 525-567

3. Simmons, L.W., Siva-Jothy, M.T. (1998) “Sperm Competition in Insects:
Mechanisms and the Potential for Selection”, Sperm Competition and Sexual
Selection, ed. Birkhead, T.R., and Møller, A.P., Academic Press, Ch10 pp 341-
434

4. Cook, P.A., and Wedell, N. (1996) “Ejaculate dynamics in butterflies: a strategy
for maximizing fertilization success?” Proc. R. Soc. Lond. B 263, 1047-1051

5. Wedell, N., Matthew J.G.G., Parker, G.A. (2002) “Sperm competition, male
prudence and sperm-limited females” TRENDS in Ecology & Evolution 17 7 313-
320

6. Harris, W.E., and Lucas, J.R. (2002) “A state-based model of sperm allocation in
a group breeding salamander” Behavioral Ecology 13 5 705-712

David Fallaize, CoMPLEX, UCL CASE Essay 3 – April 2007

7. Ball, M.A., and Parker, G.A. (2007) “Sperm competition games: the risk model
can generate higher sperm allocation to virgin females” Journal Compilation
European Society for Evolutionary Biology 20 767-779

8. Galvani, A., Johnstone, R. (1998) “Sperm allocation in an uncertain world”
Behav. Ecol. Sociobiol. 44 161-168

9. Williams, P.D., Day, T., Cameron, E. (2005) “The evolution of sperm-allocation
strategies and the degree of sperm competition” Evolution 59 3 492-499

10. Fryer, T., Cannings, C., Vickers, G.T. (1999) “Sperm Competition I: Basic Model,
ESS and Dynamics” J. theor. Biol. 196 81-100

11. Parker, G.A. (1990) “Sperm competition games: raffles and roles” Proc. R. Soc.
Lond. B 242 120-126

12. Mangel, M., and Clark, C.W. (1988) “Dynamic Modeling in Behavioral Ecology”
Princeton University Press

13. Maynard-Smith, J. (1982) “Evolution and the theory of games” Cambridge
University Press

David Fallaize, CoMPLEX, UCL CASE Essay 3 – April 2007

Appendix (model source code)

butterflies.py
dynamic programming and simulation of butterfly
sperm allocation strategy.
David Fallaize CoMPLEX, UCL 2007

import sys
import math, random
import copy
from simulator import *
from outputs import *

def chop(x, lower, upper):
 if x > upper: x = upper
 if x < lower: x = lower
 return x

def frange(start, end=None, inc=None):
 "A range function, that does accept float increments..."

 if end == None:
 end = start + 0.0
 start = 0.0

 if inc == None:
 inc = 1.0

 L = []
 while 1:
 next = start + len(L) * inc
 if inc > 0 and next >= end:
 break
 elif inc < 0 and next <= end:
 break
 L.append(next)

 return L

def find_best_strategy(simulation, T):
 # this is the dynamic programming algorithm

 new_strategy = {}
 t = T
 while t > 0:

 new_strategy[t] = {}

 # for each of the possible sperm levels, calculate the best
 # sperm allocation choice based on expected payoff.
 sperm_competition = simulation.expected_female_sperm_count(t-1)
 current_payoff = Female().calc_payoff(sperm_competition, t)
 #threshold_allocation = Female.threshold(t) - sperm_competition

 for s in range(Male.sperm_quanta+1): # s from 0 to 1

 # given that i currently have s sperm available, iterate through
 # my possible amounts to allocate, and decide whether it's better
 # to allocate that sperm now, or later - i.e. find the best total
 # payoff of sperm now + payoff that leaves us for next timestep.
 def payoff(a):

 # if i allocate amount of sperm a, that will leave me with
 # s-a for the next time step, minus depreciation due to cost
 # of flying around looking for mate. We have already worked out
 # what the best payoff for that is.

 # best future payoff is the best we can do with this amount of
 # sperm in the next step, taking into account the odds of actually
 # being able to mate in the next step by using the simulated OSR
 sperm_next_time = math.floor((s-a) * Male.depreciation)
 future = 0.0
 try:
 accumulator = 1.0
 for tt in range(t,T):

David Fallaize, CoMPLEX, UCL CASE Essay 3 – April 2007

 prob_of_mating = chop(simulation.OSR[tt+1],0,1)
 future += new_strategy[tt+1][sperm_next_time][1] *
prob_of_mating * accumulator
 accumulator *= (1.0 - prob_of_mating)
 except:
 if tt < T: print "argh"
 pass

 now = Female().calc_payoff(sperm_competition + a, t) - current_payoff
 return now + future

 best_now = max([(payoff(a),a) for a in range(s+1)])
 new_strategy[t][s] = (best_now[1], best_now[0])

 # decrement t
 t -= 1

 # strategy as-is includes payoff information which is now
 # redundant...
 new_strategy_stripped = {}
 for t in new_strategy.keys():
 q = {}
 for s in new_strategy[t].keys():
 q[s] = new_strategy[t][s][0]
 new_strategy_stripped[t] = q

 return new_strategy_stripped

here's where we actually run the program

parameters!
T = 10
sample_size = 5000
osr_range = frange(1,2,0.1) + frange(2,5,0.5) + range(5,10,1) + range(10,26,5)
#osr_range = [1.1, 1.2, 1.3, 1.6] # non-converging OSR values

init holders
ejaculate_sizes = {}
spermatophore_sizes = {}
sperm_competition = {}
female_mating = {}

def random_strategy():
 # generate a random strategy

 strat = {}
 for t in range(1,T+1):
 strat[t] = {}
 for s in range(1,Male.sperm_quanta+1):
 strat[t][s] = int(math.ceil(random.random() * s))

 return strat

def perturb_strategies(strats):
 # get 'average' strategy of set of looping strategies

 new_strategy = {}
 for t in range(1,T+1):
 new_strategy[t] = {}
 for s in range(1,Male.sperm_quanta+1):
 new_strategy[t][s] = 0
 for strat in strats:
 new_strategy[t][s] += strat[t][s] / len(strats)

 return new_strategy

loop over range of initial OSR
for OSR in osr_range:
 print "OSR=%f" %(OSR)

 new_strategy = random_strategy()
 tried_strategies = [new_strategy]
 perturbed_list = []
 converged = False
 iterations = 0
 while not converged:
 iterations += 1

David Fallaize, CoMPLEX, UCL CASE Essay 3 – April 2007

 # statistical simulation
 simulation = Population(sample_size, OSR, T, new_strategy)

 # generate new strategy by dynamic programing
 new_strategy = find_best_strategy(simulation, T)

 # check for convergence
 print "testing convergence...",
 if new_strategy not in tried_strategies:#

 # count how many discrepencies
 discrepencies = 0
 for t in range(1,T+1):
 for s in range(1,Male.sperm_quanta+1):
 if new_strategy[t][s] != tried_strategies[-1][t][s]:
 discrepencies += 1
 print "failed: %d discrepencies" %(discrepencies)

 # add tried strategy to the list
 tried_strategies.append(copy.deepcopy(new_strategy))

 elif new_strategy == tried_strategies[-1]:
 # converged! same strategy emerges as the last one
 print "succeeeded!"

 # output all the interesting population statistics stuff
 write_strategy(new_strategy, OSR)

 ejaculate_sizes[OSR] = [simulation.ejaculate_sizes()]
 spermatophore_sizes[OSR] = [simulation.spermatophore_sizes()]
 sperm_competition[OSR] = [simulation.sperm_competition()]
 female_mating[OSR] = [simulation.average_female_matings()]

 converged = True

 elif new_strategy not in perturbed_list:
 # seen this strategy already, but haven't tried perturbing

 print "already seen this strategy... try perturbing"
 idx = tried_strategies.index(new_strategy)
 strats = tried_strategies[idx:]
 new_strategy = perturb_strategies(strats)
 perturbed_list += strats

 tried_strategies = tried_strategies[:idx]
 tried_strategies.append(copy.deepcopy(new_strategy))

 else:
 # seen this strategy, tried perturbing it, still end up looping
 # therefore must be multiple stable states

 idx = tried_strategies.index(new_strategy)
 print "loop! strategies: %d-%d are optimal" %(idx+1,
len(tried_strategies))
 ctr = 0

 for a_solution in tried_strategies[idx:]:
 ctr+=1
 write_strategy(a_solution, OSR, ctr)

 simulation = Population(sample_size, OSR, T, tried_strategies[idx:])
 ejaculate_sizes[OSR] = [simulation.ejaculate_sizes()]
 spermatophore_sizes[OSR] = [simulation.spermatophore_sizes()]
 sperm_competition[OSR] = [simulation.sperm_competition()]
 female_mating[OSR] = [simulation.average_female_matings()]

 converged = True

 print "converged after %d iterations" %(iterations)
 write_csv("spermatophore_size", spermatophore_sizes)
 write_csv("ejaculates", ejaculate_sizes)
 write_csv2("sperm_competition", sperm_competition)
 write_csv2("female_mating", female_mating)

simulator.py
dynamic programming and simulation of butterfly

David Fallaize, CoMPLEX, UCL CASE Essay 3 – April 2007

sperm allocation strategy.
David Fallaize CoMPLEX, UCL 2007

import sys
import math, random

class Population:

 def __init__(self, size, OSR, T, strategy):

 self.T = T
 self.strategy = strategy

 # OSR is the number of females per male
 males = int(math.floor(size / (1 + OSR)))
 females = int(size - males)
 F = [Female() for i in range(females)]

 # handle multiple strategies in population
 if type(strategy) is list:
 self.M = []
 males_per_strategy = math.floor(males / len(strategy))
 for s in strategy:
 self.M += [Male(s) for i in range(males_per_strategy)]
 else:
 self.M = [Male(strategy) for i in range(males)]

 self.OSR = {}
 self.sperm_histogram = {}
 self.final_females = []

 # given this ratio of males to females, and the optimum male
 # strategy as supplied, calculate the OSR vs t
 for t in range(T+1):

 # construct the list of active females. Note that males never
 # leave the mating pool as it is always in their interest to run
 # interference against other males who want to mate in order to
 # reduce any chance of sperm competition.
 self.final_females.extend([f.sperm_holder for f in F if not
f.still_mating(t)])
 F = [f for f in F if f.still_mating(t)]

 females = len(F)
 males = len(self.M)
 self.OSR[t] = float(females) / males

 # construct sperm histogram for this time point
 self.sperm_histogram[t] = [f.sperm_count for f in F]

 # now carry out the mating for this time step
 if t < T:
 n = min(males, females)
 for f,m in zip(random.sample(F, n), random.sample(self.M, n)):
 f.add_sperm(m.give_sperm(t+1))
 for m in self.M: m.depreciate() # allow male depreciation

 # that completes one time step (i.e. one iteration of mating)
 # at the start of the next time step (t+1) the females have the
 # opportunity to quit if they think they have enough sperm.

 self.final_females.extend([f.sperm_holder for f in F])

 def expected_female_sperm_count(self, t):
 try: expect = float(sum(self.sperm_histogram[t])) /
len(self.sperm_histogram[t])
 except: expect = 0
 return expect

 def average_female_matings(self):
 return float(sum([len(spermatophores) for spermatophores in
self.final_females])) / len(self.final_females)

 def sperm_competition(self):
 total_sperm = sum([sum(spermatophores) for spermatophores in
self.final_females])

David Fallaize, CoMPLEX, UCL CASE Essay 3 – April 2007

 in_competition = sum([sum(spermatophores) for spermatophores in
self.final_females if len(spermatophores) > 1])
 return float(in_competition) / total_sperm

 def ejaculate_sizes(self):

 # init counters
 hist,ctr = {},{}
 for t in range(1,self.T+1):
 hist[t] = 0.0
 ctr[t] = 0.0

 # for each of the males...
 for m in self.M:
 # loop over their mating events, and build average
 # sperm allocation for sequential mating events
 for idx in range(len(m.mating_history)):
 hist[idx+1] += m.mating_history[idx]
 ctr[idx+1] += 1

 # calculate averages
 output = []
 for t in range(1,self.T+1):
 if ctr[t] != 0:
 output.append(hist[t] / ctr[t])

 return output

 def spermatophore_sizes(self):

 # init counters
 hist,ctr = {},{}
 for t in range(1,self.T+1):
 hist[t] = 0.0
 ctr[t] = 0.0

 # for each of the females...
 for f in self.final_females:
 # loop over their mating events, and build average
 # sperm allocation for sequential mating events
 for idx in range(len(f)):
 hist[idx+1] += f[idx]
 ctr[idx+1] += 1

 # calculate averages
 output = []
 for t in range(1,self.T+1):
 if ctr[t] != 0:
 output.append(hist[t] / ctr[t])

 return output

class Male:

 total_sperm = 1.0
 sperm_quanta = 100
 depreciation = 1.0 # no male depreciation taken into account

 def __init__(self, strategy):
 self.sperm_count = Male.sperm_quanta
 self.strategy = strategy
 self.mating_history = []

 def quanta_to_sperm(cls, q):
 return (q / float(cls.sperm_quanta)) * cls.total_sperm
 quanta_to_sperm = classmethod(quanta_to_sperm)

 def give_sperm(self, t):

 # figure out how much sperm we should allocate according
 # to the current strategy we're following. Note that this
 # will depend on both the time t and the amount of sperm we
 # currently have available (the totally ideal strategy might
 # not be possible if females are in short supply, and males
 # do not have the opportunity to mate every time they would like)
 if self.sperm_count > 0:
 sperm_to_donate = self.strategy[t][self.sperm_count]

David Fallaize, CoMPLEX, UCL CASE Essay 3 – April 2007

 else:
 sperm_to_donate = 0

 self.sperm_count -= sperm_to_donate
 self.mating_history.append(sperm_to_donate)

 return sperm_to_donate

 def depreciate(self):

 # cause a depreciation in sperm due to 'cost of living'
 self.sperm_count = math.floor(self.sperm_count * Male.depreciation)
 return

class Female:

 sperm_potency = 0.5
 depreciation = 0.9
 threshold = 0.5

 def __init__(self):
 self.sperm_holder = []

 def add_sperm(self, sperm):
 self.sperm_holder.append(sperm)

 def sperm_count(self):
 return sum(self.sperm_holder)
 sperm_count = property(sperm_count)

 def calc_payoff(sperm, t):

 # convert sperm quanta to an actual amount of sperm
 actual_sperm = Male.quanta_to_sperm(sperm)

 # depreciation of female quality over time
 dep_factor = Female.depreciation ** (t-1)

 return (1 - math.exp(-actual_sperm / Female.sperm_potency)) * dep_factor
 calc_payoff = staticmethod(calc_payoff)

 def calc_still_mating(sperm, t):
 return Male.quanta_to_sperm(sperm) < Female.threshold
 calc_still_mating = staticmethod(calc_still_mating)

 def still_mating(self, t):
 return self.calc_still_mating(self.sperm_count, t)

