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Abstract 
 
A novel approach to simplifying biological models has been suggested by Hetherington and 
Saffrey, involving a Voronoi tiling of the phase plane, then following the flow vector (dx/dt 
dy/dt, where x and y are the variables undergoing phase plane analysis), to create a directed 
graph of nodes within the phase plane.  Closed loops of the graph will correspond to stable 
limit cycles.  In this way a complicated model may be more simply expressed as the traversal 
of a set of states in the phase plane of the model.  This essay discusses the results of this 
process as applied to the Morris-Lecar model and a hepatocyte calcium oscillation model, and 
finds that the phase plane patterns generated by the algorithm closely resemble those found in 
the literature (obtained by numerical integration methods).  The generation of bifurcation 
diagrams requires a little more tuning to increase reliability, however overall the algorithm 
seems to work well for the models described. 
 

Introduction 
 
The modelling of biological systems often involves approximating biological 
processes as systems of non-linear differential equations where the dynamical 
variables represent concentrations of various chemical or biological entities, 
proportions of signalling proteins activated, or cellular voltages and currents.  Such 
models often quickly become very complicated with many different equations with 
large numbers of parameters required to accurately describe the biological system. 
 
One approach in modelling is to incorporate every conceivable variable into the 
model.  This will at least reduce the odds that any important variable has been left out.  
However even in the unlikely event that the huge all-encompassing model is 
computationally feasible, the number of parameters available for tweaking may 
reduce the credibility of the output – it is possible to fit almost any set of results to a 
very large model just by tweaking parameters.  In this case, it is difficult to have 
confidence that the parameter values reflect relevant biological analogues, and no real 
insight into the biology of the problem has been gained. 
 
Clearly it is essential to make simplifications and generalisations at every step of the 
modelling process: one must select the important variables to take into account while 
neglecting others – a process which requires a great deal of thought since which 
variables are ‘important’ depends on the purpose of the model. 
 
Furthermore it is often necessary to use mathematical functions to approximate some 
biological response curve - for example the use of Hill functions to represent the level 
of activation of a population of receptor proteins in the presence of an agonist.  Even 
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this common generalisation requires at least two parameters to be set: the Hill 
exponent n (effectively the sharpness of the response, where the Hill function tends 
toward the Heavyside step function as n tends to infinity), and the 50% threshold 
value for the agonist. 
 
Between the initial assumptions of the model and the parameters introduced by the 
mathematical functions used, clearly the model is going to rapidly diverge from 
biological reality.  A trade-off is required between the simplicity of the model and the 
complexity required to remain biologically relevant, and at the end of the process the 
model must actually be computationally feasible. 
 
In [1] the authors argue that the purpose of modelling is to gain insight into the 
underlying biology, and that absolute simulation of the biological system is not in 
itself necessarily a useful endeavour.  A good model should be ‘just complicated 
enough’ and in practical terms if it retains some information about the interaction 
between the various components of the model (for example stability information, 
magnitude and thresholds of oscillation of variables) then this can provide useful 
insight even if the time courses of variables predicted by the model are significantly 
erroneous. 
 
This essay is concerned with a method for extracting stability information from two 
well-known biological models without carrying out full numerical integration of the 
variables.  The phase planes of the models are effectively compressed and the 
stable/unstable features detected.  The output of the compressed model is then 
qualitatively compared with the data available in the literature, in order to assess the 
impact of the compression. 
 

Compressed phase plane analysis 
 
The 2-D phase plane shows the interaction between two variables in the model while 
all other variables and parameters are kept constant1.  In a flow vector analysis of the 
phase plane, the flow vector is defined as the rate of change of the two variables with 
respect to time – at each point in the plane the vector can be calculated, and points to 
the next point in the phase plane to which the variables will evolve.  It may be 
possible to easily identify regions of interest in the diagram – e.g. stable/unstable 
fixed points/limit cycles – assuming there is such an interaction between the two 
variables chosen for the analysis.  By repeating the phase plane analysis for various 
values of the parameters, one can quickly identify which parameters of the equations 
have a large effect on the stability of the system, and where the threshold values for 
those parameters lie.  A bifurcation diagram shows the stable (and unstable) points of 
a variable as a given parameter changes. 
 
The computation and progression of the flow vectors can be simplified by using a 
method similar to vector quantization [2] of the phase plane.  The first step is to carry 
out a Voronoi tiling of the plane, with each tile containing a node at which point the 

                                                 
1 This essay only discusses 2D phase plane analysis since 2 dimensions are easy to visualise – 
correspondingly the models considered in this essay are 2 variable systems.  The principles can extend 
to higher dimensions, but the visualisation and interpretation of results becomes much more difficult to 
understand. 
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flow vector is calculated.  This vector is taken to be an approximation of the flow 
vector for the whole of that tile 2. 
 
A Voronoi tiling pattern is shown in Figure 1. 
 

 
Figure 1: Voronoi tiling pattern for set of random points within a square (source: Wikipedia) 

 
 
These nodes can be connected together in some order based upon the flow vectors at 
each node to give an indication of the flow pattern across the whole of the phase 
plane.  The output is a directed graph where stable limit cycles are represented by 
strongly connected components of the graph.  (Stable fixed points will also appear as 
small loops in the graph, which must be distinguished from the limit cycles.) 
 
The key problem is to decide how to connect the nodes: the simplest solution is to 
follow the flow vector from each node until it enters impinges on another Voronoi 
tile, and to connect the nodes of these tiles together (repeat for all nodes).  A more 
sophisticated approach, as implemented by Saffrey and Hetherington is outlined 
below: 
 

For each Voronoi node X in the phase plane: 
1. Calculate the vector flow at this node 
2. Identify the adjacent nodes to X.  For each of these adjacent nodes Y: 

i. Calculate the vector spacing from X to Y  
ii. Calculate the magnitude squared of spacing i.e. 

|spacing|2 
iii. Calculate the ‘dot’ product spacing.flow 
iv. Divide |spacing|2 by spacing.flow – call this quantity t 

3. To identify stable features: connect the current node to the adjacent node 
which had the smallest positive value of t 

4. To identify unstable features: connect the current node to the adjacent 
node which had the smallest positive value of (–t) (i.e. the smallest in 
magnitude negative value of t). 

                                                 
2 The properties of a Voronoi tiling ensure that the Euclidean distance of each point within the tile to 
the node for that tile is less than the distance to the Voronoi node of any other tile. 
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Rationale 
 
The flow vector at node X probably doesn’t point directly at any of the adjacent nodes 
Y, therefore it is inevitable that the decision to assign the flow to any of the adjacent 
nodes will introduce some error into the flow.  Since we are approximating the 
direction of the flow vector by changing the direction towards a given node, it seems 
reasonable to adjust the magnitude of the flow vector accordingly: take the component 
of the true flow vector in the direction of the target node.  Mathematically this can be 
achieved by taking the dot product of the spacing and flow vectors, and dividing by 
the magnitude of the spacing vector. 
 
|modified flow vector| = spacing.flow / |spacing| 
 
Remembering that the flow vector represents a change of phase variables per unit 
time, we can estimate a time, t, corresponding to the change from state X to state Y by 
dividing the distance between X and Y by the magnitude of the modified flow vector: 
 
t = |spacing| / |modified flow vector| 
 
substituting from above: 
 
t = |spacing|2 / spacing.flow 
 
Thus the quantity t being minimised in the algorithm is the transit time of the 
component of the flow vector travelling between the two nodes.3  The algorithm 
selects the node to which the flow would travel fastest, taking into account the fact 
that we are approximating the direction of the flow.   
 
Note that since the algorithm also calculates the transit times for nodes in the opposite 
direction to the flow vector (i.e. t can be negative), it also works out the closest node 
from the point of view of the reverse flow vector.  By building a separate directed 
graph of the reverse flow, we can detect stable features in the reverse flow, which are 
in fact the unstable features in the ‘actual’ forward flow. 
 
How many Voronoi tiles? 
 
Clearly the more tiles that are used to represent the flow across the phase plane, the 
more accurate will be the directed graph.  The minimum number of Voronoi tiles 
required to cover the phase plane without losing important variation in the flow 
vectors depends upon the density of important features in the phase plot. 
 
To a certain extent it is necessary to know beforehand where in phase space the 
interesting regions are.  Practically speaking the user must define the extent of the 
axes of the phase plane, which will then be Voronoi tiled with some number of tiles. 
 
                                                 
3 Of course there are other geometrically equivalent interpretations of t – one could say it is the time 
taken for the flow vector to reach the point where a vector from Y drawn perpendicular to spacing 
crosses the direction of the flow vector (making a right-angled triangle from X to Y to the intersection).  
Although this is mathematically the same thing, the explanation in the text seems more intuitive to me. 
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In this essay the number of tiles ranged from 1,000 to 10,000.  Bifurcation diagrams 
were constructed by running the algorithm over the phase plane repeatedly as some 
parameter or external variable in the model was altered.  The degree of fidelity 
between the bifurcation diagrams produced and the ‘textbook’ versions was 
qualitatively measured as the tiling resolution degraded (corresponding to higher 
compression of the biological model). 
 
Implementation 
 
This scheme of ‘simplification by compression’ was implemented by Saffrey and 
Hetherington in a python application which allows the user to define a vector flow 
field (see Appendices A and B) which will then be ‘compressed’ using the method 
described above, giving as an output a directed graph indicating the flow between 
Voronoi nodes.  The program identifies strongly connected components in both the 
forward and reverse flows, and outputs information about them.  The results can be 
visualised using graphviz and a plotting utility. 
 

Biological Models 
 
At this point it is appropriate to describe the biological models which were used to 
evaluate the program. 
 
Morris-Lecar 
 
The Morris-Lecar model [3][4] is a well-known simple model to explain electrical 
behaviour of barnacle muscle fibre.  Experiments where a depolarisation current was 
applied to the muscle fibre resulted in electrical activity in the fibre which were found 
to arise from voltage gated K+ and Ca2+ channels, as well as a further K+ current 
activated by intracellular Ca2+.  Voltage clamp experiments showed that the action of 
these channels was not affected in the way predicted by the Hodgkin and Huxley 
model for the squid giant axon [5], therefore some other model was required. 
 
Morris and Lecar proposed the following model: 
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Electrically speaking, the model assumes the cell to behave like a capacitor which is 
leaking charge through a variety of conductances which depend upon the capacitor 
voltage.  The biological origins of these charge leakages are both the applied 
depolarising current Iapp, as well as a general leakage conductance gL (with a 
corresponding voltage-offset of VL), and leakages through the Ca2+ and K+ channels 
(with peak conductances gCa, gK).  VCA, VK are parameters controlling the voltage 
characteristics of those channels, while m and w are functions which describe the 
proportion of open voltage gated Ca2+ and K+ channels respectively at any given time. 
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∞m , ∞w and w are described by the following equations: 
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(v1,v2,v3,v4 are threshold parameters for the voltage gated ion channels.) 
 
It is worth noting that in this model w (the proportion of K+ channels open) is a time-
dependent variable – changes in V alter the value of w with a time lag controlled by 
τ .  τ  is itself dependent on V.  On the other hand, the fraction of open Ca2+ channels, 
m, has no such complicated time dependency – the value of m depends on V but is 
independent of time.  The assumption made here is that any time lag in m is short 
enough that it may be neglected and m is assumed to be in steady state.  This is useful 
from the point of view of our phase plane analysis since it means we have only a 2-D 
system of equations! 
 
This model was implemented by Saffrey and Hetherington and modified slightly for 
this essay (see Appendix A).  Parameter values which produce an interesting phase 
plane analysis were taken from [4] in order to test the Voronoi compression scheme 
against a well known system of equations and determine whether the compressed 
phase plane analysis is capable of retaining useful stability information. 
 
Initially the system was set to oscillate with Iapp=150µA/cm2 – the phase plane 
analysis of V vs. w should in this situation produce a stable limit cycle [4].  The 
directed graph of Voronoi nodes produced by the program is shown in Figure 2.  The 
axes are scaled to +/- 75mV on the x-axis and 0 to 1 on the y-axis.  The limit cycle is 
outlined in blue, and the flow pattern seems to generally resemble those in [4]. 
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Figure 2: Phase portrait of Voltage (mv) vs. w (proportion of K+ channels open) – 10,000 Voronoi 

tiles.  Limit cycle is the faint red loop  (x-axis is scaled –75mV to 75mV, y-axis scaled 0 to 1) 

 
Figure 3 shows a zoomed in region of the phase portrait, showing that the program 
has also identified some unstable fixed points in the phase plane (the small closed 
coloured loops near the bottom of the figure). 
 

 

 
Figure 3: Zoomed in part of phase plane showing part of a limit cycle (red) and some unstable 

fixed points (blue, purple, green).  Note that the structure is that of a structured graph. 
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As the number of Voronoi tiles is decreased the resolution of the phase portrait 
diminishes as expected (Figure 4).  However there appears to be little loss of useful 
information – the limit cycle is still clearly identified and the shape is not very 
different from the ‘high resolution’ version, suggesting that the time period and shape 
of the time course will not be very different between the two levels of compression.  
Figure 5 shows that this is indeed the case. 
 

 
Figure 4: 1000 Voronoi tiles - lower resolution, but little loss of information? 

Morris-Lecar time course - V(t) (Iapp=150pA)
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Figure 5: Time traces for 'high' (pink) and 'low' (blue) resolution Morris-Lecar model
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From the results it is clear that the compressed version of the phase portrait bears 
remarkable similarity to that derived from full numerical integration.  Indeed, the 
detection of stable limit cycles is quite robust even at high levels of compression (i.e. 
fewer Voronoi tiles). 
 
However the bifurcation diagrams (Figure 6 and Figure 7) show that there are 
limitations to the technique.  While the detection of stable limit cycles is quite good, 
the detection and classification of unstable features is a little less reliable.4  The 
quality of the bifurcation diagram is improved for higher values of N, but at the cost 
of increased ‘noise’ of spurious unstable features.  At low N, the bifurcation diagram 
shows that the lower resolution version wrongly detects the onset of oscillations.  
Some further work in this area seems to be required, however the general principle 
seems sound for this example at least.

                                                 
4 The performance of the fixed point detection was improved by the author for the purpose of this 
essay, by enforcing the condition that a strongly connected component of the graph corresponds to a 
fixed point if there are no Voronoi nodes contained within the region bounded by the loop (that are not 
part of the loop).  This is an improvement on the original size-based threshold method where the area 
of the loop was checked against a fairly arbitrary cutoff value to determine whether it was ‘probably’ a 
fixed point rather than a limit cycle. 
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Bifurcation diagram for Morris-Lecar: Iapp vs. Voltage - High Resolution N=10k
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Figure 6: Bifurcation diagram with high N - many spurious unstable points, but good overall agreement with literature 
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Bifurcation diagram for Morris-Lecar: Iapp vs. Voltage - Low Resolution N=1000
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Figure 7: Bifurcation diagram for lower N
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Calcium oscillations in Hepatocytes 
 
The second model explored for this essay was that of calcium oscillations in 
hepatocytes.   
 

 
Figure 8: Cultured hepatocytes (rat) 5 

 
It has been observed experimentally that for cells in general, a release of calcium ions 
from intracellular compartments into the cytosol can be induced by externally applied 
stimuli.  It is possible to induce oscillatory behaviour of calcium ion concentration in 
cells by applying suitable stimuli. 
 
In the case of hepatocytes the hormones vasopressin and noradrenalin can activate 
phopholipase C (PLC) which in turn activate inositol trisphosphate (InsP3) receptors, 
which give rise to a release of calcium ions from the endoplasmic reticulum (ER) into 
the cytosol.  In addition there is calcium induced calcium release (CICR) of ions from 
the ER into the cytosol which occurs at moderate cytosolic concentrations of calcium, 
but which is inhibited by high concentrations of cytosolic calcium. 
 
Meanwhile calcium pumps on the ER membrane known as Sarco/endplasmic 
reticulum calcium atp-ase (SERCA) transport cytosolic calcium ions back into the 
ER.  At the same time, there is calcium ion exchange to/from the cytosol via the 
plasma membrane, through plasma membrane calcium atp-ase (PMCA) pumps, and 
by some level of leakage. 
 
Höfer [6] describes a model to account for these modes of calcium transport within 
hepatocytes.  In addition [6] includes the possibility of inter-cellular signalling and 

                                                 
5 Photo taken through a confocal microscope during attempt to observe existence of gap junctions by 
inter-cellular transport of an injected fluorescent dye.  The shadow to the right is a (broken!) glass tip 
used for the dye injection.  Experiments such as these underpin the mathematical models under 
discussion and must be carried out to both supply parameters to (and validate results from) 
computational models. 
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calcium flow through gap junctions between hepatocytes, however for the purpose of 
this essay gap junction connections are neglected and only single isolated cells are 
considered. 
 
The model may be expressed as follows (mathematically equivalent to [6] without gap 
junction contribution, but written in the notation consistent with [1]): 
 

3

1
,

3
1,11

2,

1,

2,

,

,,,,

)(

)))](,(1)(,(),([),(

),(

)),((

),(

)),()((

dP
dP

cP

PCcCpPCPU

cCkJ

pPlkJ

cCkJ

CPUlCEkJ

JJJJ
dt
dC

ECEC

ECECEC

MPMPoutPM

MCMCMCinPM

EPEPoutER

ECECinER

outPMinPMoutERinER

+
+

=

−=

=
+=

=
+−=

−+−=

−

+

γ

γθθθ

θ
θ

θ
 

 

),( eEnθ  denotes the Hill Function with exponent n: 
nEe

eEn
)/(1

1
),(

+
≡θ  

 
J is the flux of calcium ions for each mode of transport.  ER denotes transport in/out 
of the endoplasmic reticulum.  PM denotes transport in/out of the cell via the plasma 
membrane channels.  C is the cytosolic calcium ion concentration.  E is the calcium 
ion concentration in the ER.  In fact for the purposes of this essay the phase plane 
variables were defined as C (cytosolic calcium concentration) vs. total calcium 
concentration Z (Z = C + E/v) to allow comparison with the phase plane analyses in 
[6].  It follows that: 
 

outPMinPM JJ
dt
dZ

,, −=  

 
P is the concentration of IP3 which controls the onset of oscillations.  All of the other 
quantities in the equations are parameters.6 
 
[1] discusses the simplification of the model in [6] and carries out an analysis to 
quantify the impact of the simplification on the output of the model.  A similar 
analysis to that in [1] could be carried out in this case to evaluate the performance and 
degradation of the full-scale model when analysed using the Voronoi compression 
scheme.  Such a full comparison as described in [1] is beyond the scope of this essay, 
however in an attempt to make some progress in this direction the above model was 
implemented (Appendix B) and run through the Voronoi compression program. 
 

                                                 
6 The values of these parameters may be found from the implementation details in Appendix B, and are 
taken from [5] and [1] which are in turn based on experimental data.  The actual values are not 
included in the body of this text since this essay is not concerned with the details of these models, but 
rather with the performance of the Voronoi compression scheme in evaluating these models. 
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Figure 9 is taken from [6] and summarises the output of Höfer’s model in [6].  The 
aim is to recreate these results using the Voronoi compression method.  Figures 10-12 
give the results for a Voronoi tiling of the phase plane with N=1,000.  Superficially 
the results are quite compelling evidence that the method is not losing too much 
important information. 
 
 

 
Figure 9: Results obtained by Höfer (source: Figure 1 of [6]).  This essay aims to recreate figures 
(a)-(d) of these results, using the Voronoi compression method. 
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Figure 10: Calcium oscillations for P=2µµµµM (1,000 Voronoi nodes) – x axis corresponds to 
cytosolic concentraion C, y axis is total concentration Z.  x-axis scale is from 0 to 0.6 µµµµM, y-axis 
scale is from 1.6 to 2.8 µµµµM.  This should resemble Figure 9(c). 
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Figure 11: time courses for calcium concentration oscillations when P=2µµµµM - cytosolic (left) and 
total (right).  These should resemble Figure 9(a) and 9(b). 
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Bifurcation diagram for Calcium oscillations in hepatocytes (following Hofer): P vs. Cytosolic 
calcium concentration (N=1000 tiles)
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Figure 12: 
Bifurcation diagram for calcium oscillations in hepatocytes as constructed using Voronoi compression of phase plane technique.  This should resemble 9(d).  

Clearly some detail and accuracy has been lost in the compression process, and many spurious results appear at high concentrations of P. 
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Conclusions 
 
This essay set out to describe a novel method of simplification of biological models 
by a ‘vector-quantization like’ compression scheme using a Voronoi tiling of the 
phase plane, implemented by Hetherington and Saffrey.  Their code was slightly 
modified to generate some results of the compression scheme as applied to the well-
known Morris-Lecar model. 
 
Further, a hepatocyte calcium oscillation model suggested by Höfer in [6] (and 
discussed in the context of ‘simplification’ by Hetherington et. al. in [1]) was 
implemented under the framework in order to further test the compression technique 
against some ‘real’ biological models. 
 
The technique was found to be very effective at finding stable limit cycles in the 
phase plane of these models, even at ‘high compression’ (low number of Voronoi 
tiles), although there was a tendency to rather a large number of false positives – it 
appears the algorithm as presented has a little difficulty differentiating fixed points 
from limit cycles. In addition, the unstable features of the phase plane as identified by 
this algorithm are currently a little unreliable. 
 
The time course data was essentially accurate in the shapes of waveforms produced, 
however the time period was elongated slightly, indicating that the limit cycles tend to 
be over-estimated by this algorithm.  This is probably due to the algorithm giving a 
‘worst-case’ flow rate to consecutive nodes in the phase plane. 
 
As a final note on the practical implementation of models under this framework, it 
seems necessary to know a little beforehand what the interesting regions of the phase 
plane are to be – the maxima and minima of the axes of the phase plane must be 
defined in the model.  
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Appendix A – Morris-Lecar model implementation 
 
This python class implements Morris-Lecar model by returning the flow vector at any given point, scaled for a set of axes spanning -2 to +2 in 
the x and y directions.  (Slightly modified by Fallaize from code supplied by Saffrey and Hetherington). 
 

import Numeric as NumPy 
 
# morris-lecar model 
 
class flowcl: 
 def __init__(self, axes): 
  # parameters 
  self.CC = 20e-6 
  self.VK = -84e-3 
  self.gK = 8e-3 
  self.Vca = 120e-3 
  self.gCa = 4.4e-3 
  self.VL = -60e-3 
  self.gL = 2e-3 
  self.v1 = -1.2e-3 
  self.v2 = 18e-3 
  self.v3 = 2e-3 
  self.v4 = 30e-3 
  self.Phi = 0.04/1e-3 
  self.Iapp = 150e-6 
  self.defineScaleMatrix(axes) 
 
 def defineScaleMatrix(self, axes): 
  [[xmin, ymin],[xmax,ymax]] = axes 
  print xmin, ymin, xmax, ymax  
  axismaxima = NumPy.array([ 75.0e-3, 1.0 ]) 
  axisminima = NumPy.array([ -75.0e-3, 0.0 ]) 
  self.m = (axismaxima - axisminima) / 4.0 
  self.c = axisminima  
 
 # flowfn 
 def flowfn(self, location): 
  def mi(V): 
   return (1 + NumPy.tanh((V-self.v1)/self.v2))/2.0 
  def wi(V): 
   return (1 + NumPy.tanh((V-self.v3)/self.v4))/2.0 
  def tau(V): 
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   return 1/(NumPy.cosh((V-self.v3)/(2.0*self.v4))) 
 
  V = location[0] 
  w = location[1] 
 
  Vprime = (-self.gCa*mi(V)*(V-self.Vca) - self.gK*w*(V-self.VK) - self.gL*(V-self.VL) + self.Iapp) / self.CC 
  wprime = (self.Phi*(wi(V)-w))/tau(V) 
 
  return NumPy.array([Vprime, wprime]) 
  
 def translate(self, location): 
  return (location + NumPy.array([2.0,2.0])) * self.m + self.c 
  
 def __call__(self, location): 
   l = self.translate(location) 
  o = self.flowfn(l) 
  return o / self.m 
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Appendix B – Calcium oscillations model implementation 
 
This python class implements the hepatocytes calcium flux model by returning the flow vector at any given point, scaled for a set of axes 
spanning –2 to +2 in the x and y directions. 
 
import Numeric as NumPy 
 
# hepatocyte calcium oscillations (Hofer 1999) 
 
class flowcl: 
 def __init__(self, axes): 
  # parameters 
 
  self.kMC = 0.08e-6 
  self.kMP = 0.072e-6 
  self.kEC = 1.6 
  self.kEP = 0.36e-6 
  self.CecOpen = 0.4e-6 
  self.CecClose = 0.4e-6 
  self.pEC = 0.2e-6 
  self.cEP = 0.12e-6 
  self.pMC = 4.0e-6 
  self.cMP = 0.12e-6 
  self.lMC = 0.05 
  self.lEC = 0.0005 
  self.v = 10.0 
  self.d1 = 0.3e-6 
  self.d3 = 0.2e-6 
   
  self.P = 2e-6 # driving function IP3 hormone conc 
   
  self.defineScaleMatrix(axes) 
 
 def defineScaleMatrix(self, axes): 
  [[xmin, ymin],[xmax,ymax]] = axes 
  print xmin, ymin, xmax, ymax  
  axismaxima = NumPy.array([ 0.6e-6, 2.8e-6 ]) 
  axisminima = NumPy.array([ 0.0, 1.6e-6 ]) 
  self.m = (axismaxima - axisminima) / 4.0 
  self.c = axisminima 
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 # flowfn 
 def flowfn(self, location): 
   
  def Hill(n, E, e): 
   return 1.0 / (1.0 + (e/E)**n ) 
  def Gamma(P): 
   return self.CecClose * ((P + self.d1) / (P + self.d3)) 
  def U(P, C): 
   return (Hill(1,P,self.pEC) * Hill(1,C,self.CecOpen) * (1.0 - Hill(1,C, Gamma(P)) ) )**3 
  def JerIN(E, C): 
   j = self.kEC * (E - C) * (self.lEC + U(self.P,C) ) 
   return j 
  def JerOUT(C): 
   j = self.kEP * Hill(2, C, self.cEP) 
   return j 
  def Jer(E, C): 
   j = JerIN(E, C) - JerOUT(C) 
   return j 
  def JpmIN(E, C): 
   j = self.kMC * (self.lMC + Hill(1, self.P, self.pMC)) 
   return j 
  def JpmOUT(C): 
   j = self.kMP * Hill(2, C, self.cMP) 
   return j 
  def Jpm(E, C): 
   j = JpmIN(E, C) - JpmOUT(C) 
   return j 
   
  C = location[0] 
  Z = location[1] 
 
  E = (Z - C) * self.v 
 
  Zprime = Jpm(E, C) 
  Cprime = Jer(E, C) + Zprime  
   
  return NumPy.array([Cprime, Zprime]) 
 
        def translate(self, location): 
                return (location + NumPy.array([2.0,2.0])) * self.m + self.c 
 
 def __call__(self, location): 
  modelflow = self.flowfn(self.translate(location)) 
  ode2fsflow = modelflow / self.m 
  return ode2fsflow 
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