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A B S T R A C T

Correct pressure broadening is essential for modelling radiative transfer in atmospheres, however data are
lacking for the many exotic molecules expected in exoplanetary atmospheres. Here we explore modern machine
learning methods to mass produce pressure broadening parameters for a large number of molecules in the
ExoMol data base. To this end, state-of-the-art machine learning models are used to fit to existing, empirical
air-broadening data from the HITRAN database. A computationally cheap method for large-scale production
of pressure broadening parameters is developed, which is shown to be reasonably (69%) accurate for unseen
active molecules. This method has been used to augment the previously insufficient ExoMol line broadening
diet, providing air-broadening data for all ExoMol molecules, so that the ExoMol database has a full and
more accurate treatment of line broadening. Suggestions are made for improved air-broadening parameters
for species present in atmospheric databases.
1. Introduction

The characterisation and modelling of exoplanetary atmospheres re-
quire large volumes of laboratory spectroscopic data [1,2]. Simulations
have demonstrated the need to deal correctly with line broadening
in the atmospheres of exoplanets [3,4]. In general, exoplanetary at-
mospheric models are limited by insufficient data; particular areas
where more information is needed include collisional broadening and
line mixing parameters. Indeed, the lack of suitable collision broaden-
ing parameters is given as the number one requirement in a recent
review of laboratory data needs to aid understanding exoplanetary
atmospheres by Fortney et al. [5]. Current studies of hot atmospheres
use at best qualitative estimates of pressure-broadening parameters for
many molecules and molecular ions. Exoplanets have many potential
compositions [6] and have been observed at wide ranges of tempera-
tures [7] with hot planets orbiting close to their host stars providing the
most reliable observations. Uncommon molecules on Earth are expected
to be highly important for exoplanetary atmospheric processes, such
as metal hydrides and oxides. In order to observe the huge expected
variety of molecular species, a huge amount of spectroscopic data must
be produced [8,9] to match the spectral features observed. This paper
represents a first step towards meeting the pressure broadening portion
of this need.

The necessity for this work is due of the sparsity of data for pressure
broadening parameters as pressure broadening is unknown for the
majority of collisional pairs. Many papers have laid out the need for
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more data for all molecule broadener pairs [3,5,10,11]. The importance
of pressure broadening increases with more modern telescopes, as
the impact of broadening scales with resolution. The differences in
spectral cross sections due to pressure broadening have been shown to
be significant [12–14]. For instance the James Webb Space Telescope
(JWST), with resolution 𝑅 ∼ 1000 − 3000, will have errors in cross
sections of up to 40% when pressure broadening data is missing [7].
Pressure broadening is also important because exoplanet spectra are
optically thick. When spectral lines are fully saturated, line intensity
alone is no longer sufficient to determine opacity. Pressure broadening
is therefore an important component of the opacity in optically thick
conditions. The importance of pressure broadening as a spectral pa-
rameter is therefore clear. As we show below, the need for improved
treatment of line broadening is not restricted to exoplanets with air-
broadening parameters; line broadening is poorly determined for some
key molecules in our own atmosphere.

HITRAN [15] is a database of spectroscopic parameters, used for
simulation of the transmission and emission of light in the Earth’s
atmosphere [16]. It is the major supplier of spectroscopy data for Earth-
based studies. The high temperature extension HITEMP [17,18] is also
aimed at terrestrial applications but serves a similar need as the ExoMol
database [8]. Both HITRAN and HITEMP currently have well populated
air broadening values for their databases. HITRAN has recently been
expanding its list of perturbers to also include H2, He, H2O and CO2
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broadening [19]. The extensive set of HITRAN air broadening data is
used as the training data in our modelling.

The line profile used in this work is the Voigt profile. This is a profile
that takes into account the two major sources of line broadening, pres-
sure broadening and thermal Doppler broadening. While it is simple
to provide Doppler-broadening parameters for a given molecule and
temperature, the same is not true for collisional, or pressure, broaden-
ing, which are the focus of the current paper. Within the assumption
of a Lorentz profile, collisional broadening is parameterised by 𝛾, the
alf width half maximum (HWHM) of the Lorentzian line profile. 𝛾
s a function of temperature and the active and perturbing molecules;
or the rotation–vibration spectra considered here, 𝛾, in principle, also
epends on the initial and final rotational and vibrational quantum
umbers of each transition. Full dependence is difficult to properly
haracterise as there are relatively few data with full quantum number
ependence provided.

Machine learning (ML) has been chosen to fill the gap in broadening
ata due to its relative simplicity. The goal of this work is to establish
n efficient procedure for production of line broadening parameters
ith a special emphasis on completeness. Here we use ML techniques

n conjunction with the line broadening data from HITRAN to predict
ressure broadening by air parameters for arbitrary active molecules.
he ExoMol database [8] is a large resource of spectroscopic data for
tmospheric and astrophysical purposes. It contains line lists for almost
00 molecules (about 280 if isotopologues are counted) with a special
mphasis on completeness at high temperatures. A lack of broadening
ata is a major problem for the many species in the ExoMol database.
aboratory measurements or theoretical estimates of 𝛾 for most of these
pecies are unlikely to be produced soon. The accuracy of our ML
redictions will be limited by the accuracy of training data, as well as
y the assumptions made when choosing variables (features) to train
n. Our work is the first application of ML for the production of the line
hape parameters and one of the first for high-resolution spectroscopy
pplications in general. The ML methodology developed has been used
o fill pressure broadening parameters by air in the ExoMol data base.

. Methodology

In general, ML applications require using a dataset for training on,
nd an independent test set typically comprising 10% to 20% of the
ata. Here, since we only have 48 molecules to train on (see below),
nstead of rigidly splitting between a training and a test set cycle, we
onducted a series of ML runs where training on 43 molecules is used
o make predictions for the other 5. The series of runs was designed so
hat our model can be validated for each of the 48 molecules, using a
raining model that did not contain that molecule. We also investigated
similar procedure whereby 47 molecules were used for training, and
used for testing at a time. This did not noticeably improve results.

Our final operational model is trained on all 48 molecules which can
e used to make predictions for molecules not included in the original
ataset. The steps followed in our study are summarised in Fig. 1 and
re described in turn below.

.1. Input data

For our training data we use the air broadening data provided
y the HITRAN database [15]. The HITRAN data comes from a col-
ection of sources; empirical, ab initio and semi-empirical fits. Their
ata is designed primarily for Earth-based observations, with data for
oom temperature and pressure conditions. Every line in the HITRAN
atabase has an assigned value for 𝛾 ≡ 𝛾air , for air as the perturbing
pecies, as well as 𝛾self for self-broadening. Air is taken as 80% N2 and
0% O2 in theoretical calculations. The predictions in this paper only
oncern the air broadening 𝛾 and will therefore be applicable also for
oom temperature and pressure gases, where air is the primary source
f broadening. The temperature dependence of the (air) line broadening
2

s described in HITRAN by the temperature exponent 𝑛air . This is not
onsidered in the present study which is confined the HITRAN reference
emperature of 296 K.

There are 55 species included in the HITRAN2020 database. We col-
ected HITRAN’s air-broadening data with the final operational model
resented here using the data provided as of August 2023. In this work,
8 molecules were used for training and are listed in Table 1. O, SO3,
O+, NF3, CF4, ClONO2 and SF6 were not used for training. Here, O

s not a molecule, while the other six species had very large and costly
ists of transitions, and no accurate air-broadening data.

The availability of line broadening data in HITRAN2020 is sum-
arised in Table 1. As shown in Table 1, HITRAN has air broadening
ata for all of its molecules, and only a few molecules have other
roadening data. We have used only air broadening data, because there
s a good quantity of data available for this perturber.

For almost all molecules in HITRAN’s database, the air broadening
alues are the same for each isotopologue. There are two Cl containing
olecules which have minor differences in broadening coefficient. For

pecies with an overwhelmingly dominant isotopologue, we only used
ata from the main, dominant isotopologue. For molecules containing
toms with multiple common isotopes, notably Cl and Br, we took the
roadening data for both isotopes. The only difference in treating these
sotopologues was in the species mass.

.1.1. Cleaning data
It was necessary to perform analysis of the data prior to training our

odels. Apart from the six molecules discussed above, only minimal
mounts of data were excluded. Most non-parent isotopologues were
xcluded. Incomplete data (such as transitions where 𝐽 was missing)
as thrown out. Data where 𝛥𝐽 was more than 2 were excluded, as

t was assumed these largely correspond to data errors in the HITRAN
atabase. This was a few hundred transitions total, a small minority of
he data points, most of which were unphysical. We have queried the
alidity of these lines with HITRAN. The data for C2H6 with a reported
rror code of 4 (≥10% and <20%) were also excluded due to the data
eing incorrect. This issue has since been reported to and remedied by
ITRAN.

Data was replicated for molecules with fewer transitions, so that all
olecules used had the same number of data points. For each molecule,

he transitions were copied an integer number of times, until all have
lose to the same number of lines as HNO3, the molecule with the most
ransitions. This was done as a way of weighting the data so that all
olecules have equal impact. If this was not done, then the training
ata would be dominated by larger molecules with greater numbers
f spectral lines in the HITRAN database, such as HNO3 and SO2. Our

final set of HITRAN data used for training and testing is provided on
zenodo.

2.1.2. Features of the data
In machine learning, the variables used to describe the data are

known as features. The features of our data are the measurable proper-
ties of a molecule and its transitions. A subset of the properties given in
the HITRAN database become features of our data. Based on standard
statistical measures, those properties which are not useful for predicting
line broadening are excluded. Other features from other sources are
introduced, see below. As we only study air-broadening in this work,
all features used are associated with the active molecule and not the
perturber.

Many features were trialled for training. Using many features at
once is detrimental to final model performance, so only the statistically
most important features are retained in our final model.

In the course of this work we tested the following features (all
quantum numbers refer to both upper and lower states):

• Features taken from the HITRAN database:
– 𝐽 , the total rotational quantum number;
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Fig. 1. Schematic representation of the pipeline used to produce our results.
– 𝐾, the projection of 𝐽 on the 𝑧 axis of spherical and sym-
metric top molecules;

– 𝐾𝑎 and 𝐾𝑐 , the projections of 𝐽 along the axes of lowest
and highest inertia, respectively. These quantum numbers
are only valid for asymmetric top type molecules;

– �̃�, transition wavenumber;
– 𝑆𝑤, line intensity;
– 𝐴, Einstein A coefficient;
3

– 𝑣1, first vibrational quantum number. Tried only for di-
atomics;

– 𝛬, the projection of orbital angular momentum onto the
principal axis. Tried only for open shell diatomics;

– 𝑆, the total spin quantum number. Tried only for open shell
diatomics;

– 𝛺, the projection of total angular momentum onto the prin-
cipal axis. Tried only for open shell diatomics;
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𝐽

Table 1
Proportion of lines in the HITRAN database with broadening parameters for the given
perturbers.

Molecule Total number
of lines

Air He H2 CO2 H2O Self

H2O 319 886 1 0 0 0 0 1
CH3F 1 499 1 0 0 0 0 1
COCl2 309 914 1 0 0 0 0 1
C2N2 71 775 1 0 0 0 0 1
H2S 36 556 1 1 1 0 1 1
C4H2 251 245 1 0 0 0 0 1
HOBr 4 358 1 0 0 0 0 1
C2H6 63 516 1 0 0 0 0 1
CH3I 178 247 1 0 0 0 0 1
H2 3 480 1 0 0 0 0 1
CH3Br 36 911 1 0 0 0 0 1
HO2 38 804 1 0 0 0 0 1
HNO3 950 864 1 0 0 0 0 1
NO 251 898 1 0 0 0 0 1
HCN 128 239 1 1 1 0 0 1
CH3Cl 219 575 1 0 0 0 0 1
O2 15 505 1 0 0 0 1 1
SO2 549 425 1 1 1 1 0 1
CO 1 344 1 1 1 1 1 1
CS 1 088 1 0 0 0 0 1
CH3OH 19 897 1 0 0 0 0 1
O3 314 183 1 0 0 0 0 1
HCOOH 187 596 1 0 0 0 0 1
ClO 11 501 1 0 0 0 0 1
PH3 104 759 1 1 1 0 0 1
HOCl 16 276 1 0 0 0 0 1
OCS 21 776 1 1 1 1 0 1
CH4 309 863 1 0 0 0 1 1
C2H4 59 536 1 0 0 0 0 1
SO 42 916 1 0 0 0 0 1
H2O2 126 983 1 0 0 0 0 1
COF2 168 793 1 0 0 0 0 1
N2O 33 265 1 1 0 1 1 1
H2CO 40 670 1 1 1 1 0 1
C2H2 74 335 1 1 1 1 0 1
HCl 17 800 1 1 1 1 0 1
HC3N 248 273 1 0 0 0 0 1
NO2 171 058 1 0 0 0 0 1
HF 8 090 1 1 1 1 0 1
CS2 45 758 1 0 0 0 0 1
HI 3 161 1 0 0 0 0 1
N2 1 107 1 0 0 0 0 1
HBr 6 070 1 0 0 0 0 1
OH 55 698 1 1 1 0 0 1
NH3 76 605 1 1 1 1 1 1
CH3CN 3 572 1 0 0 0 0 1
CO2 174 446 1 1 1 0 1 1
GeH4 60 878 1 0 0 0 0 1

• Calculated features from other sources:

– Approximate 𝐾𝑎 and 𝐾𝑐 which treat all molecules as asym-
metric rotors with both 𝐾𝑎 and 𝐾𝑐 used as rotational quan-
tum numbers. 𝐾 values for different rotor types were
merged. To make a consistent ‘𝐾 ’ feature across all rotor
types, some approximations were made as described in
Table 2;

– 𝑚, rotational quantum number, which distinguishes the
branches, calculated by:

∗ O-branch: 𝑚 = −𝐽 ′′

∗ P-branch: 𝑚 = −𝐽 ′′

∗ Q-branch: 𝑚 = 𝐽 ′′

∗ R-branch: 𝑚 = 𝐽 ′′ + 1
∗ S-branch: 𝑚 = 𝐽 ′′ + 1

– Molecular mass;
– Molecular polarisability, with the data sources described in

Table 3;
4

Table 2
Mapping of 𝐾 values to give consistent features across rotor types.

Rotor type 𝐾 (approx)
𝑎 𝐾 (approx)

𝑐

Asymmetric 𝐾𝑎 𝐾𝑐
Prolate symmetric 𝐾 𝐽 −𝐾
Oblate symmetric 𝐽 −𝐾 𝐾
Spherical 𝐽∕2 𝐽∕2
Linear 0 𝐽

– Permanent molecular dipole moment, data sources
described in Table 3;

– Rotor type: symmetric linear, asymmetric linear, symmetric
top, asymmetric top, and spherical top;

– 𝐴, 𝐵 and 𝐶 rotational constants for asymmetric molecules,
data sources described in Table 3. For symmetric systems,
values are copied across all constants. For linear systems, 𝐵
and 𝐶 are the same and 𝐴 is assumed to be ∞, approximated
at 100 000. This is done to have consistent features across
rotor types;

– 𝑅VdW, kinetic (Van der Waals) diameter of active molecule,
data sources described in Table 3;

– 𝑚𝑚, order of the molecules’ leading multipole moment, de-
scribed in [20];

– 𝛾𝐵 predicted by the formula of Buldyreva et al. [20], see
below;

– O, P, Q, R and S branch numbers. The branch of the tran-
sition of each data point would have its number recorded,
and the other 4 features would have NaN values;

– Open/not-open shell molecular type, labelled 1 or 0.
– 𝜔𝑒, the harmonic wavenumber. Tried only for diatomics;
– 𝜔𝑒𝜒𝑒, the first anharmonic vibrational constant. Tried only

for diatomics;
– mass ratio of atoms, 𝑀𝑙

𝑀ℎ
, the mass of the lighter atom over

the mass of the heavier atom. Tried only for diatomics;
– Mean bond length, tried only for diatomics.

The final list of 16 features used to describe the data is given by:
′, 𝐽 ′′, 𝑚, 𝐾 ′′(approx)

𝑎 , 𝐾 ′′(approx)
𝑐 , 𝐾 ′(approx)

𝑎 , 𝐾 ′(approx)
𝑐 , molecular mass,

molecular dipole, molecular polarisability, rotational constants 𝐴, 𝐵,
and 𝐶; multiple moment order 𝑚𝑚, Van der Waals radius 𝑅VdW, and
finally the approximate line broadening parameter 𝛾𝐵 .

𝑚 was chosen as the principal quantum number to use and plot; in
practice these plots are almost entirely symmetric about 𝑚 = 0 which
means that effectively the key parameter is 𝐽 ′′; 𝛾 is well-known to
be highly 𝐽 -dependent. Broadening is high for low rotational speeds,
and tends to a constant for high rotations. Various 𝐾 values also have
a large effect on 𝛾 [21,22], so these quantum numbers were used in
the final model. It was assumed that 𝛾 was minimally dependant on
vibrational state, and for diatomics it was seen that this feature made
little difference. Line characteristics, such as �̃� and 𝑆𝑤, were also seen
to have little importance.

Mass, polarisibility, and rotational constant were seen to be impor-
tant for describing the differences been molecules. Labelling transitions
types or rotor types was seen to make little difference to predictions,
perhaps because this information is already contained in the rotational
constants.

𝛾𝐵 has been calculated using a formula derived by Tsao et al. [23],
expanded on in [20]. The papers give a prediction for 𝛾 for a pair
of molecules, which depends on a small number of input variables.
Their equation provides insight into some of the descriptors which are
important for determining 𝛾, such as 𝑚𝑚 and the Van der Waals radius.
This value has no 𝐽 -dependence. 𝛾𝐵 improved our model’s predictions,
but it was not one of the most important features. 𝛾𝐵 is compared
against in our results, demonstrating our improvement for predicting

air-broadening
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Table 3
Sources of data for features. NIST refers to their CCCBDB (Computational Chemistry
Comparison and Benchmark DataBase) [24]; experimental data were chosen where
possible. NIST - e is experimental data, NIST - se is semi-empirical calculated data,
NIST - HF is data calculated using the Hartree–Fock method, and NIST - ga is data
calculated using a group additivity method. JPL [25] and CDMS [26] are complimentary
databases, both providing information on molecular transitions. QDB is the Quantemol
DataBase [27]. Unknown Kinetic Diameters were estimated by comparison to the size
of similar molecules. A full list of diameters used is included in the supplementary
information.

Molecule Dipole Polarisibility Rotational constants Kinetic diameter

COCl2 NIST - e NIST - e NIST - e Estimated
C2N2 NIST - e NIST - e NIST - e Estimated
H2S NIST - e NIST - e NIST - e [28]
C4H2 NIST - e NIST - e NIST - e Estimated
HOBr NIST - e NIST - HF NIST - e Estimated
CH3I NIST - e NIST - e NIST - e Estimated
CH3Br NIST - e NIST - e NIST - e Estimated
HNO3 NIST - e NIST - se NIST - e Estimated
HCN NIST - e NIST - e NIST - e [29]
CH3Cl NIST - e NIST - e NIST - e Estimated
HCOOH NIST - e NIST - e NIST - e [30]
PH3 NIST - e NIST - e NIST - e Estimated
HOCl NIST - e NIST - ga NIST - e Estimated
SO NIST - e NIST - ga NIST - e Estimated
HC3N NIST - e NIST - se NIST - e Estimated
CS2 NIST - e NIST - e NIST - e Estimated
HI NIST - e NIST - e NIST - e Estimated
CH3CN NIST - e NIST - e NIST - e Estimated
H2O NIST - e NIST - e JPL [31]
CH3F NIST - e NIST - e NIST - e QDB
C2H6 NIST - e NIST - e NIST - e [31]
H2 NIST - e NIST - e NIST - e [32]
HO2 JPL [33] JPL [31]
NO NIST - e NIST - e JPL [32]
O2 NIST - e NIST - e CDMS [32]
SO2 NIST - e CDMS NIST - e QDB
CO JPL NIST - e JPL [32]
CS JPL NIST - se JPL QDB
CH3OH JPL NIST - e JPL [31]
O3 JPL NIST - e JPL QDB
ClO JPL [34] JPL QDB
OCS JPL NIST - e JPL QDB
CH4 NIST - e NIST - e NIST - e [32]
C2H4 NIST - e NIST - e NIST - e [32]
H2O2 JPL NIST - se JPL [31]
COF2 JPL [35] JPL QDB
N2O JPL NIST - e JPL QDB
H2CO JPL NIST - e JPL [31]
C2H2 NIST - e NIST - e JPL [32]
HCl JPL NIST - e JPL QDB
NO2 JPL NIST - e JPL QDB
HF JPL NIST - e JPL QDB
N2 NIST - e NIST - e JPL [32]
HBr NIST - e NIST - e JPL QDB
OH JPL NIST - HF JPL [36]
NH3 JPL NIST - e JPL QDB
GeH4 NIST - e NIST - e NIST - se Estimated
CO2 NIST - e NIST - e NIST - e [32]

2.1.3. Weighting data
The stated accuracy of line broadening in the HITRAN database

is highly variable. Approximately half of the data has a known un-
certainty, often based on experimental determinations. For the rest of
the data, HITRAN provides estimates both for the data and associated
uncertainty. For example, for some molecules there are no known
air-broadening parameters and HITRAN simply provides very rough
estimates or a single 𝛾 value as a placeholder. All line broadening
data in HITRAN are provided with uncertainty estimates using an error
code from 0 to 8 as summarised in Table 4. This allows the data to
be filtered by the accuracy of broadening parameters. We used the
weighting described in this table to weight each of our data points.
This was so that the poor data is disregarded, but without throwing it
out entirely. The uncertainties of the HITRAN data were used as error
5

Table 4
Weight assigned to our training data based on HITRAN error code.

HITRAN error code Uncertainty Weighting

0 Unreported or unavailable (1/500 000)2
1 Default or constant (1/20 000)2
2 Average or estimate (1/1000)2
3 ≥20% (1/50)2
4 ≥10% and <20% (1/15)2
5 ≥5% and <10% (1/10)2
6 ≥2% and <5% (1/10)2
7 ≥1% and <2% (1/10)2
8 <1% (1/10)2

bars to validate the fitting of our data. Not all models had an inbuilt
weighting function, in this case data was replicated proportionally to
reproduce the weighting assigned in Table 4.

2.2. Machine learning process

An overview of ML principles used here is given by Sarker [37].
Various machine learning tools have been compared in this work to find
optimum results. The models used here are provided by the scikit-learn
python package [38].

Feature scaling is an important method used in machine learning,
to normalise the features of the data. This allows them to be treated
equally when the input data is on different scales. Pre-built models such
as those given by scikit-learn often assume unit variance for gradient
descent algorithms, and so using this scale on the data improves the
speed of training. For this reason, the input data was scaled to zero
mean and unit variance using the scikit-learn StandardScaler tool. This
makes different features consistent for inclusion into models.

As discussed above, the data was spit into a testing and a training
set. Data points (transitions) common to each molecule were kept
together. The molecules in our data were randomly split into two sets,
43 used for training and 5 retained for testing the model. The data
was split along these lines, so that every time a model was trained,
there would be data for 5 molecules that could be used to score the
prediction.

This training procedure was run independently ten times on a
different set of testing and training molecules. This led to there being
ten almost identical trained models to analyse every time a model
architecture was created. The difference between these ten was the
molecules used in its training and testing set. As a limited set of
molecules was present, this procedure meant that a machine learning
model architecture could be judged based off how it made predictions
for all molecules in the HITRAN database. For all plots in this paper,
the molecule of interest was in the testing set when the model was
being trained. This means that all results for molecules consider the
said molecule as unseen. Careful checks were done to ensure that no
data from the molecule being tested was included in the training set.

Once split, the data was shuffled to remove any bias in the ML runs
on the order in which the data was provided.

The ‘final operational model’ available on zenodo is one last training
run performed on all HITRAN data, with the optimised model param-
eters and hyperparameters described here. This can be used to make
predictions for molecules currently outside of the HITRAN database.

2.2.1. Machine learning models
Ensemble methods have been shown to be effective tools in machine

learning [39]. These form the basis of much of the trialled models.
All models trialled were regressors. The models trialled were Gradient
Boosting [40], Adaptive Boosting [41], Random Forest Regression [42],
Decision Tree Regression [43], Support Vector Regression with an RBF
(radial basis function) kernel [44] (SVR), a Stochastic Gradient Descent
linear model [45] (SGD), Multi-Layer Perceptron [46] (MLP), Voting
Regressor [47,48], and a Dummy Regressor as a baseline.
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Gradient boosting, adaptive boosting, random forest and voting
models are all examples of ensemble methods. They combine predic-
tions of weaker models, giving strong results. A decision tree is a tree
shaped model, separating data into categories using if-else type rules.
Support vector machines optimise boundaries between data types. In
regression, the boundary is the prediction. Using a kernel allows non-
linear boundaries. Stochastic gradient descent is a method for finding
an optimal linear fit to data. We do not expect a linear model to fit
our data well. An MLP is a basic neural network, made up of multiple
layers of fully connected neurons, each having a nonlinear activation
function. A dummy regressor is a baseline model, which simply returns
the mean of the training data.

The most effective model was made using a Voting Regressor. This
is a meta-estimator which averages a set of base models. The base
models used are gradient boosting (scikit-learn’s HistGradientBoostin-
gRegressor), adaptive boosting (scikit-learn’s AdaBoostRegressor), sup-
port vector regression (scikit-learn’s SVR), random forest (scikit learn’s
RandomForestRegressor) and a multi-layer perceptron (scikit learn’s
MLPRegressor). These models were all used equally as estimators in
scikit-learn’s VotingRegressor, referred to our voting model below.

2.2.2. Hyperparameters of the model
The fixed properties of a machine learning model are known as

model hyperparameters. These are things like the learning rate, or the
number of neurons used in an MLP. The variable properties of a model
are known as model parameters. These are things like the coefficients
in linear regression, or the weighting of neurons in an MLP. The ML
algorithm alters its parameters until an optimally trained line broad-
ening model is found, within the defined model hyperparameters. This
line broadening model is a function of the features that characterise
molecules and their transitions.

Various hyperparameters of each ML model were trialled to find
the best description of line broadening. Scikit-learn’s GridSearchCV and
RandomisedSearchCV were used to systematically search the parameter
space for each type of model, and score them by the accuracy of their
predicted 𝛾. The different model hyperparameters were ranked based
on their scores, and the best ones retained in the final voting model.

The default model parameters given by scikit-learn were determined
to be optimal in most cases. The random forest had a few altered model
hyperparameters; we used ‘criterion’ = mse, ‘minimum weight fraction
of leaf’ = 0.001 and ‘number of estimators’ = 10. The MLP also had
a few specific model hyperparameters; ‘𝛼’ = 0.01, ‘hidden layer sizes’
= (30, 30), ‘learning rate’ = adaptive, ‘number of iterations with no
change before stopping’ = 1, ‘tolerance’ = 1𝑒−5. The voting regressor
used ‘number of jobs’ = −1 to optimise parallelisation of training.

.2.3. Scoring data
We compare the scores using two metrics, root mean square error

RMSE), and R2. RMSE is calculated the standard way, and presented
as a percentage error, to match the errors in the training data provided
by HITRAN. The RMSEs were calculated compared to HITRAN’s more
accurate data, datapoints with error codes of 3 and above. The R2

core, referred to as ‘score’ in our results, shows the success of the
odel. It is defined as (1 − 𝑢

𝑣 ), where 𝑢 is the residual sum of squares,
given by ∑

(𝑦true − 𝑦pred)2, and 𝑣 is the total sum of squares, given
by ∑

(𝑦true − mean(𝑦true))2. The optimal score allowed is 1, and bad
scores can be any negative number. This definition is all as is provided
by [38].

3. Results

Various baseline ML models were trialled. Those using random
forest type models were observed to be good, both because they pro-
duced stable curves, and for speed of computation. This supported
our extended use of them in the voter model finally chosen. The
6

MLP, which is a neural network type model, often scored the best,
Table 5
Comparison of models created using a reduced dataset, for ease of computation. Models
were trained iteratively, so that all molecules were included in the testing dataset
once. RMSE’s were calculated for all molecules individually, and the final RMSE given
was calculated by averaging the RMSE of all molecules. The semi empirical model of
Buldyreva et al. is included for comparison.

Model RMSE/%

Decision Tree 35.9
Random Forest 32.3
Gradient Boosting 38.0
Adaptive Boosting 32.9
SVR 40.5
SGD 36.2
Dummy Regressor 42.4
MLP 27.9
Voting Regressor 29.3
Buldyreva Model 49.0

Table 6
Comparison of the number of HITRAN molecules for each type of rotor, and the mean
percentage RMSE for each.

Rotor type Number of molecules RMSE/%

Asymmetric 17 15.4
Prolate symmetric 6 19.2
Oblate symmetric 2 23.6
Spherical 1 43.0
Linear 22 30.3

however it was more prone to overfitting. This was seen with high
𝐽 predictions of 𝛾, which did not tend to a constant as indicated by
theory. Optimisation of the 𝛼 and 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 hyperparameters of the
MLP was done to minimise this. Using a final model that combines the
predictions of several sub-models was optimal for making accurate, but
not overfitted, predictions.

Even though not all components of the final model chosen are
effective predictors on their own, it was observed that the 5 final
components chosen, when combined, gave the best final score, with
the best looking 𝑚-dependence.

In our figures we compare our predicted 𝑚-dependence and hence
iven their symmetry 𝐽 -dependence, with that in HITRAN for each
olecule. It should be noted that for molecules where 𝛾 depends on

the vibrational or 𝐾 quantum numbers, there will be multiple values
of 𝛾 for each 𝑚. Fig. 2 shows how well various models replicate the
𝑚-dependence of line broadening, justifying the final model chosen.

Both Table 5 and the plots demonstrate that the voter model is the
best of these considered. This is why the voter model was chosen as
our final model type; all results presented below use this model.

We compare our results to those molecules in HITRAN with accurate
line broadening data in Figs. 3 and 4. This is a validation of the accu-
racy of machine learning predictions. For molecules where HITRAN is
the most accurate we do not always replicate their accuracy, shown in
Fig. 3. For other key HITRAN molecules we match 𝛾 well, shown in
Fig. 4.

In Fig. 5 we compare our results to the line broadening data from
HITRAN for molecules with only a small amount of accurate line
broadening data. In these cases, our results lie within the HITRAN error
bars. This shows that machine learning predictions are state-of-the-art
for the majority of molecules for which there is little experimental line
broadening.

Table 6 compares the accuracy of predictions made for different
types of molecule.

The average RMSE of the final tested voter model was 25.8%.
The average uncertainty in the HITRAN data was at 12%, when only
their accurate data is included. The average uncertainty of all HI-
TRAN data can be estimated at 33%. This shows that, while we have
not matched HITRAN’s uncertainties on their most accurate data, we
provide reasonable estimates for unseen molecules.
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Fig. 2. Comparison of 𝛾air predictions from various models to known HITRAN data for CO2 (top), C2H6 (middle) and OCS (bottom). The HITRAN data is given by crosses labelled
by their error codes; the uncertainty of each error code is given in Table 4. The semi empirical model of Buldyreva et al. is included for comparison.
Calculating these scores on a line-by-line basis, it is seen that 69%
of line broadening predicted falls within HITRAN’s error bars. This
is deemed good. Too much matching to imperfect data would imply
overfitting.

4. Discussion

In the following, results for a few key molecules are discussed; a
full set of comparative figures are given in the supplementary data. In
general, the results obtained are quite good. 69% of the predicted data
7

lies within the uncertainty ranges of the training data. This is validation
that unknown molecules can have air broadening parameters predicted.

It is difficult to score our results consistently. One reason is that a
good model for some molecules may make others worse. Good RMSE
or scores may mean overfitting, which can sometimes be seen when
bumpy curves are predicted. As the ExoMol project looks at high
temperature atmospheres, predictions at high 𝐽 values are the priority.
The stable results at high 𝐽 demonstrated by our model are therefore
necessary, even at the expense of poorer fitting at low 𝐽 .

Some data in the HITRAN database is estimated, as very little
experimental data is available. For molecules like H O , HITRAN has
2 2
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Fig. 3. Comparison of 𝛾air predictions from the final tested model, to some of the best HITRAN data, for H2O (top), HCl (middle) and C2H2 (bottom). The HITRAN data is given
by crosses labelled by their error codes; the uncertainty of each error code is given in Table 4. The semi empirical model of Buldyreva et al. is included for comparison.
provided a single number guess for line broadening, 0.1 cm−1 atm−1. In
Fig. 6 we show our predictions for these molecules, as an example of the
use of our model. Our results show a good shape for the 𝐽 dependence
with reasonable overall estimates for the magnitude of 𝛾. HONO is a
future molecule of interest for HITRAN, for which our model makes
reasonable estimates, shown in Fig. 7; we are not aware of any air-
broadening data for this molecule. This is an example of predictions
made by our model that could be used to update databases such as
HITRAN and ExoMol.
8

As a use case for our work, we show some typical ExoMol molecules
here, SO, HCN and SO2, see Fig. 8. There is little accurate data to
compare our predictions to, however, we consider our predictions to
be reasonable. Particularly interesting is the case of SO; the HITRAN
air-broadening data for SO is a copy of that for O2. While these species
have similar open-shell electronic structures, something we found not
important when testing features, SO has a dipole while O2 does not.
One would expect the SO’s dipole to lead to increased broadening and
as can be seen in Fig. 8, our predicted 𝛾 ’s are significantly larger than
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Fig. 4. Comparison of 𝛾air predictions from the final tested model, where our results match HITRAN’s data very well, for CO2 (top), C2H6 (middle) and NO2 (bottom). The
ITRAN data is given by crosses labelled by their error codes; the uncertainty of each error code is given in Table 4. The semi empirical model of Buldyreva et al. is included
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hose currently used by HITRAN. We suggest that our predictions are
ikely to be more accurate.

. Conclusions and outlook

Here we use machine learning to train a model to reproduce the
ffects of air-broadening on molecular transitions at 296 K and atmo-
pheric pressure using data from the HITRAN data base. The model
9

O

uccessfully predicts about 69% of the data provided by HITRAN
ithin HITRAN uncertainties. For a significant number of molecules the
ITRAN data is actually highly uncertain: 𝛾 being unavailable, fixed as
constant or estimated. Our model can be used to predict broadening
arameters for these species and we suggest in most cases our predic-
ions are likely to be more reliable than the data currently estimated,
n the absence of any specific measurements or theoretical calculations.
ur model is able to predict pressure broadening parameters within
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Fig. 5. Comparison of 𝛾air predictions from the final tested model for more unusual HITRAN molecules, for HNO3 (top), PH3 (middle) and OCS (bottom). The HITRAN data is
given by crosses labelled by their error codes; the uncertainty of each error code is given in Table 4. The semi empirical model of Buldyreva et al. is included for comparison.
error bars 69% of the time. This is in line with our expectation of
the accuracy of such predictions. Matching the training data with
100% accuracy would imply an overfitting of the data which are not
perfect. Broadening parameters generated with our model will be used
to update the rather crude ExoMol pressure-broadening diet [13] and
thus populate the database with these important data.

This work represents a first step into field of machine learning of
broadening parameters. There are clearly a number of future directions
all of which we plan to explore. Using our model to predict air-
broadening 𝛾 ’s for molecules not contained in the HITRAN database is
the most straightforward extension and the results can compared with
10
predictions made using semi-empirical approximations [20,49]. For
studies of exoplanet atmosphere broadening parameters are required
over very extended temperature ranges. The data on high temperature
broadening is limited but there are theoretical constructs, eg. [50,51],
which should facilitate the extension of the data to higher tempera-
tures. More challenging is the need to include broadeners other than
air.

Being able to estimate pressure broadening for any molecule would
be of great use to exoplanet modellers. There is a fair amount of broad-
ening data in the literature where air is not the broadener. HITRAN has
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Fig. 6. Comparison of 𝛾𝐴𝑖𝑟 predictions from the final tested model, to HITRAN estimates based on no empirical data, for CS (top) and H2O2 (bottom). The HITRAN data is given
y crosses labelled by their error codes; the uncertainty of each error code is given in Table 4. The semi empirical model of Buldyreva et al. is included for comparison.
Fig. 7. Predictions of 𝛾𝐴𝑖𝑟 for HONO, a molecule without much empirical data.
pressure broadening parameters for some active molecules perturbed
by H2, He, H2O and CO2. Other sources of data include other databases
which have some broadening data, such as GEISA [52], HITEMP [18]
and ExoMol [8]. There are also a lot of experimental measurements in
11

the literature, largely giving accurate data for a few lines or a particular t
spectral region. Theoretically, Gamache and co-workers have computed
comprehensive, temperature dependent list of broadening parameters
for systems such as CO2 broadened by water [53] and water broadened
by H2 [54]. These various studies could be combined to form a suitable

raining set to look at the effect of different broadening species.
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Fig. 8. Comparison of 𝛾𝐴𝑖𝑟 predictions from the final tested model, to the HITRAN data for SO (top), HCN (middle) and SO2 (bottom). The HITRAN data is given by crosses
abelled by their error codes; the uncertainty of each error code is given in Table 4. The semi empirical model of Buldyreva et al. is included for comparison.
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Considering the intrinsic difficulty in obtaining line broadening
arameters experimentally, we believe that ML has the potential to be
powerful complementary tool.

The air broadening data described in this paper are available on the
xoMol website, for all exotic species in the ExoMol database.
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Appendix A. Supplementary data

Plots of 𝛾 versus 𝐽 comparing our predictions with HITRAN for all
48 molecules are given as supplementary material. A full list of kinetic
diameters used in this work is also included.

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.jms.2024.111901.
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