
Planetary Magnetospheres: Solved Problems and Problem Set 1

Solved Problems

1. In classical electromagnetic theory, the magnetic moment µL associated with a circular current ‘loop’ of radius
R which carries a current I is given by the product of current and loop area:

µL = I πR2.

Apply this definition to the current carried by a particle of charge q and mass m gyrating in a single plane
about a magnetic field of strength B. The particle thus moves on a circular orbit with speed v⊥ and radius
rg = mv⊥/(qB). Show that the magnetic moment associated with the current represented by the particle’s
motion is equal to the first adiabatic invariant discussed in lectures, i.e. µ = W⊥/B, the ratio of gyrational
kinetic energy to field strength.

Solution

Current is charge per unit time which passes a fixed point. For the particle, this may be written I = q/T , where
T is the gyroperiod, i.e. I = q2B/(2πm). The area of the orbital circle is A = πr2

g = πm2v2
⊥/(q

2B2). Hence
IA = 1

2mv
2
⊥/B = W⊥/B.

2. For an ideal collisionless plasma of bulk velocity u, Ohm’s Law reduces to

E = −u×B,

where E is the convective electric field. Show that the velocity component perpendicular to B is given by
u⊥ = E ×B/B2.

Solution

Using the given definition of E, we may write E ×B/B2 = (−u×B)×B/B2.

Now, (−u×B)×B/B2 = (B2u− (B · u)B)/B2.

If we define a unit vector b = B/B, we have E ×B/B2 = u− (b · u) b = u− u|| = u⊥.

3. Following on from Question 2, a general plasma flow u is sometimes described by its corresponding pattern of
convective electric fieldE. IfE can be described as the gradient of a scalar potential throughE = −∇φE , then
we have u⊥ = −∇φE ×B/B2.

Assume for simplicity that u|| = 0.

Consider plasma motion in a ‘magnetospheric equatorial’ plane which contains the Earth-Sun line and is per-
pendicular to the Earth’s magnetic dipole axis. Explain why the ‘streamlines’ of the plasma flow in this plane
(curves which have a local tangent vector parallel to u) are also curves of constant φE (i.e. equipotential curves).

In this equatorial plane, we may write φE as the sum of two terms:

φE = φCR + φCONV .

The first term is the corotation potential and dominates close to the planet. It is given by:

φCR = −ΩE BE R
3
E/r,

where ΩE is the Earth’s angular velocity of rotation, BE is the equatorial field strength at the Earth’s surface,
RE is the Earth’s radius and r is radial distance from the planet’s centre.

The second term is the convection potential and describes sunward flows (associated with magnetotail reconnec-
tion) which carry plasma from the magnetotail towards the dayside:

φCONV = −Eo y,
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where Eo is the convection electric field (assumed constant) and y is the Cartesian coordinate measured along an
axis (lying in the equatorial plane) which passes through the Earth’s centre (the origin) and is perpendicular to
the upstream solar wind direction (solar wind flows along the negative x direction). y is positive towards dusk.

There is a ‘stagnation’ point in the flow, lying on the positive y axis, whose location may be estimated as the
point where the magnitudes of the two potential terms are equal. Show that the radial distance of the stagnation
point is given (in units of Earth radii) by:

rsp/RE = (ΩE BE RE/EO)1/2

Using reasonable values for the Earth parameters, and a value EO = 1 mV/m, calculate rsp/RE for the Earth’s
magnetosphere. How does variability in EO affect this distance ?

For Jupiter, the planet’s very strong field, size and rotation rate cause rsp to lie outside the actual magnetosphere
- what is the physical meaning of this result?

Solution Setting the magnitudes of φCONV and φCR to be equal, and using the fact that the radial distance r is
equal to y for a point on the positive y axis, we obtain:

ΩE BE R
3
E/r = EOr → (r/RE) =

√
ΩE BE RE/EO

Using the EO value given (and transforming to MKS units), a rotation period of 24 hours for the Earth, a radius
of 6370 km for the Earth, and BE = 3× 10−5 T, we obtain:

(rsp/RE) =
√

ΩE BE RE/EO

=
√

(2π/(24× 3600))× 3× 10−5 × 6730× 103/10−3 = 3.83

An increase in EO represents a stronger flow associated with the Dungey cycle, and a consequently smaller
stagnation distance, which approximately represents the transition distance from sunward flow in the outer mag-
netosphere to corotational flow in the plasmasphere.

Jupiter’s stagnation point lying outside its magnetosphere means that the dayside equatorial magnetosphere of
Jupiter is dominated by rotational flows (more correctly, (sub)corotational with respect to the planet - see the
lecture notes).

4. The magnetic field strength B due to the Earth’s dipole field may be expressed as:

B = (BER
3
E/r

3) (3 cos2 θ + 1)1/2, (1)

where BE is the equatorial field strength at the Earth’s surface, RE is the Earth’s radius and r is radial distance
from the planet’s centre. θ denotes magnetic colatitude (the magnetic equator is defined by θ = π/2).

The following formula is for the pitch angle αc associated with the loss cone at a point P where the field strength
is BP :

sin2 αc = BP /BS , (2)

where BS is the magnetic field at the surface of the planet which is magnetically connected to the point P along
the same field line.

Calculate the value αc as a function of distance for locations in the magnetic equatorial plane, using the dipole
approximation. You may find the following formula for the shape of a dipole magnetic field line useful:

r = LRE sin2 θ, (3)

where LRE is the equatorial crossing distance of the field line.
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Solution For any magnetic equatorial point at distance LRE , a dipole field line passing through that point will
intersect the Earth’s surface at a colatitude θi given by:

RE = LRE sin2 θi

→ sin θi =
√

1/L

→ cos θi = ±
√

(L− 1)/L

(4)

Hence the magnetic field magnitude BS is given by:

BS = (BER
3
E/R

3
E) (3 cos2 θi + 1)1/2 = BE (3(1− 1/L) + 1)1/2. (5)

We can also evaluate the dipole formula at θ = π/2, r = LRE to obtain BP :

BP = BE/L
3. (6)

It follows that:

sin2 αc = BP /BS = L−3 (3(1− 1/L) + 1)−1/2 (7)

Using this formula to evaluate sin2 αc, hence αc, as a function of L, we obtain the following plot:
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5. The magnetic signatures of interchange observed by Galileo in Jupiter’s magnetosphere indicate that the inward-
moving flux tubes have magnetic field strengths typically higher than the surrounding plasma. If the total (plasma
plus magnetic) pressure inside the flux tube is equal to that of the ambient plasma outside, show that the small
change in field strength δB (inside minus outside field) is related to a corresponding change in plasma pressure
δp as follows:

δp/po = −2(δB/Bo)(1/βo) (8)
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where the subscript ‘o’ indicates quantities outside the flux tube, and β, as usual, equals the ratio of plasma
pressure to magnetic pressure.

Using this formula, calculate δp/po for values: (i) Bo = 1700 nT, δB = 10 nT, βo = 0.05; and (ii) Bo =
1700 nT, δB = 25 nT, βo = 0.05 .

Solution The sum of the magnetic and plasma pressures outside the flux tube may be written as B2
o/(2µo) + po.

If this quantity remains constant as we cross into the flux tube, we may express this by taking a zero differential
between inside and outside, as follows: d(B2/(2µo) + p) = 0 ≈ 2Bo δB/(2µo) + δp.

Rearranging and dividing by po, we obtain δp/po ≈ −Bo (δB/µo)(1/po) = −2(δB/Bo)(1/βo), since, by
definition po = βo(B

2
o/(2µo)).

Using this approximation and the values given, we obtain values of δp/po of about (i) -0.24 and (ii) -0.59.

6. Consider the typical information for Mercury and the Earth in the table from the lecture notes which compares
the magnetopause stand-off distances of various planets. Assuming that the dipole magnetic pressure of the
planet balances solar wind dynamic pressure at the magnetopause standoff point, calculate the ratio of solar wind
dynamic pressures just upstream of Mercury’s and the Earth’s magnetospheres.

Solution

The table in question indicates that the dipole magnetic pressure at Mercury’s dayside magnetopause is approxi-
mately proportional to (ignoring dipole tilt effects) [MM/(1.4RM )3]2 (i.e. the magnetic pressure is proportional
to the square of the expected field strength). Here MM is Mercury’s magnetic dipole moment. For the Earth,
this quantity will be [ME/(10RE)3]2. Taking the ratio, we obtain (MM/ME)2 (106/1.46)(RE/RM )6. Using
reasonable values of the planetary radii, this evaluates to ∼ 6.7. (N.B. I think the value of the magnetic moment
of Mercury should be more like 4×10−4ME , based on Messenger data - note also the usual variability expected
in solar wind parameters).

7. Chapman and Ferraro ( 1930) developed a model of a plasma cloud interacting with the Earth’s dipole magnetic
field. This model may be applied to investigate the behaviour of the magnetic field generated by the magne-
topause currents. In this picture, the Earth’s magnetic dipole is situated at the origin (Earth centre) and the
dipole axis is orthogonal to the upstream solar wind direction. The magnetopause is then modelled as an infinite
conducting plane, perpendicular to the upstream solar wind velocity, and situated a perpendicular distance of
RMP from the planet’s dipole axis. Magnetopause currents flow on this plane and generate an additional field
within the Earth’s magnetosphere which is equivalent to that of an identical magnetic dipole, known as the ‘im-
age dipole’, situated outside the magnetosphere at a distance 2RMP from the Earth’s centre along the direction
anti-parallel to the upstream solar wind velocity. We define the x axis to pass through the Earth’s centre (where
x=0) along this direction.

Using this model, calculate and make a plot of the ratio BTOT /BDIP as a function of distance along the x axis,
from the Earth’s surface to the magnetopause plane. Here, BTOT is the total magnetic field strength due to the
actual and image dipoles combined, and BDIP is the field strength due to the planetary dipole alone.

Solution

For the planetary dipole alone, the field strength outside the Earth and inside the magnetopause, along the x axis,
is given by the function BD(x) = (BER

3
E/|x|3) (using the nomenclature of Question 4). Now we may express

the field of the image dipole situated at x = 2RMP as the function BD(x− 2RMP ) = (BER
3
E/|x− 2RMP |3).

Adding the two, we obtain:

BT (x) = BD(x) (1 + |x|3/|x− 2RMP |3).

Hence BT (x)/BD(x) = (1 + |x|3/|x − 2RMP |3), which is always greater than unity. A plot of this quantity
versus x/RE is given below, using a reasonable value RMP = 10RE .
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Problem Set 1: ‘Planetary Magnetospheres’ Section

1. Consider the induction equation for an ideal, collisionless plasma threaded by magnetic fieldB, and having bulk
flow velocity u:

∂B

∂t
= ∇× (u×B)

Consider a continuous ‘patch’ of plasma (see Notes) which is defined by a surface S, bounded in space by a curve
Γ. As the plasma moves, Γ will generally change shape and the area of S will generally change value. Consider
an infinitesimally small element of the moving curve Γ which is defined by a vector increment dl. Show that,
during an infinitesimal time step dt, the motion of this element changes the magnetic flux ΦB through the patch
by an amount:

dΦB = B · ((u dt)× dl),

whereB and u are the local values of field and velocity.

Hence, show that the convective, or co-moving time derivative of the magnetic flux through the patch may be
written:

DΦB

Dt
=

∂

∂t
(ΦB) +

∮
Γ
B · (u× dl),

where ΦB is equal to the surface integral
∫∫
SB · dS.

Making use of an appropriate Maxwell’s equation and Ohm’s law for the plasma, demonstrate the validity of the
‘frozen-in’ condition, i.e.

DΦB

Dt
= 0.

2. In Solved Problem 4, you will find the formula for the magnetic field strength the Earth’s dipole field, and the
equation describing the shape of a dipolar magnetic field line.

The corresponding radial and meridional dipole field components are given by:

Br = −2BE cos θ/(r/RE)3

Bθ = −BE sin θ/(r/RE)3

Using this information and appropriate physical constants, calculate the gradient drift velocityug = W⊥
qB3 B×∇B

(see Notes) of protons with the following properties, drifting in the Earth’s magnetosphere:

(a) W⊥ = 1keV and 10keV, r = 8RE, θ = 90◦ (i.e. equatorial).

(b) W⊥ = 1keV and 10keV, θ = 60◦, choose r so that proton is on same field line as those in item 1 above.

(c) W⊥ = 1keV and 10keV, θ = 30◦, choose r so that proton is on same field line as those in items 1 and 2
above.

3. In Solved Problem 7, Chapman and Ferraro’s ‘infinite conducting plane’ carries currents which amplify the
magnetic field near the Earth’s magnetopause by a factor of two. Use the ‘pressure balance’ argument from the
lectures to calculate the change introduced in the standoff distance RMP of a fictitious planet’s magnetopause,
at fixed solar wind dynamic pressure, when the field is amplified in this way (assume twice the strength of a pure
dipole field at the magnetopause).

Consider now adding an interior plasma pressure near the magnetopause of this fictitious planet, such that the
plasma β parameter there attains a value 5. What effect does this have on RMP ?
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4. Consider a fictitious magnetosphere where rotational effects are not important, and the only forces are due to the
plasma pressure gradient and the magnetic J ×B force. If the system is in perfect force balance (i.e. the sum
of these two forces at any point is identically zero), explain why the plasma pressure will be uniform all the way
along a magnetic field line ?

Now consider an idealized magnetosphere where rotation plays an important role in force balance, and the
magnetic field is symmetric about the rotational / magnetic equatorial plane. The magnetic force, centrifugal
force and plasma pressure gradient always add to zero at any point in the system (we neglect all other forces
for simplicity). By considering force balance in the direction parallel to the poloidal magnetic field (zero Bφ),
explain why the addition of the centrifugal force on the plasma causes plasma pressure to change along the
magnetic field line. Demonstrate why the profile of the plasma pressure can be described by the equation:

P (ρ) = P0 exp[(ρ2 − ρ2
0)/(2l2)],

(9)

where ρ = r sin θ denotes cylindrical radial distance, the field line crosses the equator at ρ = ρ0, and the scale
length l ≈ (2kT/miω

2)1/2. Assumptions: the plasma temperature T and angular velocity ω are constant along a
field line; the plasma is quasi-neutral, behaves as an ideal gas, and is composed of ions of mass mi and electrons
of mass me.
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Solutions

1. The element dl changes position by udt in the time step. The corresponding surface area covered by the element
during this motion is thus a parallelogram having these vectors as edges, and may thus be written dS = (u dt)×
dl - here the usual convention is followed, where a surface element is represented by a vector lying orthogonal
to itself. dΦB , by definition, is the scalar product of magnetic field and surface vector, i.e. the flux of magnetic
field through the surface.

The
∮

integral represents the change in ΦB due to the motion of all of the elements dl which make up the moving
perimeter Γ.

In general, however, the magnetic field itself will have an explicit time dependence - i.e. an observer at a fixed
point in space will seeB change with time. Due to this effect, the change in ΦB can be written

dΦ′B = dt

∫ ∫
S

∂B

∂t
dS

.

The co-moving derivative is:

dΦB

dt
+
dΦ′B
dt

,

which is: ∮
Γ
B · (u× dl) +

∫ ∫
S

∂B

∂t
dS

=

∮
Γ
dl · (B × u) +

∫ ∫
S
−∇×E · dS

=

∮
Γ
dl · (B × u) +

∮
Γ
−E · dl

where E denotes the electric field, and we have used

∇×E = −∂B
∂t

Using the idealized Ohm’s Law E = −u×B, we obtain:

dΦB

dt
=

∮
Γ
(B × u) · dl+

∮
Γ
(u×B) · dl,

which is zero.

2. If I haven’t made any errors, the evaluation ofB ×∇B gives (help from Mathematica!):

−3B2
ER

6
E sin θ(1 + cos2 θ)

r7
√

(1 + 3 cos2 θ)
φ̂

To obtain ug, we multiply this expression by W⊥/(qB3) and obtain:

(W⊥/q)
−3r2 sin θ(1 + cos2 θ)

BER3
E(3 cos2 θ + 1)2

φ̂ =

(W⊥/q)
−3(LRE sin2 θ)2 sin θ(1 + cos2 θ)

BER3
E(3 cos2 θ + 1)2

φ̂

(10)

Here we have eliminated r using the dipole field line formula (L = 8 for this problem).

If we use appropriate valuesRE = 6370km, andBE = 3×10−5 T, we obtain the following values for the energy
W⊥ = 1keV: |ug| ≈ 1005m/s(θ = 90◦), 1.05m/s(θ = 60◦), 0.524m/s(θ = 30◦). For the case W⊥ = 10keV,
multiply these values by ten.

(This problem requires much algebra, so please let me know if you spot any mistakes!)
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3. Balancing magnetic pressure of a pure dipole with the solar wind dynamic pressure:

BDIP (RMP )2/(2µo) =
1

2µo

(
BER

3
E

R3
MP

)2

= PSW

RMP =

(
1

2µo

)1/6 (B2
ER

6
E

PSW

)1/6

(11)

Looking at this equality, we see that if we replaceBDIP (RMP ) by 2BDIP (RMP ), thenRMP will increase from
the pure dipole value by a factor 41/6 ≈ 1.26.

If we now introduce the plasma β value as well (ratio of plasma pressure to magnetic pressure), then the total
pressure (plasma plus magnetic) at the magnetopause can be written:

(1 + β)(2BDIP (RMP ))2/(2µo)

So the pressure balance becomes:

(1 + β)(2BDIP (RMP ))2/(2µo) =
1

2µo
(1 + β)

(
2BER

3
E

R3
MP

)2

= PSW

RMP =

(
1

2µo

)1/6

(1 + β)1/6 41/6

(
B2
ER

6
E

PSW

)1/6

Hence the non-zero plasma pressure increases RMP by an additional factor (1 + β)1/6 = 61/6 ≈ 1.35.

4. The equation of force balance parallel to the magnetic field is:

−dP
ds

+
N

2
(mi +me)ρω

2 cosψ = 0,

where N is total particle number density and ψ is the angle between the field direction and the cylindrical radial
direction (i.e. the local direction perpendicularly outwards from the axis of symmetry). Note that we don’t need
to consider any other force, since the parallel component of J ×B is zero, by definition. Since the centrifugal
term always points outwards (positive direction), we require −dPds to be negative, i.e. pressure P must increase as
we travel along a field line from polar regions to equator (confinement of plasma into a disc-like shape).

Since an element of length ds along the field corresponds to a change dρ = ds cosψ, we have:

−dP
dρ

+
P

2kT
(mi +me)ρω

2 = 0,

where P = NkT for the plasma.

Integrating between an arbitrary point on the field line and the equator (denoted by subscript ’0’):∫
dP

P
=

∫
(mi +me)ω

2

2kT
ρ dρ,

ln(P0/P ) =
(mi +me)ω

2

2kT

1

2
(ρ2

0 − ρ2)

P = P0 exp[(ρ2 − ρ2
0)/(2l2)],

where l2 = 2kT
(mi+me)ω2 ≈ 2kT

miω2 , since mi >> me.
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Problem Set 2

1. Explain why the volume of a unit magnetic flux tube (i.e. the volume per unit magnetic flux) is given by the
integral

∫
ds
B along the field line, where ds is length element along the field, and B(s) is local field strength.

Consider now a cold plasma (quasi-neutral, with one species of positive ion) in a rotating magnetosphere (as in
Problem Set 1). Show that the number of ions Ni contained per unit magnetic flux can be expressed as:

Ni =
Po

2kT

∫
exp[(ρ2 − ρ2

o)/(2l
2)]

ds

B
, (12)

where the integral is again along the field line, pressure is denoted by P , cylindrical radial distance by ρ, and
quantities at the magnetic equator are subscripted with ‘o’. l is the length scale from Problem Set 1, which
involves the temperature T and plasma angular velocity ω, both constant along the field line.

2. Derive the first-order density and temperature perturbations given in the section on ‘Interchange Motions’:

σn(1) = −n∇ · u− u · ∇n
σP (1) = −γP (∇ · u)− u · ∇P

You may find it useful to consider the perturbed equations for conservation of mass, and for adiabatic change in
plasma pressure (this second condition may be expressed as D(Pn−γ)

Dt = 0 - a zero comoving time derivative).
For simplicity, assume that the unperturbed plasma has zero velocity.

3. Consider a spherically symmetric inward flow of material being accreted onto a star of mass M . Assume that
the material is freely falling under the influence of the star’s gravity, starting from rest at infinite distance. The
accretion rate Ṁ is constant and equal to 4πr2ρMv, where r is radial distance from the star’s centre, ρM is
density of the material and v is the velocity. Explain why this equality is valid in the steady-state flow.

Assume now a very simplified estimate for the magnetic field strength for the star, based on a dipole’s radial
dependence: B(r) ∼ µ/r3, where µ is the star’s magnetic moment (we ignore the angular dependence for
simplicity).

Using this information, show that the approximate Alfvèn radius RA of the system, where the dynamic pressure
of the inflow (ρMv2) equals the magnetic pressure of the star, satisfies the dependence:

RA ∝ µ4/7 Ṁ−2/7M−1/7
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Problem Set 3

1. The ‘propeller’ mechanism may act to eject infalling material from the magnetospheric boundary of a rapidly
rotating, magnetized star.

In a simple picture, material instantaneously ‘attaches’ to the rotating field at the magnetospheric radius Rµ and
starts to rotate with the stellar angular velocity ΩS . The propeller mechanism is effective when the velocity of
the ‘attached’ material exceeds the local escape velocity from the star. Show that this condition is equivalent to:

Rµ > 21/3Rc,

where Rc is the corotation radius (i.e. the radius at which the angular velocity of a circular orbit about the star is
equal to ΩS).

2. Consider a Polar binary star system where the magnetic dipole of the white dwarf is orthogonal to the orbital
plane of the two stars. Assume that the magnetic field at and inside the coupling region, where accreting material
starts to flow along field lines, is dominated by the dipolar field of the white dwarf.

Calculate the range in radial distance (in units of white dwarf radii) covered by the coupling region corresponding
to an ‘arc-shaped’ accretion shock on the white dwarf surface extending between magnetic colatitudes of 20◦ and
28◦. By what factor does the field strength change over the coupling region?

Consider an individual ‘blob’ in the accreting material which is channelled by the magnetic field onto the white
dwarf surface. δA represents the ‘cross-section’ area of the blob, locally perpendicular to the field. Estimate,
using a dipole field model, the factor by which δA changes as the blob falls from the inner edge of the coupling
region to the white dwarf surface.

(If radial distance is denoted by r and magnetic colatitude by θ, the equation of a dipole field line is r =
LRwd sin2 θ, where LRwd is the distance at which the field line crosses the magnetic equator. The magnetic field
strength due to the dipole is proportional to the quantity r−3 (1 + 3 cos2 θ)1/2).

3. Consider a Polar system with a single active accretion shock which emits electron cyclotron radiation. ‘Peaks’ in
the continuum emission of the system occur at wavelengths corresponding to harmonics of the electron cyclotron
frequency. If two of the adjacent harmonic peaks occur at optical wavelengths of 7146 Å and 6125 Å, estimate
the magnetic field strength at the location of the emission region on the white dwarf surface.

4. Consider Ghosh and Lamb’s picture of the magnetic torque acting between a magnetized, accreting star and its
surrounding accretion disc. What would happen to the corotation radius following an unusual transient episode
of strongly enhanced accretion, which ‘spins up’ the star to a higher angular velocity? If the magnetospheric
radius Rµ instantly returns to its ‘quiet’ value immediately following this episode, but now the corotation radius
lies inside 2−1/3Rµ. What would happen to the rate of accretion onto the star’s surface? What would happen
to the areas of the disc which are attached to ‘forward-swept’ and ‘backswept’ field lines? What would be the
consequences for the spin rate of the star?
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