
FISICA Deliverable D1.5

Far Infra-red Space Interferometer Critical Assessment

PU 1 v1.0

FISICA

Far Infra-red Space Interferometer Critical Assessment
Deliverable D4.1

Grant agreement no. 312818

SPA.2012.2.2-01: Key technologies enabling observations in and from space

- Collaborative project -

D4.1
PyFIInS - Python Far Infrared Instrument Simulator

WP 4 – An end-to-end simulator of FIRI

Due date of deliverable: Month 36

Actual submission date:

Start date of project: January 1st 2013 Duration: 36 months

Lead beneficiary for this deliverable: Science and Technology Facilities Council (STFC), UK

Lead author: John Lightfoot, UK ATC (STFC)/University of Edinburgh

Contributing authors:

Contributions also from: Roser Juanola-Parramon (NASA Goddard), Colm Bracken and Anthony Murphy

(NUI Maynooth), Gibion Makiwa and David Naylor (U.Lethbridge)

Project co-funded by the European Union’s Seventh Framework Programme for research, technological development and demonstration

Dissemination Level

PU Public

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

FISICA Deliverable D1.5

Far Infra-red Space Interferometer Critical Assessment

PU 2 v1.0

Summary
This document presents a final report on the FISICA instrument simulator PyFIInS. A brief

description of the simulator is given. How the software can be obtained and installed on a computer

is described. How the simulator should be used is explained through an example.

History table

Version Date Released By Comments

0.1 14/01/2016 John Lightfoot First draft

1.0 15/01/2016 John Lightfoot Completed and released version

1.0 19/01/2016 John Lightfoot Added recommendation for computer power

Table of Contents
Summary .. 2

History table ... 2

Key word list .. 3

Definitions and acronyms .. 3

FISICA Deliverable D1.5

Far Infra-red Space Interferometer Critical Assessment

PU 3 v1.0

Acknowledgements .. 3

Disclaimer .. 4

1. Introduction... 4

2. Requirements... 4

3. PyFIInS Description .. 4

4. Obtaining and Installing PyFIInS .. 7

5. A PyFIInS Cookbook .. 8

5.1 Process Overview .. 8

5.2 Target Generation – the ‘cube toolkit’ ... 9

5.3 The ‘Instrument’ File .. 9

5.4 Example. A simulated observation of pre-stellar cores .. 9

Key word list

Instrumentation: high angular resolution 

Instrumentation: interferometers

Instrumentation: spectrographs

Instrumentation: detector arrays

Techniques: high angular resolution

Techniques: imaging spectroscopy

Definitions and acronyms

FIRI Far Infra-Red Interferometer

FITS Flexible Image Transport System

FTS Fourier Transform Spectrograph

SPIRE Spectral and Photometric Imaging Receiver

Acknowledgements
The research leading to this report has received funding from the European Union’s Seventh

Framework Programme for research, technology development and demonstration under Grant

Agreement no. 312818 – FISICA.

FISICA Deliverable D1.5

Far Infra-red Space Interferometer Critical Assessment

PU 4 v1.0

Disclaimer
The content of this deliverable does not reflect the official opinion of the European Union.

Responsibility for the information and views expressed in the deliverable therein lies with the

authors.

1. Introduction
The theory of double Fourier interferometry is straightforward, the implementation of it in a space-

borne instrument is not. A simulator is required to allow modelling of various systematic errors that

will inevitably corrupt the data to some degree, and which it is difficult to model theoretically. Such

errors include:

 Realistic primary beams for the instrument’s flux collectors. Imperfections introduce phase

errors that decrease fringe visibility.

 Temperature fluctuations in the instrument that change the measured signal.

 Collector pointing errors. The signal on the detector includes the direct images from each

collector and pointing errors cause these contributions to fluctuate. The interferometric

component is also affected in a more subtle way.

 Baseline errors.

 Baseline movement during each FTS scan. For a tethered system we would expect the

collectors to be continuously revolving around the hub to keep the tether taut and minimise

fuel use.

 FTS mirror stage errors. Such errors were measured for SPIRE.

 Detector time constant.

 Cosmic ray strikes on the detector. Statistics derived from SPIRE.

A second use of the simulator is for science verification and public relations. It can be used to

‘observe’ objects of potential interest to illustrate - with numbers and pictures - how successful or

not the proposed observation would be.

2. Requirements
The simulator must be:

 publicly available and able to run on ordinary computer platforms.

 able to model the ‘strawman’ instrument design.

 flexible so that variations on the strawman design can be tested.

 able to ‘observe’ any object. A limitation of the Matlab version was that it took too long to

observe complex sources.

3. PyFIInS Description
PyFIInS is derived from a simulator written in Matlab by Roser Juanola-Parramon as part of her

PhD (‘A Far-Infrared Spectro-Spatial Space Interferometer’. UCL. 2014). To fulfil the requirement

that the simulator be free and runnable on a wide range of machines the FISICA simulator is

implemented in Python.

FISICA Deliverable D1.5

Far Infra-red Space Interferometer Critical Assessment

PU 5 v1.0

The simulator is implemented in 2 parts:

1. A part that generates the interferograms that would be observed of the given target. This

program is called PyFIInS and takes as input parameters:

a. An Excel file describing the instrument configuration and observation timeline. A

version of this file describing the strawman instrument is released with the code. The

file contains a number of spreadsheets, each associated with a particular aspect of the

instrument. The instrument description is quite detailed allowing, for example,

changes to the number, performance and temperature of the optical elements in the

system. The spreadsheets most relevant to the ordinary user are:

i. FTSpectrograph, specifying the Band (B1, B2, B3 or B4) of the simulation

and associated FTS scan details

ii. Telescope, describing the diameters of the flux collectors, their pointing

behaviour, etc.

iii. Interferometer, describing the u-v pattern to be swept out by the instrument

through the observation.

iv. Detector, describing the detector time constant, the ‘knee’ frequency of its 1/f

noise, etc.

b. A file containing the target cube (the emission at each point in an array with

dimensions [nx, ny, nfreq]) in FITS format.

2. A program called PyDataProcessing, which reads in the FITS file with the interferograms

produced by PyFIInS and reduces them to give the cube that is the result of the observation.

The ‘strawman’ instrument specified by the release Excel file is the same as that described in D1.5

and efforts have been made to match the simulator results with the sensitivity model described

there.

Output from both programs comprises files written in FITS format, and html directories forming a

results ‘weblog’ that can be examined with a browser. Example views from the weblogs of PyFIInS

and PyDataProcessing are shown in the 2 figures below. The first shows one frequency plane of the

target cube being ‘observed’ by PyFIInS. On it you can see four disks of varying size and

orientation, playing the part of pre-stellar cores in a molecular cloud. The second shows the same

frequency plane of the output cube. You can see the same four disks but their emission has been

convolved with the ‘dirty’ beam associated with the incomplete u-v coverage of the observation.

The buttons along the toolbar of each page give access to other parts of the result structure.

FISICA Deliverable D1.5

Far Infra-red Space Interferometer Critical Assessment

PU 6 v1.0

Figure 1 Weblog rendering of the 197cm-1 plane of the target cube

Figure 2 Weblog rendering of the 197cm-1 plane of the result cube

FISICA Deliverable D1.5

Far Infra-red Space Interferometer Critical Assessment

PU 7 v1.0

4. Obtaining and Installing PyFIInS
The following installation procedure applies to a machine running Linux or Mac OSX. The

simulator will run on Windows machines if the required Python modules are installed first.

The simulator demanding of memory and CPU power. Simulations in Band 4 (25-50cm-1) run

satisfactorily on a MacBook Pro with a dual core CPU and 8GB of memory. Simulations in Band 2

(100-200cm-1) do not, for these a desktop machine with roughly 60GB of memory has been found

to work well. If a run does not achieve a ‘user mode’ CPU usage of 50% or more then you should

consider using a machine with more memory.

1. The code runs under a Python 2 interpreter and requires the following Python modules:

 numpy (fast array processing)

 scipy (scientific functions and constants)

 matplotlib (plotting)

 parallelpython (parallel processing)

One way to obtain the correct running environment is to use Anaconda:

 Follow ipython.org/install instructions to install Anaconda.

 Use Anaconda to install IPython, numpy, scipy and matplotlib.

 parallelpython may not be known to Anaconda. If so it can be installed following

the instructions at http:www.parallelpython.com.

If the installation has worked then you will be able to type ‘ipython’, then:

In[1]: import numpy

In[2]: import scipy

In[3]: import matplotlib

In[4]: import pp

with no errors.

2. Download the PyFIInS code.

 The code is in a public GitHub repository at https://github.com/handofkwll/fisica. Point

your browser at this webpage and click on the ‘Download ZIP’ button near the top right.

 Unpack the code into a fresh directory.

 Create a different ‘working’ directory to run the simulator from and copy the .xlsx files

from <dir>/fisica/excel into it – that is where the program will look for them. In

addition, ‘gunzip’ <dir>/fisica/data/ringcube-25-50.fits.gz into the working directory.

3. Start up ipython, then:
In[1]: import sys

In[2]: sys.path.append(‘<dir>/fisica-master’)

In[3]: import pyfiins

In[4]: f=pyfiins.PyFIInS(instrument_spreadsheet=’strawman.xlsx’,

sky_file=’ringcube-25-50.fits’,

beam_model_dir=’<dir>/fisica/beam_models/Smooth_Walled_Horn/Band 4

GRASP’)

In[5]: f.simulate()

ipython.org/install
http://www.parallelpython.com/
https://github.com/handofkwll/fisica

FISICA Deliverable D1.5

Far Infra-red Space Interferometer Critical Assessment

PU 8 v1.0

Once started, the program should run for roughly 4 hours eventually finishing with:

…
rendering observe

rendering writefits

If it has worked you will see a new directory in the working directory with name of form ‘fisica-

sim-yyyymmddThhmmss’, containing the browseable weblog of the simulation run, and a file with

name of form ‘yyyymmddThhmmss.fits’ that contains a FITS table with the simulated

interferograms.

To explore the weblog, point your browser at its root directory, scroll down to the bottom of the

listing and click on ‘uvmapgenerator.html’.

To reduce the interferograms start ipython as before and, instead of importing pyfiins, type:
In[4]: import pydataprocessing

In[5]: d=pydataprocessing.PyDataProcessing(‘<fits file>’)

In[6]: d.reduce()

After a further hour or so, this program will finish with:
…

rendering reduceinterferogram

rendering dirtyimage

A weblog describing the reduction results will appear in ‘fisica-dp-yyyymmddThhmmss’.

5. A PyFIInS Cookbook
This section describes how to use the FISICA simulator, and gives an example.

5.1 Process Overview

The simulation process can be broken into 3 stages:

1. Generate a datacube of the target to be observed. The datacube is stored in FITS format,

whose details are described in a document CUBEFORMAT.md stored on GitHub with the

code. It is best viewed on that site with a browser. The datacube can be derived from

existing observational data of an object, or built from scratch using the 'cube toolkit'

described below.

2. Specify the interferometer configuration during the observation in the 'instrument' Excel file.

This file comprises several sheets, each describing a particular aspect of the observation.

Most users will just want to set the waveband of the simulation and the u-v pattern to be

used.

3. Run the simulator, giving the 'instrument' file and the target datacube as inputs. The

simulator will output an html 'weblog' that can be examined with a browser, and a FITS file

containing the generated interferograms.

4. Run PyDataProcessing with the 'interferograms' file as input. This will push the data through

a data reduction recipe and generate a 'dirty' cube. In an ideal world this would equal the

target cube convolved with the dirty beam of the interferometer, in reality noise and

systematic errors will further affect the result.

FISICA Deliverable D1.5

Far Infra-red Space Interferometer Critical Assessment

PU 9 v1.0

5.2 Target Generation – the ‘cube toolkit’

The simulator can read any target cube whose structure conforms to CUBEFORMAT.md. The

'makecube' module in the code collection has been written to make it easier to construct such cubes.

Cube construction has four parts:

1. Generate a 2-d image of the target. This can be done by reading a FITS file with the

observed image of a target and interpolating it to the required size and spatial resolution

(makecube.MakeImage). Alternatively, the image can be constructed from scratch

(makecube.MakeModelThinRing, MakeModelThickRing or MakeModelComet). The scratch

images are derived from simple models but have the advantage that they are noiseless.

2. Generate the target spectrum (makecube.MakeSpectrum). This method constructs a grey-

body spectrum of given temperature, emissivity index and peak flux. Some spectral features

can be added to the grey-body, currently available are:

a. 'forsterite'- a complex feature near 70μm.

b. 'protostar' - a set of lines: [OI] 63μm, several water and CO lines between 66 and

325μm.

c. 'comet' - water lines at 66 and 300μm.

3. Combine the spatial image and the spectrum to produce a cube, write the result to a FITS

file (makecube.MakeCube). The integrated flux of the cube equals the input spectrum.

4. Combine cubes. It is possible to build complex targets by adding together cubes

(makecube.AddCubes). No check is made that the cubes share the same dimensions, if they

do not then a Python error will occur when the add is attempted. The output cube inherits its

header keywords from the first FITS cube in the 'in_cubes' list.

5.3 The ‘Instrument’ File

As said above, the configuration and timeline of the interferometer during the simulated observation

are specified via an Excel spreadsheet. The file contains several sheets, each associated with one

aspect of the instrument.

The file 'fisica/excel/strawman.xlsx' contains parameters that describe the FISICA strawman

instrument. It should be copied to the working directory and modified there.

Most users will only need to edit 2 parts of the strawman file. First, edit FTSpectrograph/Selection

to place a 1 in the Band to be simulated, 0 for the others. Second, edit Interferometer/Select in the

same way to specify which uv pattern the instrument is to use in the observation.

5.4 Example. A simulated observation of pre-stellar cores

The construction of the target cube involves the making of 4 separate 'cores', using

makecube.MakeModelThickRing 4 times with different input parameters, then combining the 4

individual cubes with makecube.AddCubes. Thus:

In [1]: import makecube

In [2]: image1 = makecube.makeModelThickRing(rinner=0.4, router=1.0,

 tilt=20.0, rot=-90.0, xcentre=-0.7, ycentre=0.2, max_baseline=80.0,

 wn_min=100.0, wn_max=200.0)

In [3]: spectrum1 = makecube.makeSpectrum(temperature=37, beta=-1.3,

wn_min=100.0, wn_max=200.0, wn_step=0.5, peak_flux=10.0,

spectral_features=['forsterite'])

In [4]: makecube.makeCube(image=image1, spectrum=spectrum1,

 cubename='cube1.fits')

FISICA Deliverable D1.5

Far Infra-red Space Interferometer Critical Assessment

PU 10 v1.0

... repeat this process n times to produce n 'cores' in n cubes, each

... with different parameters. This will give you n FITS files: 'cube1.fits'

... to 'cuben.fits'.

In [20]: makecube.addCubes(in_cubes=['cube1.fits', 'cube2.fits',

..., 'cuben.fits'], cubename='total_cube.fits')

Specify the observation details by copying 'strawman.xlsx' to your working directory and modifying

it as follows:

 In FTSpectrograph select Band 2 (100-200cm-1).

 In Interferometer select 'Const L spiral' as the uv pattern.

Run the simulator:

In [1]: import pyfiins

In [2]: f = pyfiins.PyFIInS(instrument_spreadsheet='strawman_copy.xlsx',

sky_file='total_cube.fits', beam_model_dir='/Users/jfl/test2beam/fisica-

pbmodels/beam_models/Smooth_Walled_Horn/Band 4 GRASP')

In [3]: f.simulate()

This will produce a weblog html tree rooted at 'fisica-sim-yyyymmddThhmmss' dated at the time of

the run, and a matching FITS file with the simulated interferograms 'yyyymmddThhmmss.fits'

Reduce the interferograms:

In [3]: import pydataprocessing

In [4]: d=pydataprocessing.PyDataProcessing('yyyymmddThhmmss.fits',

data_quality='pure')

In [5]: d.reduce()

The 'data_quality' parameter in the PyDataProcessing constructor specifies whether the 'pure' or

'noisy' interferograms are to be used. The pure interferograms are the direct output from the

interferometric simulation, the noisy ones have detector noise, background noise, cosmic rays and

1/f noise added.

