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1 Introduction 

1.1 Scope 

This document reviews the methods available for the direct combination of light from 
sparsely separately apertures to allow increased spatial resolution for astronomical 
observations in the Far Infrared wavelength band.   The emphasis is on non-phase 
sensitive detection i.e. we only briefly touch on heterodyne detection methods. 

1.2 Introduction 

The spatial resolution of any optical imaging system used for astronomy is determined 
by the widest separation of any collecting area used to concentrate the light compared 
to the wavelength of the light being measured.  Thus the spatial resolution of a 
traditional solid telescope is limited by the physical diameter of the system to ~λ/D; 
where λ is the wavelength and D the telescope diameter.  The limitations imposed by 
solid telescopes can be overcome by using sparsely separated elements and 
recombining the light to make a “synthetic” aperture that appears to have a much 
larger diameter than any of the individual elements.  This technique is generally known 
as spatial interferometry. 

2 Sparse Aperture Systems 
A useful methodology for characterising different types of recombination of signals 
from sparsely distributed apertures is offered by van der Avoort et al (2007 [1]).  We 
illustrate the four different basic methods in Figure 1. 
 
These can be described as follows: 
 

a) Focal plane recombination (Fizeau) interferometer where the pupil plane is 
kept “right sized” such that the light is combined in phase as if it had come 
from small apertures placed over a single aperture.  In fact this is the exact 
method employed by Michelson in measuring the measuring the first stellar 
diameters using the Mount Palomar 100 inch telescope.  As this is termed the 

 
Figure 1: Diagrams illustrating four basic method of recombining the signals from sparsely distributed apertures to synthesise a 
single large one. 
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“Michelson stellar interferometer” in much of the literature (and is the 
technique used for instance in the VLTI) we will call both this, and the densified 
pupil version, “Focal Plane Recombination” interferometers.  

b) “Homothetic” systems have the limitation that the sparse apertures have to be 
kept a long way apart thus making the system unwieldy in many circumstances 
(especially for space deployment and at long wavelengths).  The densified pupil 
arrangement for focal plane recombination interferometers has therefore been 
proposed (see Labeyrie, Lipson, and Nisenson [2] ) whereby the image of the 
apertures is rearranged in a secondary pupil plane still keeping the signals from 
the different apertures in phase.  In this way it is supposed that the resolution 
of the synthesised sparsely distributed apertures is maintained whilst 
concentrating the recombination optics in a more convenient form.  We discuss 
this arrangement further in section 4 as it potentially offers an alternative 
solution to pupil plane recombination. 

c) The pupil plane direct detection interferometer technique uses the true 
Michelson interferometer although for reasons given above we will call this the 
“Pupil Plane Interferometer”.  Here the signals from two (classically defined) 
apertures are brought together in phase at an overlapping image of the 
sparsely distributed apertures and, by a combination of aperture movement 
and phase difference tracking with a moving mirror system, the “fringe 
visibility” of the source is recovered.  Little more needs to be said about this 
system as it is the subject of extensive investigation – in a “double Fourier” 
guise – as part of the FISICA programme.  As an aside the “double Fourier” 
refers to the use of a second moving mirror system that is used to 
simultaneously measure the spectral content of the light in addition to the 
phase tracking for spatial reconstruction. 

d) The last method that is worthy of brief consideration in this context is the 
intensity interferometer.  Here the method does not rely on keeping the light 
from the apertures in phase but rather on using the quantum correlation of the 
photons seen within the coherence time of the light emitted from the source 
(see Hanbury-Brown and Twiss, 1958 [3]).  This coherence time can also be 
thought of as the “photon occupation number” in correlation spectroscopy as 
discussed by Zmuidzinas, (2003 [4]) App Opt, 42 (2003).   Hanbury-Brown and 
Twiss successfully used an intensity interferometer [5] to measure the 
diameters of a number of stars however, the difficulties in using the technique 
at optical wavelengths soon became apparent (essentially the occupation 
number is far too small for any reasonably sized system to have a sensible 
sensitivity) and the technique was abandoned in favour of Michelson 
interferometers.  However, at longer wavelengths and for certain source types 
the occupation number rapidly increases and with very fast detection systems 
it would be possible to use an intensity interferometer (see for instance [2], [6], 
[7]).  In the radio intensity interferometers would also work very well but are 
essentially redundant with the use of direct signal detection using fast 
amplifiers.  For our purposes – i.e. in considering FIR applications – we can 
ignore the technique as the detection systems available are nowhere near fast 
enough (multiple GHz response times are required) for any correlation to be 
detectable. 



FISICA                Deliverable D3.4 
Far Infra-red Space Interferometer Critical Assessment 

PU Page 7  Version 1 
 

 

 
After this brief introduction on types of direct detection techniques we will go on to 
discuss the mathematics behind interferometry in more detail in section 3.  We will 
take a more detailed look at sparse aperture focal plane recombination in section 4 
and provide some concluding remarks in section 5.  First, whilst it is not the subject of 
the FISICA study being the most popular of radio interferometer techniques, we give 
an overview of the alternative heterodyne interferometer tech in the next sub-section. 

2.1 Radio Heterodyne Interferometers 

Interferometry has been successfully employed since the 1950’s at radio wavelengths 
to make very large effective diameter telescopes with extremely high spatial 
resolution.  Over many decades the wavelengths at which these systems operate have 
gradually decreased to the extent that the ALMA facility now operates routinely at 
~450 µm, and in principle it could operate at 200 µm with an enhanced receiver 
capability.  The limitations on operating at shorter wavelengths are imposed by the 
transmission of the atmosphere rather than any fundamental technical issues.  The 
receivers used in radio interferometers either use direct amplification of the signals (at 
long wavelengths i.e. low frequencies) or what is known as heterodyne reception 
whereby the incoming signal is compared – “mixed” – with a local reference (termed 
the local oscillator) to produce an intermediate frequency signal that can be analysed 
using standard electronics.  Although there are possibilities of building heterodyne, 
and even direct amplifier, receivers at the wavelengths of interest in the FIR there are 
a number issues that must be considered: 
 

 The most basic feature of heterodyne systems is that they are inherently 
spectrally narrow banded (R~> 106) and are therefore not suitable for many of 
the science cases identified in [8].  They are however excellent for the study of 
astrophysical chemistry and, with sufficient numbers of dishes, have been used 
to make images of dust emission [9]. 

 The ultimate sensitivity of heterodyne systems is limited by quantum 
fluctuations due to their high spectral resolution and use of lasers as local 
oscillators.  This is especially true at optical and infrared wavelengths (the 
“quantum limit” – e.g. [10] as discussed further below. 

 Direct amplification of incoming signals in the THz is not yet routinely available 
for any applications.  Although there has been progress in developing 
parametric amplifiers working at high frequencies, these are in their infancy 
and cannot be considered for studying an interferometer at the present time as 
too little is known about their possible performance characteristics (e.g. [11].  
See also the discussion on intensity interferometers above. 

 Finally, there are a number of difficult technical problems with implementing a 
heterodyne interferometer in space that are at least as challenging as those 
associated with a direct detection system.  These deserve and need a full study 
much like FISICA – see for instance the ESPRIT study [12]. 

 
For these reasons, especially the last, we have not conducted a detailed comparison 
between a direct detection and heterodyne space interferometer within the ambit of 
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FISICA.  Rather we discuss here, briefly, the limitations of the sensitivity of a 
heterodyne system operating in the FIR.  The quantum limit is given in units of 
brightness temperature by hν/kb.  We take as our reference wavelength the OI[63um] 
line which is equivalent to 4.7 THz giving Tlim ~ 225 K.  If we assume that a full-fledged 
space interferometer will have four 3 m dishes [12], and that the correlation is linear 
such that the sensitivity scales as √Ndishes: then this equates to a line sensitivity of  
~1x10-20 W m-2 for a one hour observation.  Compare this to a direct detection system 
limited only by the natural Zodiacal background (e.g. [13]) which even with a single 3.5 
m dish will reach the same detection limit.  We can see then that, assuming all 
technical issues can be addressed in either system, to first order a heterodyne system 
will have to have much greater total area driving the possible cost and complexity.  In 
reality the detailed science case for direct detection versus a heterodyne system is 
rather different.  For instance, it is only with the very high spectral resolution offered 
by heterodyne detection that one can probe the detailed molecular chemistry and 
conduct studies into velocity structures associated with star and planetary formation.  
On the other hand the detection of dust, solid state features and tracing the various 
phases of the ISM in extragalactic sources is better suited to a direct detection system 
[8].  
 
As stated in the goals of the FISICA project we concentrate here on the science and 
technical case for a direct detection interferometer and for the remainder of this 
document we discuss possible different implementations. 

3 Mathematics of Direct Detection Interferometers 
Here we briefly review the key mathematical equations that govern the response of 
focal plane and pupil plane interferometers in order to illustrate the key differences 
behind the concepts.  This of necessity a very brief overview and the reader is referred 
to more extensive reviews ( [2], [14]) 

3.1 Focal plane recombination: 

The basic operation of a focal plane recombination system is identical to Young’s slit 
experiment as shown by Born and Wolf [15] in describing what they term the 
“diffractometer”.  Figure 2 shows a simplified diagram of the diffractometer which 
shows immediately the analogy with Young’s slits. 
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The intensity observed at the image plane is given by: 
 

𝐼(𝜑, 𝑑) = 2 (
2𝐽1(𝑢)

𝑢
)

2

{1 +  
2𝐽1(𝑣)

𝑣
cos (𝛽(𝑣) − 

2𝜋

𝜆
𝑑 sin 𝜑)} (1)  

 
Where, 

𝑢 =
2𝜋

𝜆
𝑎 sin 𝜑,  𝑣 =  

2𝜋

𝜆

𝜌𝑑

𝑅
  or  

 

𝑣 =  
𝜋𝑑𝜃

𝜆
  

 
if R is essentially infinite and θ is the subtended source size. 

 

𝛽(𝑣) = 0  when  
2𝐽1(𝑣)

𝑣
> 0  or  π when 

2𝐽1(𝑣)

𝑣
< 0 

 

The two important terms here are 
2𝐽1(𝑣)

𝑣
 which represents the mutual coherence 

function γ12 of the source (here a Bessel function as the source is assumed circular) 

and (
2𝐽1(𝑢)

𝑢
)

2

 which is the “enveloping function” for the fringe visibilities and 

represents a measure of the field of view of the instrument.  Note the latter is basically 
determined by the size of the individual apertures and is of order ~λ/a.  We discuss this 
further considering various real world effects and in the case of multiple apertures in 
section 4.  The real part of the mutual coherence function, |γ12|, represents, by the 
van Cittert-Zernike theorem [15], the Fourier transform of the spatial content of the 
source.  We can see then that by measuring |γ12| with different aperture spacings we 
can determine the source distribution at a number of spatial frequencies thus 
effectively reconstructing a direct image of the source.  As we show later this can be 
done simultaneously by employing an array of apertures efficiently spaced across the 

 
 
Figure 2:  The interferometer system used by Michelson to measure the diameter of Betelgeuse on 
the Palomar 100 inch telescope.  In fact the fringes generated were imaged onto a focal plane (the 
eye) and this is in effect a Fizeau interferometer. 
  

Figure 2: The basic layout of the Born and Wolf diffractometer.  In practice in an astronomical observation, R is infinite 
and only the angle subtended by the source is of interest. 
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required pupil plane and reimaging the pupil plane onto a more convenient scale 
before finally recombining onto the image plane.  Traub (1986 [16])   points out that, in 
order to maintain the full spatial sampling of any distributed array, the final pupil plane 
viewed from the image plane must appear to have come from a single masked 
aperture of the same size.  He states this as the “golden rule” of aperture 
recombination and this restricts the ability to re-order the re-imaged pupil plane or 
“densify” it, apart from a linear change in the system magnification.  We discuss the 
implications of this on schemes which employ densified pupils in section 4. 

3.2 Pupil Plane Recombination: 

The basic elements of a pupil plane recombination interferometer are shown in Figure 
3.  Here we show a ground based system where the telescope apertures are required 
to point towards the object from a fixed vertical baseline and therefore an optical 
delay line is required to remove the delay in arrival of the light from a source not at the 
zenith.  In principle this would not be required from a space-based, structurally 
connected system where the baseline can be rotated to ensure the source of 
interested is always effectively at the zenith.  The in-phase beams are then recombined 
using a simple beam splitter arrangement with or without a second adjustment for the 
phase control1.   The combined signals are then sent to a detector.  In a classical 
arrangement the distance d is varied and the optical delay line is used to track the 
interference fringe.    
 
In practice in ground based interferometers (VLTI for instance), a number of primary 
dishes are used in a semi-stationary arrangement thus only partially replicating a filled 
aperture.  In all ground based systems the rotation of the Earth is used to fill as much 
of the “u-v” plane (see next section) as possible during the source observation time.  
This leads to the replicated aperture pupil plane being seen as series of arcs which 

                                                      
1 Note that this arrangement is very similar to the diplexer systems used to inject the local oscillator 

signals into heterodyne mixers. 

 
Figure 3: The basic elements of the pupil plane recombination interferometer. 
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naturally means that the amount of spatial frequencies in the reconstructed image is 
much reduced.  Standard and well understood methods, mostly from radio astronomy 
such as MaxEnt or CLEAN, can then be used to recover the images at the maximum 
spatial resolution available in the native data. 

3.3 The u-v Plane and the Visibility Function 

A more convenient, and standard, method to express the spatial coverage of an 
interferometer is to refer the “u-v” plane.  Here where the vectors describing the 
positions of the interferometer apertures are referred to wavelength normalized 
positions in the effective aperture plane.  In simple terms if b is the vector relating the 
positions of the apertures then we write u=bx/λ, v=by/λ and w=bz/λ.  In practice the 
third (axial) term is not used and the aperture coverage is described in terms the “u-v 
plane”.  If the sky co-ordinates of the source are similarly decomposed in terms (l,m) 
(i.e. in RA and Dec) we can relate the source distribution to the sampled u-v plane 
through the  visibility, or mutual coherence, function:  
 

𝑉(u, v) = 𝑒−2𝜋𝑖𝑤 ∬ 𝐴(𝑙, 𝑚) 𝐼(𝑙, 𝑚) 𝑒−2𝜋𝑖(u𝑙+v𝑚)𝑑𝑙 𝑑𝑚  (2) 
 
Here A is the angular response function of the primary beam of an antenna, I is the 
source distribution and the term e-2πiw describes any phase errors due to displacement 
of the antennas axially etc (we can ignore this).  We can see then that the basic field of 
view of our interferometer is given by the angular response function of a single 
antenna within the array.  Given all things are equal this will be ~λ/D.  Inversion (i.e. 
the Fourier transform) of V(u,v) recovers the source distribution as expected from the 
van-Cittert-Zernike theorem.  

3.4 The “Double-Fourier” method 

In the “double-Fourier” proposed by Mariotti and Ridgeway (1988) [17], the proposal is 
to use a more or less continuously scanning system on a space platform.  In this way 
the optical delay line is either dispensed with or added in a symmetrical architecture as 
the source will always be close to the “zenith” as the entire system is pointed towards 
the source.  The moving mirror in the re-combiner unit now acts as both the optical 
fringe tracker and as the moving element in a Fourier Transform Spectrometer.  As d 
changes so does the spatial fringe content and the spectral content is found from the 
detailed interferogram recorded as the re-combiner mirror is moved. As this is the 
technique of choice for the interferometer, we have studied it in detail as part of the 
FISICA programme. We refer to the more detailed section on telescope and instrument 
requirements (Deliverables 1.2 and 1.3) for a more in-depth analysis of the 
implications of the interferometer performance. 

3.5 The “multi-Fourier” method (Mu-FT) 

In the “multi-Fourier” proposed by Ohta, Hattori and Matsuo (OHM05) (2005) [14], 
and implemented in Ohta, Hattori, Matsuo (OHM05) (2007) [18], the proposal is to use 
a similar system to above employing a Martin-Pupplet type scanning FTS.  OHM05 
make a change to equation 2 to show how the spatial and spectral content are 
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simultaneously recorded within the mutual coherence function.  Dropping the axial 
phase term for clarity: 
 

𝑉(u, v, 𝜈) = ∬ 𝐴(𝑙, 𝑚, 𝜈) 𝐼(𝑙, 𝑚, 𝜈) 𝑒−2𝜋𝑖(u𝑙+v𝑚)𝑑𝑙 𝑑𝑚 (3) 
 

We can see that we can, in principle evaluate the source distribution at any explicit 
frequency ν determined from the measured “spectral” fringe over +/- τo – the effective 
distance used in the scanning beam recombiner.  Here, unlike OHM05, we have 
retained the explicit dependence of the antenna aperture function A(l,m,ν).  This is 
referred to by OHM05 as they point out that the system will have different spatial 
resolution dependent on frequency – it is also clear from (3) that the field of view of 
the system will also be dependent on frequency.  In fact OHM05 go on to point out 
that the field of view of the MuFT interferometer will be limited by the spectral 
resolution of the system to: 
 

𝜃 <
(𝑐

𝛥𝜈⁄ )

d𝑚𝑎𝑥
 (4) 

 
So for a resolving power of 2000 at 4.7 THz and a maximum separation of 20 m we get 
a FoV of ~20 arcmin.  As the resolving power decreases (i.e. we look for a broader band 
spectral response) the FoV also decreases: it would reduce to ~1 arcmin at R=100 for 
our test case for instance.   
 
The net effect of all these considerations is that for the MuFT method the response 
and performance is a complex mix of spectral and spatial resolution, aperture 
response, source spectrum and source distribution similarly to the double-Fourier 
explored more in detail and subject to further study as part of the continuing FISICA 
programme. 

3.6 The FISICA Study Selection  

In this section we have looked at the basic mathematics behind direct detection 
interferometers and introduced the concept of the visibility fringe, the u-v plane and 
touched on the basic tenets behind the double Fourier interferometer.  The science 
and technical evaluation behind FISICA has led to a selection of double Fourier as the 
preferred technique in the Far infrared.  The primary reason for this selection is its 
broad instantaneous wavelength coverage combined with the fact that it can be 
readily adapted to existing focal plane technologies for FIR detector arrays such as 
Transition Edge Sensors (TES [19]) or Kinetic Induction Detectors (KIDS [20]).  The use 
of focal plane arrays means that the technique can in principle be used to fully 
maximize the FoV in a relatively straight forward manner.  A detailed study into how 
this works in practice is being under taken and will be reported in other deliverables.    
 
In the final section of this document we discuss an alternative scheme creating a large 
aperture telescope using direct recombination of sparse arrays of apertures in a Fizeau 
configuration. 
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4 Focal plane recombination in more detail 
The majority of the FISICA programme is devoted to a detailed investigation of all 
aspects of the “double Fourier” implantation of a direct detection interferometer.   We 
have also undertaken a short study into a focal plane recombination Fizeau 
interferometer using a fixed pattern of dishes; more akin to a “hyper telescope” ( [21], 
[22]).  Here we take a deeper look at how such systems work starting from the choice 
of sparse array distribution, the theory behind any choice and some model results on 
the imaging performance of such a system.  We go on to look at how alignment and 
manufacturing errors impact on the performance and set some limits on the 
performance.    
 
We begin with a discussion of the basic principles behind a class of sparse aperture 
arrays that provide the optimum u-v plane coverage for the minimum number of 
dishes. 
 

4.1 Golay non-redundant arrays 

The issue of how to best distribute a large optical collecting area has been revised in 

the past both qualitatively and quantitatively [21] [22].  A good discussion is provided 

by Meinel and Meinel [22], where the optical performances of several sparse 

aperture arrays were analysed.  In this paper two requirements were identified as 

the most stringent in the process of choice of the optimal apertures configuration. 

The first one is the ability of covering the uv plane enough to avoid loss of desired 

information at a certain spatial frequency with the fewest segments, whilst the second 

one is related to the question on how to achieve an acceptable integration time to 

allow enough signal-to-noise ratio to allow image reconstruction to be performed. 
 

Amongst the configurations suggested, the ones classified under Golay non-

redundant arrays were chosen for the analysis of the performances of non-redundant 

systems. These types of configurations were given in a paper by Golay [23] where he 

described possible configurations having compact, non-redundant autocorrelation 

functions. 

 

A primary goal of sparse aperture imaging is to enhance resolution while minimizing 

the total light collection area. This delivers the same resolution as a filled aperture but 

with a significant reduction in size and weight. 

 

Golay failed to describe the original algorithm he used to calculate the non-redundant 

configurations, therefore pipelines suggested in different articles [22], [24], [25]) were 

used to give a mathematical representation of its arrays. Following the description 

given in [22] two configurations were selected, Golay-3 (three apertures array) and 

Golay-6 (six apertures array) which geometry is represented in Figure 4. In Figure 5 we 

show examples of the computed Point Spread Functions (PSFs) for these arrays. 
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Figure 4: Examples of Golay array distributions.  (Left) Golay-3 (right) Golay-6. 

 

 
Figure 5:  Computed PSF of the simulated Golay arrays shown in figure 5. (left) Golay-3 (right) Golay-6. 

 

 

4.1.1 Optical theory 

Consider a Golay-N sparse aperture array that comprises N identical and circular sub-

aperture pupils as shown in Figure 6. In this case one can define s as the distance 

between the centers of the two most close apertures and d the diameter of a single 

sub-aperture. The ratio 𝑠/𝑑 can be defined as the array’s expansion factor. It can be 

noticed that if 
𝑠

𝑑
> 2, null or holes will appear in the aperture MTF, therefore degrading 

the image quality, whilst if 
𝑠

𝑑
< 1  the subapertures will overlap.  In addition, if Deff is 

the minimum diameter of a circular aperture containing all the sparse design 

considered, the filling factor can be defined as: 

 

𝐹 =  
6𝑑2

𝐷𝑒𝑓𝑓
2   (5) 

 

A sparse array pupil function consisting of N identical subapertures in the (x, y) plane 
can be written as: 
 

𝑃𝑠𝑦𝑠(𝑥, 𝑦) =  ∑ 𝑃𝑛(𝑥 −  𝑥𝑛,𝑁
𝑛=1  𝑦 − 𝑦𝑛) 𝑒𝑖𝜑𝑛(𝑥,𝑦)  (6) 
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Deff

d

S

 
Figure 6: Representation of a Golay 6 aperture showing the parameters used in the text. 

 
 

where Pn is the pupil function of a single aperture, φn(x, y) is the associated phase and 
(xn,yn) are the coordinates of the nth sub-aperture in the pupil plane. In order to do a 
performance analysis of such an imaging system, for an incoherent system two 
quantities are normally used, the point spread function (PSF) and the modulation 
transfer function (MTF). The first one is linear in intensity so that the image formed is 
the convolution of the pupil array PSF and the ideal geometric image intensity, and it 
can be calculated by taking advantage of the Fourier transform relation obtaining 
therefore [25], [26], [27]: 
 

PSFsys(x’,y’)= FT{Psys(x,y)}                    (7) 
 

where FT indicates the Fourier transform operation and (x’, y’) are the image plane 

coordinates.  Ideally, the array PSF would tend to a delta function therefore, a good 

imaging system would present a narrow central peak containing the majority of the 

intensity energy. Consequently, this width can be used to characterize the imaging 

capabilities of the array considered, by doing the ratio between the energy encircled 

in the central peak and the total one. 

 

In addition, in the spatial frequencies domain, both attenuation and phase 

information contained in the spatial frequencies of an incoherent image can be 

expressed through the optical transfer function (OTF) which is the normalized Fourier 

transform of the PSF. Its modulus, known as MTF (modulation transfer function) 

describes the transfer of object contrast to an image as a function of spatial 

frequency. This is a useful metric in evaluating sparse aperture imaging and for N 
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identical apertures, in phase, it can be demonstrated that OTF and MTF are the same 

[25] and can be expressed as: 

 

MTF = |
𝐹𝑇{𝑃𝑆𝐹𝑠𝑦𝑠(𝑥′,𝑦′)}

∬ 𝑃𝑆𝐹𝑠𝑦𝑠(𝑥′,𝑦′) 𝑑𝑥′𝑑𝑦′
|  (8) 

 
Examples of the MTF’s of Golay configurations are shown in Figure 8 corresponding to 
the PSFs shown in Figure 7. 

 
Figure 7: MTFs of simulated Golay arrays corresponding to PSFs shown in figure 6.  (Left) Golay-3 

(right) Golay-6. 

 
 
The MTF can be used to derive a value for the effective diameter of the overall 
configuration by analysing how the spatial frequencies are arranged in the considered 
array of apertures. It can be also used to set a criterion on the limiting detection noise 
in terms of the MTF frequency attenuation (this is one cause of degradation, 
although not the only one).  These two properties can be used to optimize the 
performances of a sparse array design by maximizing the MTF maximum spatial 
frequency cutoff and contrast. 
 
Any aberration within a sub-aperture will necessary reduce the single aperture MTF 
while phase errors between the sub-apertures will reduce the overall MTF.  An ideal 
MTF has a constant value over an infinite spatial frequency bandwidth, corresponding 
to an ideal delta function PSF.  However, any practical imaging system will have a finite 
pupil that will limit the overall MTF spatial frequency bandwidth and reduce image 
contrast at all spatial frequencies relative to the background.  
 
The optimization of the array parameters for a Given Golay arrangement (i.e. s, d and 
Deff) cannot be performed analytically and numerical optimization algorithms are 
computationally demanding.  Nevertheless, for arrays with few sub-apertures it is 
possible to apply a numerical approach [23], [28].  In this context, arrays with 
compact, non-redundant arrangements provide a good way to maximize spatial 
frequency bandwidth with the fewest number of sub-apertures. Some of these 
configurations were identified as optimal such as the Golay-3, -6, -9, -12 arrays [25]. 
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4.2 Feasibility studies and Implementations 

Several feasibility studies in the context of sparse aperture imaging for space missions 
has been made and proved that such Golay array distributions represent a suitable 
solution for the quest of achieving high angular resolution while containing the satellite 
costs. Some diffraction limited sparse aperture telescopes have been demonstrated 
and implemented with active phase control [22].  One of these is the MMTT built by 
the USA Air Force Research Laboratory [29] which employs a complex laser metrology 
system to sense wavefront errors and allow the absolute phasing of four 20cm 
telescopes with 15 arcmin FoV. A more compact design was developed at MIT [30] as 
pathfinder for a Golay-3 optical satellite (ARGOS), which demonstrated the feasibility 
of modular space-based optical system with the capability to track fast orbiting objects 
like the ISS. Due to the tight tolerances of the system, a custom built active control 
system is used to maintain the system in phase. Finally, a nine aperture system was also 
developed at Lockheed Martin [31] which has been used for Earth observation purposes 
and employs a complex active phasing system within each one of the apertures (shown 
in Figure 8) which allowed a 1µrad phased field of view to be obtained and sampled by 
2000x2000 pixel array, requiring 0.05 waves rms on each collector telescope, achieved 
using wavefront sensing techniques. 
 

 
Figure 8: Optical schematic of a single STAR-9 telescope. Image taken from [31]. 
 
 
More recently, a deployable telescope concept for earth observation in a Fizeau 
configuration has been proposed [32]. The analysis carried out shows the capability of 
a direct imaging interferometer compared to a Michelson one, showing that the 
achievable resolution in the first case would be of 25cm from a 500km orbit. 
Nevertheless, good image quality can be achieved only in the case of a tolerance in the 
position of the primary mirrors (0.4 𝑚2 big) of 0.1 𝜇𝑚. 

 
In conclusion we note that in all the designs described above, the tightest 
requirement is in the phasing of the telescope optics. This is achieved through 
complex wavefront sensing techniques that requires a wider instrument apparatus to 
be present within the spacecraft, thus limiting the space for science instrumentations 
and increasing the housekeeping costs of the satellite.  One possible way to overcome 
this, is by taking advantage of the electro optic effect of crystals such as lithium 
niobate to perform the required phasing without constantly adjusting the position of 
the main collectors of the telescope. This is currently being studied at UCL OSL (Optical 
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Science Laboratory) where a Golay-3 system is simulated.  A report on this work will 
provided in a separate document.  

4.3 Error analysis for Golay arrays 

Given the tight tolerances in the optical assembly of a sparse aperture imaging 
system, error analysis is desirable in order to understand critical errors such as 
piston and tilt error that can be assessed by examining how both the PSF and MTF 
changes accordingly.  In addition, if coherent imaging is to be achieved over any 
substantial FoV, the pupil mapping process must be performed such that the exit pupil 
is an exact (scaled) replica of the entrance pupil [33].   
 
There are several treatments of errors associated with alignment and optical 
aberrations given in the literature, especially in the context of the practical systems 
described in the previous section.  We will use the work of Wu, Fan, Wu, Zhao and 
Qian (2013) [26] and Chung, Miller and de Weck (2002) [30] to illustrate how the 
various types of phase error (piston, tip tilt and shear) affect the performance of a 
Golay array. 
 
The effect of errors like piston and tilt can be described with an additional term in the 
phase of the field considered, that can be represented by means of the Seidel 
aberration polynomials. This is also the approach followed in [26], in particular we 

considered a Golay system with 3 and 6 circular apertures 
lying on a spherical surface for which we considered the 
projection on a 2D plane placed at the entrance pupil of 
such system, as shown in Figure 9.  
To each aperture a complex phase term is added, which 
contains the information on the intensity of the 
aberrations. Particularly, the first and third term of 
Siedel’s primary aberration equation are used with the 
geometrical factors described in [26], to represent piston 
and tilt error respectively. We refer to the article for the 
full description of these terms.  

Such pupil is then represented in a Cartesian x,y,z 
coordinates system where the complex field is embedded. 
The error analysis of the configurations created with such 

description is then carried out by calculating both PSF and MTF of these systems and 
analyzing their change as the errors vary.  
Then, the Strehl Ratio (SR) is used to provide some constraints onto piston and tip tilt 
error in order to the Golay systems to represent still and imaging system. In particular, 
it is considered as SR the value given by the ratio of the energy encircled in the central 
peak of the Aberrated PSF against the ideal one. 
 
This analysis is carried out for two particular configuration of Golay-3 and 6 chosen for 
their relatively short computing time. In addition, in the case of a Golay-6, a 
comparison is also made between a FIRI system [34] and a G6 with the same total 
encircling aperture (related to baseline) and size of the collecting mirrors. In this case, 

Figure 9: Conceptual 
representation of the design 
considered for error analysis. 
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the model was undersampled given the limited computing availability, but a 
comparison can be made with the properly sampled (but not scaled) G6 one. 
 

4.3.1 Piston Error 

Piston error, in the formalism described above, is represented by the first term in the 
Seidel polynomial, which is used to represent a piston movement of dℎ at the center 
of a submirror. For simplicity of representation, it is assumed that only one mirror has 
a piston deformation. 
The two cases analyzed are the ones of a Golay-3 and 6 systems where the following 
parameters are used: 
 

Wavelength Subaperture 
diameter 

Effective diameter Focal length 

10 𝜇𝑚 100 𝜇𝑚 533 𝜇𝑚 900 𝜇𝑚 
Table 1: list of parameters used in the analysis of piston error. 

 
Figure 10: Strehl ratio versus piston error for a Golay-3 system. 
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When analyzing the SR values, a periodicity is seen in both cases as shown in Figure 10 
and Figure 11 representing a three and a six aperture system respectively. It comes 
straightforward to notice that with fewer apertures the SR decreases quickly below 0.8 
whilst it remains higher when the number of collecting areas increases to six. 
Nevertheless, if one looks at the single PSFs it can be seen that features similar to the 
central peak arise with similar frequency thus diminishing the resolution in similar 
ways for the two systems. On the contrary, the MTF remains above the limit of SR=0.8 
through the interval analysed. It should also be noted that the error produce by the 
piston could be reduced by combining several baselines (rotation), providing the noise 
have a white distribution. 
In both cases a piston error more than around 0.1𝜆 is enough to lower SR below 0.8. 
We also noted that the periodicity of the oscillation is a factor of 2 higher than the one 
described in [26]. 

 
Figure 11: Strehl ratio versus piston error for a Golay-6 system. 

 
Some examples of G3 and G6 with the relative amount of piston error are shown 
below. G3 in Figure 12 and G6 in Figure 13. 
 

 
Figure 12: From left to right, Golay-3 system PSF with piston error of 𝟎. 𝟏, 𝟎. 𝟐𝟓, 𝟎. 𝟓 𝝀. 
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Figure 13: From left to right, Golay-6 system PSF with piston error of 𝟎. 𝟏, 𝟎. 𝟐𝟓, 𝟎. 𝟓 𝝀. 

4.3.2 Tilt Error 

Similarly to piston error, tilt error can be described with a term of the Seidel 
polynomial, particularly the third [26] term. Also here for simplicity, it is assumed that 
this error is applied only to one aperture and the simulation variables are the same as 
the one described in Table 1. 
In this case, when one aperture is tilted enough, SR decreases dramatically, due to the 
fact that one aperture is not focusing on the same position of the others. This is more 
sensible in the case of a Golay-3 system where a tilt of ~0.5𝜆 is enough to produce a 
SR lower than 0.8, whilst in the Golay-6 case this limit shifts to ~0.8𝜆, as shown in 
Figure 14 and Figure 15. In this case the tilt error is expressed in term of peak-valley tilt 
of the wavefront caused by the mirror tilt: 𝑃𝑉𝑡𝑖𝑙𝑡 = 𝑛𝜆. 
 

 
Figure 14: Strehl ratio versus tilt error as a function of 𝝀 for a Golay-3 system. 
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Figure 15: Strehl ratio versus tilt error as a function of λ for a Golay-6 system. 

 
 
Figure 16 shows the PSF of a Golay-3 system in three tilt cases, it can be seen how one 
mirror goes out of focus and moves outside the interference pattern, leaving the 
classical two aperture fringes pattern. Figure 17 instead represents three cases of tilt 
error in a Golay-6 system, where it can still be seen one aperture moving out of focus. 
 
In this case the effects on MTFs are greater and causes some undersampling of the uv 
plane losing also the uniform spatial frequency distribution, as can be seen in Figure 
18. 
 
 

 
Figure 16:From left to right, Golay-3 system PSF with tilt error of 0.7,1.3,1.8 λ. 
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Figure 17: From left to right, Golay-6 system PSF with tilt error of 0.5,0.8,1.8 λ. 

 

 
Figure 18: MTF of a Golay-3 (left) and Golay-6 (right) system with tilt error on one aperture of ~𝟏. 𝟖𝝀. 

4.3.3 Pupil Mapping Error 

Coherent imaging with multi-aperture phased array can be seen as composed of two 
parts. Firstly, pupil mapping occurs between the entrance and exit pupil, then there is 
a Fourier Transform process that allows to create the coherent image at the focal 
plane. 
To allow coherent imaging over a significant FoV, pupil mapping has to be performed 
so that the exit pupil form a scaled replica of the entrance one. This is generally called 
“golden rule” of beam combining. 
We followed the approach described in [30] to consider the tolerances on pupil 
mapping in relation to the FoV that is allowed with such errors. This is done by 
analyzing how the OPD changes with incorrect system pupil mapping, in particular we 
consider how the magnification error (between entrance and exit pupil) and shear 
error causes the FoV to change. For shear error we intend the error caused by the 
relative difference in the position of the subapertures from perfect alignment. 
In general, OPD can be represented as follows: 
 

𝑂𝑃𝐷 = |𝐵 sin 𝛼 − 𝑏 sin 𝛽 | 
 
Where B and b are the baseline distances between two apertures at the entrance and 
exit pupil respectively, whilst 𝛼 is the half FoV value and 𝛽 is the corresponding 
magnified one through the system. Having defined a requirement in the phase 

tolerance of, for example 
1

𝑘
𝜆, it is possible to set the FoV equation as follows: 

𝐹𝑜𝑉

2
|Δ𝑏𝑚𝑎 + Δ𝑚𝑎(

𝐵

𝑚𝑎
− Δ𝑏)| =

𝜆

𝑘
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Where 𝑚𝑎 = 𝐷/𝑑 is the aperture magnification factor defined as the ratio between 
the subapertures diameter of entrance (D) and exit (d) pupil. 
 

 
Figure 19: FoV versus pupil mapping tolerances for a Golay system. 

 
 

 
Figure 20: FoV versus magnification and baseline length for a given combination of magnification and 
shear error. 
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The results are represented in Figure 19 and Figure 20 for a Golay system, these graphs 
can be used to assess both an array of three and six apertures having assumed the 
baseline length 𝐵 corresponds to the maximum distance between two apertures of the 
system considered. For the graphs shown above it was considered a system with the 
characteristics displayed in Table 2. 
 

Wavelength Entrance pupil 
subaperture 
diameter (D) 

Exit pupil 
subaperture 
diameter (d) 

Baseline length 
(B) 

Phase 
tolerance 

100 𝜇𝑚 2 𝑚 20 𝑐𝑚 100 𝑚 𝜆

10
 

Table 2: List of variables used in the pupil mapping study. 

 
Firstly, one can notice from Figure 19 that FoV is sensible both to shear and 
magnification errors showing a substantial increase in its value when Δ𝑙 and Δ𝑚 
decreases. Moreover, a minimum value of 5 arcmin is reached in the case of highest 
error represented, slowly increasing with decreasing Δ𝑚 until this reaches a value of 
about 4 ⋅ 10−4. In addition, it can also be noticed that shear error contributes less in 
the value of FoV when Δ𝑙 is high. 
 
On the contrary, for a fixed value of shear and magnification error, the figures for FoV 
varies more, as shown in Figure 20. In this case it was chosen a value of 5 𝜇𝑚 in shear 
and 5 ⋅ 10−4 in magnification. 
It can be noticed that the highest FoV value is reached for a short baseline and high 
magnification. 

4.3.4 Comparison between a Golay-6 system and FIRI 

 
To complete the assessment of Golay non redundant arrays, a comparison is made 
between a Golay-6 system with a similar distribution to a FIRI system like the one 
described in [35]. In particular, for piston and tilt error analysis we choose the primary 
mirrors to be 2m wide, a baseline length of 100m operating at 400𝜇𝑚 with 
magnification factor of 10 and an equivalent focal length of 200m. These numbers 
were also chosen to simplify computation capability, but we are required then to 
consider effects of undersampling in the PSFs calculation that might lead to an 
imprecise estimation of the actual SR limits. 



FISICA                Deliverable D3.4 
Far Infra-red Space Interferometer Critical Assessment 

PU Page 26  Version 1 
 

 

Figure 21 and Figure 22 show the simulated results. It can be noticed that in the case 
of piston error, the same periodicity is observed but in this case one aperture shows 
less effect on SR than the case analyzed in section 4.3.2. In the case of tilt error, a 
similar behaviour is observed, showing a substantial decrease in SR below 0.8 when 
the tilt is higher than 1𝜆. 
 

 
Figure 21: Strehl ratio versus piston error for a Golay-6, FIRI-like system. 

 

 
Figure 22: Strehl ratio versus tilt error for a Golay-6, FIRI-like system. 
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More detailed comparisons with a FIRI-like system require detailed knowledge of the 
magnification of the system which stem from a detailed optical design which is not 
available at this stage given that many other issues come into play in the FIRI-like 
system (see deliverable D1.2). 

4.4 Pupil densification 

 
Current interferometers involve between 2 and 4 telescopes that can be used 
simultaneously, therefore the study of faint sources requires many observations and 
image-reconstruction techniques like aperture synthesis.  If considering 
interferometers with a larger number of apertures, phased with each other, visibility 
and closure-phase techniques may not be suitable to produce a satisfying signal with a 
large number of apertures.  
 
Direct imaging involving a single beam combiner might be a simpler alternative to 
exploit a well-populated optical or infrared array [36], [37]. In this context, a highly 
diluted array has pupil filling rate that can be described as r = nT  × d2/D2, where nT is 
the number of telescopes in the array, d diameter of single element and D the total 
diameter of the array.  If this value tends to zero, direct imaging can be performed. 
This condition can be realised thanks to pupil densification techniques [38], [39]. 
 
Labeyrie [40], [41], [38], [39], shows that direct imaging at the focus of a diluted array can 
be done if the pupil is densified.  This can be achieved by either zooming each sub-
aperture or by placing them closer (thus providing a significant gain in sensitivity) 
provided that the original array geometry is preserved. Theoretically, pupil remapping 
does not alter any useful information, however in comparison with the homothetic 
arrangement, the Labeyrie “hypertelescope” provides direct imaging only on a limited FoV. 
 
The image pattern in a phased hypertelescope with a highly densified pupil can be 
described as a windowed convolution of the object. In particular it includes a 
convolution with the object PSF (interference pattern) and a multiplication by a 
window function. The interference function is created by the undensified part and 
represents the convolution of a number of Dirac deltas centred at the centres of each 
sub-aperture, whilst the window function corresponds to the diffraction pattern of a 
single aperture. At the densified exit the diffractive envelope is shrunk with respect 
with the central interference peak. 
 
In terms of resolution, with a non-redundant array with N apertures, Labeyrie claims 
that the number of resolution elements (resels) that can be directly image is equal to 
N2 [39]. Increasing this number will allow to resolve smaller objects but it will decrease 
the dynamic range of the system.  In densified systems, field crowding limitations are 
identical.  
 
In Fizeau arrays, the interference function is a periodic lattice of peaks with spacing 
proportional to λ. In white light condition the fields become spectra when moving from 
the central zero order peak. Among the spectra, the different orientation and 
dispersion may be considered as a form of encoding for each order. The convolution of 
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field sources with this interference function adds spectra of different orders in the 
central windowed zone. 
 
An example of a densified system is shown in Figure 23 and Figure 24. The first set of 
images show a Golay system with three apertures 10cm wide with a baseline (distance 
between the apertures) of 1m, which gives an effective diameter of 0.97m. This is 
simulated for a wavelength of 100𝜇𝑚 focused at distance of 30 meters. 
In this arrangement, it can be seen that the PSF peak is very broad and light is diffused 
on a wide area at the focal plane. 
When the array is densified (Figure 24), it can be seen that the resulting PSF is more 
compact and the relative intensity higher, compared to the non-densified case. In 
particular this can be seen by comparing the intensity (shown with an arbitrary scale) 
of 1D profiles of the respective PSF, where an increase in intensity and compactness 
can be seen in the densified case, being 2.5 times smaller in baseline. 
As expected, this increase in spatial resolution is accompanied with a decrease in the 
frequencies resolution, as indicated by the decrease in the area covered by the MTF 
when densified. 
A similar behaviour can be observed when comparing a Golay-6 array simulated with 
the same variables (Figure 25 and Figure 26), having its densified version that differs in 
the baseline by a factor of two: PSF’s intensity peak increases while the spatial 
frequencies range decreases. 

 

 
Figure 23: (top-left) Pupil image of a Golay-3 system. (top-right) Corresponding PSF focused at 30 
meters. (bottom-left) PSF profile along the center. (bottom-right) MTF of the simulated Golay-3 

system. 
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Figure 24: (top-left) Pupil image of a densified Golay-3 system. (top-right) Corresponding PSF focused 
at 30 meters. (bottom-left) PSF profile along the center. (bottom-right) MTF of the simulated system. 

 
 
 

 

 
Figure 25: (top-left) Pupil image of a Golay-6 system. (top-right) Corresponding PSF focused at 30 
meters. (bottom-left) PSF profile along the center. (bottom-right) MTF of the simulated Golay-3 

system. 
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Figure 26: (top-left) Pupil image of a densified Golay-6 system. (top-right) Corresponding PSF focused 
at 30 meters. (bottom-left) PSF profile along the center. (bottom-right) MTF of the simulated system. 

 

4.5 Minimum redundancy linear arrays 

There is another class of linear arrays which achieves maximum resolution for a given 

number of elements by reducing the number of redundant spacings present in the 

array.  This has been studied by Moffet [42] for the design of a radio array to observe 

faint extragalactic sources, where he based its study on the requirements on 

integration time and collected power.   Being linear arrays they rely on rotation (of the 

Earth in this case) to fully populate the 2-D u-v plane.  In principle a rotating system in 

space could achieve the same purpose. 

 

Once the element size of an array is defined, it is possible to estimate the optimum 

array that will give the maximum resolution.  These arrays have the following 

properties: 
 

1. Each spacing is present only once; 
2. Each element is spaced by a multiple of unit spacing (u0); 

3. Each array samples the spatial frequencies spectrum out to a spacing given by  
umax = 1/2N (N − 1)u0  = Nmaxu0 for possible pairs of N distinct elements; 

4. Redundancy can be defined by 𝑅 =  
𝑁
2

(𝑁−1)

𝑁𝑚𝑎𝑥
.  Additionally, the resolution 

achievable with such arrays can be improved by considering the Earth rotation 
synthesis.  
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Figure 27 shows an example of a minimum redundancy linear array of five apertures. 
The simulation was done at a wavelength of 100𝜇𝑚 with apertures of 10cm and a 
distance between the closes apertures of 1.5m, focused 30 meters away. 
It can be seen that a good coverage in the spatial frequencies (MTF) is achieved on one 
dimension and the u,v plane can ideally be filled (well) by rotating the array. The PSF 
shows several artifacts that spread around the high intensity central peak. Given the 
good level of 1 dimensional spatial frequencies covered such an array could perform 
well as it is rotated providing instantaneous coverage is not an issue. 
 

 

 
Figure 27: (top-left) Pupil image of a 5 aperture linear array. (top-right) Corresponding MTF. (bottom-

left) 2D PSF. (bottom-right) 1D PSF. 

 

5 Summary – pursuing technical implementation 
 
In this document we have given an overview of the various methods of directly 
combining the light from sparsely distributed apertures to make images with the 
spatial resolution of a much larger single telescope.  We have tried to expose where 
the theoretical and practical difficulties lie in achieving such a facility.   Two systematic 
approaches appear the most promising for a future large aperture space mission to 
observe in the FIR:   
 

1. A double-Fourier interferometer using two dishes and a recombining hub 
2. A multiple aperture focal plane recombination telescope in a Fizeau 

configuration. 
 
Looking at the practicalities of the first option, both pupil plane and two aperture 
homothetic interferometers have been proposed for the FIR (Leisawitz et al Astrophys. 
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Space Sci. 269(1999), Kohyama et al SPIE 7013 (2008)) and are the subject of study for 
balloon borne demonstrators with small (40 cm) collecting apertures.  There are 
significant practical issues associated with these systems not the least of which is the 
necessity of keeping the optical systems aligned with each other to within the 
coherence length of the light which is characterised by the fractional instantaneous 
spectral bandwidth of the system (R=λ/Δλ) times the wavelength i.e. coherence length 
~ Rλ.  For a typical 10% bandwidth at 50-100 μm this means keeping the system co-
axially stable to within 5-10 μm over the typical observational periods – possibly up to 
several hours.  This has proved challenging even for balloon borne instruments with 
small apertures; for separate spacecraft it is an even greater problem and studies to 
date have concentrated on “structurally connected” systems employing just two 
modest (~1 m) apertures (Leisawitz et al Adv. Sp. Res., 40 (2007)).  The studies show 
that such systems should be practical and could be implemented on space platforms.  
Much detailed work remains however and identifying real technical solutions to the 
problems need to be identified and development work undertaken.  This is the subject 
of the continuing FISICA programme. 
 
We looked in some detail at the second option including looking at optimal array 
configurations and the use of “pupil densification” to manipulate the shape of the PSF. 
Solutions can definitely be found for such systems using Golay non-redundant arrays 
with phase correcting optics and practical examples have been discussed.  However, 
they are all complex and the methods and tolerance requirements for co-phasing the 
apertures in a Fizeau system are stringent.  Although such a system in principle only 
requires static co-phasing – i.e. once the apertures are brought into phase once the 
system will be operational – in practice this is not likely to be true due to thermal 
distortions typical of space facilities and constant adjustment and re-alignment will be 
needed.  Good imaging has been demonstrated and many systems continue to be 
developed especially for direct imaging of exoplanets for instance, however the 
practical difficulties of implementing such a system are clearly not less than those for 
option 1 and achieving good imaging performance over a reasonable field of view 
remains challenging. 
 
The FISICA programme is above all about identifying the technical and practical needs 
of a future FIR high spatial resolution facility.  In consideration of this, of the work 
already undertaken at the start of the programme and the practical and theoretical 
difficulties exposed in our short study of the Fizeau systems we feel that a deep study 
into the double-Fourier method is the best course to take for the remainder of the 
FISICA study period.  Work will continue on the Fizeau system but at a lower level and 
concentrating on providing experimental data to supplement the modelling approach. 
 
 
 
  



FISICA                Deliverable D3.4 
Far Infra-red Space Interferometer Critical Assessment 

PU Page 33  Version 1 
 

 

6 Bibliography 
 

[1]  C. van der Avoort, S. F. Pereira, J. J. M. Braat and J.-W. den Herder, “Optimum 
synthetic-aperture imaging of extended astronomical objects.,” Journal of the 
Optical Society of America. A, Optics, image science, and vision, vol. 24, no. 4, pp. 
1042-52, #apr# 2007.  

[2]  A. Labeyrie, S. G. Lipson, P. Nisenson,  . Labeyrie,  . Lipson and  . Nisenson, “An 
Introduction to Optical Stellar Interferometry,” An Introduction to Optical Stellar 
Interferometry, 2006.  

[3]  R. H. Brown and R. Q. Twiss, “Interferometry of the Intensity Fluctuations in Light 
II. An Experimental Test of the Theory for Partially Coherent Light,” Proceedings of 
the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 243, pp. 
291-319, 1958.  

[4]  J. Zmuidzinas, “Thermal noise and correlations in photon detection.,” Applied 
optics, vol. 42, no. 25, pp. 4989-5008, 2003.  

[5]  G. Kirkbright, R. Hanbury Brown: the intensity interferometer-its application to 
astronomy, vol. 30, 1975, p. 487. 

[6]  A. Ofir and E. N. Ribak, “Offline, multidetector intensity interferometers - I. 
Theory,” Monthly Notices of the Royal Astronomical Society, vol. 368, pp. 1646-
1651, 2006.  

[7]  D. Dravins and T. Lagadec, “Stellar intensity interferometry over kilometer 
baselines: Laboratory simulation of observations with the Cherenkov Telescope 
Array,” no. June, p. 18, #jul# 2014.  

[8]  FISICA consortium, “FISICA Deliverable D1.1: Definition/update of key science 
questions and relevant dat products,” 2014. 

[9]  ALMA Observatory, [Online]. Available: 
http://www.almaobservatory.org/en/press-room/press-releases/771-
revolutionary-alma-image-reveals-planetary-genesis. [Accessed 19 Jan 2015]. 

[10]  M. A. Johnson and C. H. Townes, “Quantum effects and optimization of 
heterodyne detection,” Optics Communications, vol. 179, pp. 183-187, 2000.  

[11]  P. Amplifiers, Parameteric Amplifiers.  

[12]  W. Wild, T. de Graauw, F. Helmich, A. Baryshev, J. Cernicharo, J. R. Gao, A. Gunst, 
A. Bos, J.-W. den Herder, B. Jackson, V. Koshelets, H.-J. Langevelde, P. Maat, J. 
Martin-Pintado, J. Noordam, P. Roelfsema, L. Venema, P. Wesselius and P. 
Yagoubov, “ESPRIT: a study concept for a far-infrared interferometer in space,” in 
Proceedings of SPIE, 2008.  

[13]  B. Swinyard and T. Nakagawa, “The space infrared telescope for cosmology and 
astrophysics: SPICA A joint mission between JAXA and ESA,” Experimental 
Astronomy, vol. 23, no. 1, pp. 193-219, 2008.  

[14]  I. Ohta, M. Hattori and H. Matsuo, “Development of a multi-Fourier-transform 
interferometer: fundamentals,” Applied Optics, vol. 45, pp. 2576-2585, 2006.  

[15]  M. Born and E. Wolf, Principles of Optics, 7th ed., Cambridge univ. pr., 2001.  

[16]  W. a. Traub, “Combining beams from separated telescopes.,” Applied optics, vol. 



FISICA                Deliverable D3.4 
Far Infra-red Space Interferometer Critical Assessment 

PU Page 34  Version 1 
 

 

25, no. 4, p. 528, 1986.  

[17]  S. J.-M.Mariotti, “Double Fourier spatio-spectral interferometry: combining high 
spectral and high spatial resolution in the near infrared,” Astronomy & 
Astrophysics, vol. 195, pp. 350-363, 1988.  

[18]  I. Ohta, M. Hattori and H. Matsuo, “Development of a multi-Fourier-transform 
interferometer: imaging experiments in millimeter and submillimeter wave 
bands,” Applied Optics, vol. 46, pp. 2881-2892, 2007.  

[19]  K. D. Irwin and G. C. Hilton, “Transition-Edge Sensors,” Applied Physics, vol. 99, pp. 
63-150, 2005.  

[20]  P. K. Day, H. G. LeDuc, B. A. Mazin, A. Vayonakis and . Zmuidzinas, “A broadband 
superconducting detector suitable for use in large arrays,” Nature, vol. 425, pp. 
817-821, 2003.  

[21]  F. Boone, “Interferometric array design: Optimizing the locations of the antenna 
pads,” Astronomy and Astrophysics, vol. 377, no. 1, pp. 368-376, #oct# 2001.  

[22]  A. B. Meinel and M. P. Meinel, “Large sparse-aperture space optical systems,” 
Optical Engineering, vol. 41, no. 8, p. 1983, #aug# 2002.  

[23]  M. J. E. Golay, “Point Arrays Having Compact , Nonredundant Autocorrelations,” 
Journal of the Optical Society of America, vol. 61, pp. 272-273, 1970.  

[24]  R. D. Fiete, T. A. Tantalo, J. R. Calus and J. A. Mooney, “Image quality of sparse-
aperture designs for remote sensing,” Optical Engineering, vol. 41, no. 8, p. 1957, 
#aug# 2002.  

[25]  N. J. Miller, M. P. Dierking and B. D. Duncan, “Optical sparse aperture imaging.,” 
Applied optics, vol. 46, no. 23, pp. 5933-43, #aug# 2007.  

[26]  Q. Wu, J. Fan, F. Wu, J. Zhao and L. Qian, “Error analysis of the Golay3 optical 
imaging system.,” Applied optics, vol. 52, no. 13, pp. 2966-73, #may# 2013.  

[27]  V. David, Computational Fourier Optics: A MATLAB Tutorial, SPIE, 2010.  

[28]  E. Keto, “The shapes of cross-correlation interferometers,” The Astrophysical 
Journal, vol. 475, pp. 843-852, 1997.  

[29]  D. C. Duneman, “Wide field performance of a phased array telescope,” Optical 
Engineering, vol. 34, no. 3, p. 876, #mar# 1995.  

[30]  S.-J. Chung, D. W. Miller and O. L. de Weck, “Design and Implementation of Sparse 
Aperture Imaging Systems,” Optical Engineering, vol. 4849, pp. 181-192, #dec# 
2002.  

[31]  R. L. Kendrick, J.-n. Aubrun, R. Bell, R. Benson, L. Benson, D. Brace, J. Breakwell, L. 
Burriesci, E. Byler, J. Camp, G. Cross, P. Cuneo, P. Dean, R. Digumerthi, A. Duncan, 
J. Farley, A. Green, H. H. Hamilton, B. Herman, K. Lauraitis, E. de Leon, K. Lorell, R. 
Martin, K. Matosian, T. Muench, M. Ni, A. Palmer, D. Roseman, S. Russell, P. 
Schweiger, R. Sigler, J. Smith, R. Stone, D. Stubbs, G. Swietek, J. Thatcher, C. 
Tischhauser, H. Wong, V. Zarifis, K. Gleichman and R. Paxman, “Wide-field Fizeau 
imaging telescope: experimental results,” Applied Optics, vol. 45, no. 18, p. 4235, 
2006.  

[32]  D. Dolkens and J. M. Kuiper, “A deployable telescope for sub-meter resolution 
from microsatellite platforms,” in ICSO 2014, 2014.  



FISICA                Deliverable D3.4 
Far Infra-red Space Interferometer Critical Assessment 

PU Page 35  Version 1 
 

 

[33]  J. E. Harvey, P. R. Silverglate and A. B. Wissinger, “Optical performance of 
synthetic aperture telescope configurations,” in SPIE 540, Southwest conference 
on Optics, 1985.  

[34]  FISICA consortium, “Far Infrared Space Interferometer Critical Assessment,” UCL, 
[Online]. Available: http://www.fp7-fisica.eu/. [Accessed 25 02 2015]. 

[35]  W. Holland and G. Savini, “Instrument requirements from the FISICA study,” in 
FISICA workshop 2015, Instrument Simulation and Preliminary Technology 
Development Activities., NUIM - Maynooth, 2015.  

[36]  O. Lardiere, F. Martinache and F. Patru, “Direct imaging with highly diluted 
apertures - I. Field-of-view limitations,” Monthly Notices of the Royal Astronomical 
Society, vol. 375, no. 3, pp. 977-988, #mar# 2007.  

[37]  F. Patru, N. Tarmoul, D. Mourard and O. Lardi{\`e}re, “Direct imaging with highly 
diluted apertures - II. Properties of the point spread function of a hypertelescope,” 
Monthly Notices of the Royal Astronomical Society, vol. 395, no. 4, pp. 2363-2372, 
#jun# 2009.  

[38]  A. Labeyrie, “Resolved imaging of extra-solar planets with future 10âˆ’100 km 
optical interferometric arrays,” Astronomy and Astrophysics Astrophysics, vol. 118, 
pp. 517-524, 1996.  

[39]  A. Labeyrie, “Hypertelescope imaging: from exo-planets to neutron stars,” in 
Proceedings of SPIE, 2003.  

[40]  A. Labeyrie, “Exo-Earth Imager for Exoplaner Snapshots with Resolved Detail,” in 
ASP Conference Series, vol 194, 1999.  

[41]  A. Labeyrie, L. Arnold, P. Riaud, O. Lardiere, V. Borkowski, S. Gilet, J. Dejonghe and 
H. Le Coroller, “Hypertelescope architectures for direct imging at high angular 
resolution,” in Beyond conventional adaptive optics, 2001.  

[42]  A. T. Moffet, “Minimum-redundancy linear arrays,” IEEE Transactions on Antennas 
and Propagation, vol. 16, no. 2, pp. 172-175, #mar# 1968.  

[43]  O. Lardiere, A. Labeyrie, D. Mourard, P. Riaud, L. Arnold, J. Dejonghe and S. Gillet, 
“VIDA ( Vlti Imaging with a Densified Array ), a densified pupil combiner proposed 
for snapshot imaging with the VLTI .,” in SPIE Interferometry for Optical Astronomy 
II, 2003.  

[44]  A. Labeyrie, “ELTs, interferometers and hypertelescopes at different 
wavelengths,” vol. 6986, pp. 69860C--69860C--12, #apr# 2008.  

[45]  F. Drake, “Optimum size of radio astronomy antennas,” Proceedings of the IEEE, 
vol. 52, no. 1, pp. 108-109, 1964.  

[46]  M. A. A. and P. F. G., “Measurement of the diameter of α-Orionis with the 
interferometer,” Astrophysica Journal, vol. 53, pp. 249-259, 1921.  

 
 
 
 


