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Introduction

@ Latent traits measured through probabilistic models for item
response data.

@ Here, Rasch model for binary items.

@ Crucial assumption of measurement invariance: All items measure
the latent trait in the same way for all subjects.

@ Check for heterogeneity in (groups of) subjects, either based on
observed covariates or unobserved latent classes.

@ Mixtures of Rasch models to address heterogeneity in latent
classes.



Rasch Model

Probability for person i to solve item j:

exp{y;(0i — 5;)}
1+ exp{@i — ﬁ/} ’

@ y;: Response by person j to item j.

P(Yj = yjl0i, 8;) =

@ 0;: Ability of person i.
@ [3;: Difficulty of item .

By construction:
@ No covariates, all information is captured by ability and difficulty.

@ Both parameters 6 and 3 are on the same scale: If 8y > 52, then
item 1 is more difficult than item 2 for all subjects.

Central assumption of measurement invariance needs to be checked
for both manifest and latent subject groups.



Rasch Model: Estimation

@ Joint estimation of # and j3 is inconsistent.

@ Conditional ML (CML) estimation: Use factorization of the full
likelihood on basis of the scores r; = Zj’L Vi

Lo,8) = f(yl6,5)
= h(y|r,0,8)g(r|0,B)
= h(ylr, B)g(r|0, B).

Estimate 3 from maximization of h(y|r, /3).

@ Also maximizes L(¢, 3) if g(r|-) is assumed to be independent of ¢
and 3 — regardless of the particular specification, potentially
depending on auxiliary parameters §: g(r|d).



Mixture Model

@ Assumption: Data stems from different classes but class
membership is unknown.

@ Modeling tool: Mixture models.

@ Mixture model = > weight x component.

@ Components represent the latent classes. They are densities or
(regression) models.

@ Weights are a priori probabilities for the components/classes,
treated either as parameters or modeled through concomitant
variables.



Rasch Mixture Model: Framework

Full mixture:

@ Weights: Either (non-parametric) prior probabilities 7, or
weights 7(k|x, «) based on concomitant variables x, e.g., a
multinomial logit model.

@ Components: Conditional likelihood for item parameters and
specification of score probabilities

f(yle, 8, 9) HZ (k|xi, ) h(yilri, Bx) g(rilok)-

i=1 k=1

@ Estimation of all parameters via ML through the EM algorithm.



Rasch Mixture Model: Estimation

@ Rasch model (1 component):
CML estimation of 5 independent of score specification.

@ Rasch mixture model (2+ components):
Mixture weights (also) depend on score specification. Hence, CML
estimation of 3 also depends on the score specification.

@ Unless: Score specification equal across all components.



Score Models

@ Original proposition by Rost (1990): Saturated model. Discrete
distribution with parameters (probabilities) g(r) = V,.

@ Number of parameters necessary is potentially very high:
(number of items — 1) x (number of components).

@ More parsimonious: Assume parametric model on score
probabilities, e.g., using mean and variance parameters.

@ Restricted score distribution: Distribution of full/unweighted sample
used for each component. Estimation of 5 and clusters invariant to
specific form.



Score Models: Intuitions

Saturated score model:
@ Can capture all score distributions, i.e., never misspecified.

@ Needs many (nuisance) parameters, i.e., challenging in model
estimation/selection.

Mean-variance score model:
@ Parsimonious, i.e., convenient for model estimation/selection.
@ Potentially misspecified, e.g., for multi-modal distributions.

Restricted score model:
@ Parsimonious, i.e., convenient for model estimation/selection.
@ Invariant against latent structure in score distribution.

@ Partially misspecified, if latent structure in scores and items
coincides.



Monte Carlo Study

Data generating process
@ 500 observations, 20 items.

@ Ability: Mixture of two point masses. Difference between the two
points varies from 0 to 4.
— Resulting raw score distribution is multi-modal — or not.

@ Difficulties: 2 sets with differences in 2 items, varying from 0 to 4.
— Differential item functioning — or not.

@ Grouping structure in abilities and difficulties coincides — or not.

Simulation
@ 500 replications.

@ Model fitting: various score models, several numbers of
components.

@ Model selection via BIC.



Differences only in Difficulties
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Differences only in Abilities

Item Difficulty
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Differences in Abilities and Difficulties

Item Difficulty
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Differences in Abilities and Difficulties

Item Difficulty
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Differences in Abilities and Difficulties
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Differences in Abilities and Difficulties
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Coinciding Differences in Abili
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Coinciding Differences in Abilities and Difficulties
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Coinciding Differences in Abilities and Difficulties
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Coinciding Differences in Abilities and Difficulties

Item Difficulty
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The LR test yields a test statistic of 204.64 (p < 0.001).



Summary

@ Rasch mixture models are a flexible means to check for
measurement invariance.

@ General framework incorporates various score models:
saturated or mean-variance specification, possibly restricted to be
equal across components.

@ Restricted score distributions seem more suitable to detect the
number of latent classes with regard to the item difficulties but may
fail to estimate the item parameters correctly.

@ Suggestion: Employ restricted score distributions to estimate the
number of components. Given the number of components,
compare model fit for restricted vs. unrestricted score model to
choose final model.

@ Implementation of all flavors soon available in R package
psychomix at
http://CRAN.R-project.org/package=psychomix


http://CRAN.R-project.org/package=psychomix
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