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The Generalized Impedance Boundary
Conditions in acoustic scattering
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The Generalized Impedance Boundary
Conditions in acoustic scattering

ou
L Zu=
o +Zu=0

Qext
Au+ku=0
u=u’+u" )
i us
lim —iku®| ds=0
R—00 Jiz=g | O

Context:

@ Imperfectly conducting obstacles

@ Periodic coatings (homogenized
model)

Thin layers

Thin periodic coatings

Inverse problem: recover D from the scattered field.
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General notions in inverse scattering
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For incident plane waves u’(z,0) = ¢™*%'# we define

u™(&,0) € L*(S%, 5%).
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%“US —i—Zu:—(%—f—i—Zui) onT
R ou’

lim

R—o00 |z|:R’ or

o
—iku®| ds=0

[us(x) = S we@+0od)  r— +ooj

For incident plane waves u’(z,0) = ¢™*%'# we define

u™(&,0) € L*(S%, 5%).

Under minimal assumptions on Z design a method to
recover D from u* for all (Z,0).
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The factorization method:
a sampling method

For w(z,0) = ¢™*9"* define

where 4 associated with u®(Z, D) is defined in dimension d by

. etkr o 1
u(:z:)r(d_l)/Q(u (w)+@<r)> r — +00.

( )

F: L*(8%) — L*(S%)

gr— | u>®(z,0)g(9)db
Sd

Define the self-adjoint positive operator

Fy = |Re(F)| + Sm(F)

2€D e 0% ¢ R(F;/Q)
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The factorization method:
a sampling method

For ui(z,0) = eik0® define
(Z,D) — u>(,0)

where u* associated with «®*(Z, D) is defined in dimension d by

. eik‘r o 1
u(x):m u™(z)+ O - r — +00.

s N
F: L*(8% — L*(S? Py
PP /N AN
gr— [ u(&,0)g(0)do Dl [\
Sd P \
Define the self-adjoint positive operator L - )
Fy := |Re(F)| + Sm(F)
D —ikf-z 1/2 3 t F1/2 — e—iké~z
zeED<=ce € R(F,7) gs. t. Iy g




The factorization method:

a sampling method

For w(z,0) = ¢™*9"* define

(Z,D) — u™(%,0)

where u* associated with «®*(Z, D) is defined in dimension d by

s eik‘r e 1
u(x)_r(d_l)/Q(u (x)+@<r)> r — +00.
N
F: L*(8% — L*(S? Py
o /N A
gr— [ u(&,0)g(0)do D[ [\
Sd \
Define the self-adjoint positive operator L - )
Fy := |Re(F)| + Sm(F)
2€D e M g R(F:;’:/Q) ( No solution! }
J LI_I_I_I_I_J

L
4 /21




5/ 21

State of the art

o Factorization method for impenetrable scatterers:

e Dirichlet and Neumann boundary condition: Kirsch 1998,
o Impedance boundary condition (Z = \): Kirsch & Grinberg
2002,

o Inverse iterative methods with GIBC: Bourgeois, Chaulet
& Haddar 2011-2012.



Outline

@ The GIBC forward problem

© Characterization of scatterers via the factorization Theorem

© Numerical examples
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The GIBC forward problem

A wvolume formulation

@ V an Hilbert space such that C>°(T') ¢ V ¢ HY*(T")
@ 7Z : V — V* is linear and continuous and

Z u=7Zu

_________________________________________



The GIBC forward problem

@ V an Hilbert space such that C>°(T') ¢ V ¢ HY*(T")

@ Z : V — V* is linear and continuous and
Z*u=7u

o Im(Zu,u)y~y > 0 for uniqueness reasons

The GIBC problem writes:

Find u® € {v € D'(Qext), pv € H'(Qext) Vo € D(RY); vir € V}

Au® 4+ k2u® = 0 in Qexs,

S

(Pyor) ov

lim |0pu® — iku®|? = 0.
R— o |z|=R

+Zu® = fonl,
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The GIBC forward problem

@ V an Hilbert space such that C>°(T') ¢ V ¢ HY*(T")

@ Z : V — V* is linear and continuous and
Z*u=7u

o Im(Zu,u)y~y > 0 for uniqueness reasons

The GIBC problem writes:

Find u® € {v € D'(Qext), pv € H'(Qext) Vo € D(RY); vir € V}

Au® 4+ k2u® = 0 in Qexs,

S

(onl) ov

lim |0pu® — iku®|? = 0.

+Zu® = fonl,

R—o00 |z|=R
- J/

The sign of the real part of the impedance operator is imposed
by the volume equation!



Well posedness of the forward problem

Find u® € {v € D'(Qext) , ov € H (Qext) Vo € DRY); vp € V}

Au® 4+ k2u® = 0 in Qexs,
S

(7
(onl) 81/ + Zu’ = f on F,

lim |0,u® — iku®)? = 0
R—o0 Iw‘:R

ne : HY?(I') — H~/2(T) the exterior DtN map

f 8Uf

—_—

v

where
AUf + kQUf =0 in Qext,
urp=fonl,

lim / |0pup — ikug|? =

|z|=R

R—
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Well posedness of the forward problem

Find u® € {v € D'(Qext) , ov € H (Qext) Vo € DRY); vp € V}

Au® 4+ k2u® = 0 in Qexs,
S

u
(onl) 6;/ + Zu’ = f on F,

lim |0pu® — iku®|? = 0.

R—o0 Iw‘:R

ne : HY?(I') — H~/2(T) the exterior DtN map

8’(,Lf
F= %

Find uf, € V such that

(onl) — (Psurf) {(Z + ne)u% _ f
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Well posedness of the forward problem

A Fredholm operator

Find ug. € V such that

(onl) <~ (Psurf) {(Z + Tle)u% —f

Theorem
If the embedding V' € H'/2(T) is compact and Z = Cz + Kz with
e Cz : V — V* isomorphism,

e Ky : V — V* compact,

then (Z +n.) : V — V* is an isomorphism.

Proof
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Theorem
If the embedding V' € H'/2(T) is compact and Z = Cz + Kz with
e Cz : V — V* isomorphism,

e Ky : V — V* compact,

then (Z +n.) : V — V* is an isomorphism.

Proof
-ne : HY?(T') — H~Y*(T") is continuous,
- hence Z + n, : V — V* is Fredholm of index zero.
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Well posedness of the forward problem

A Fredholm operator

Find ug. € V such that

(onl) <~ (Psurf) {(Z + ne)u% _ f

Theorem
If the embedding V' € H'/2(T) is compact and Z = Cz + Kz with
e Cz : V — V* isomorphism,

e Ky : V — V* compact,

then (Z +n.) : V — V* is an isomorphism.

Proof

-ne : HY?(T') — H~Y*(T") is continuous,

- hence Z + n, : V — V* is Fredholm of index zero.

- Since Sm(Zu, u)y,v+ > 0, (Pyo1) is injective and so is Z + ne.
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Outline

© Characterization of scatterers via the factorization Theorem
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Implementation of the factorization
method

@ First step: formal factorization

Find two bounded operators G : A* — L?(S%) and
T :A — A* such that

F = GT*G",

and

z €D <= ¢ € R(G)

where ¢°(2) := e~ 2,
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Implementation of the factorization
method

@ First step: formal factorization

Find two bounded operators G : A* — L?(S%) and
T :A — A* such that

F = GT*G*,

and

z €D <= ¢ € R(G)

where ¢°(2) := e~ 2,
© Second step: justification
Find the space A and prove that

R(G) = R(F/?).

Fyu = |Re(F)| + Sm(F)
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Formal factorization

Define the solving operator for the forward problem
G : V' — L*(SY
fr—uf

where u]%o is the far field associated with the solution to (Pyor)
with f in the second hand side.

z€ D <= ¢ € R(G)




Formal factorization

For Gi(z) (= €**1*l /|z| in dimension 3) the radiating Green function
for A + k? define

SLi(q)(x) = / G — v)a(y)ds(y), = € RI\T,

IGi(z — y) d
DL = | /= y(y)ds(y), x € RI\ T,
(@) = [ S a(m)ast). v e B
Sk = SLk‘r‘, and S,’C = &,SLkh’*,
Dk = DLk|I‘7 ’D;C = 8,,DLk|p.
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Formal factorization

For Gj(z) (= €171 /|z| in dimension 3) the radiating Green function
for A + k? define

SLk(q /ka— y)ds(y), © € RT\T,
Gk (z —y) d
DL = | — & d , € R\ T,
4(0)(2) / S a(w)ds(y). v € R
Sk = SLk‘F, and S,/€ = 8VSLk‘F,
Dk = DLk|F7 D;f = &,DLk|p.

Thus we can deduce

T :=7S5.7" + 'D;c + ZDy, + S;CZ*

E T has to be defined from A to A* for some Hilbert space A.
! A =V does not fit because ZSxZ* not symmetric!

________________________________________________________



Formal factorization

T :=ZS8,Z" + D), + ZDy, + S, Z*

Sy« H*(T) — HTY(T)
We want T : A — A*.
. Consider
Z = AF?
v = H\T),
then by taking A =V we have:
T : HYT) - H ().

Right space : A = H/?(I') = AEI(HA/Q(F))

|
|
|
|
|
!
!
|
|
|
|
|
|
|
|
|
!
\



Careful definition of 7" and rigorous
factorization

If V is compactly embedded into H'/?(T") define

A={ueV,Zue H ')}

with
(u,v)a = (u,v) /2y + (L7, Z°0) 172 (ry.

@ Z+n.:A— H'/2(I') is an isomorphism,
e G:A* — L%(S?) is continuous,

@ T :A — A* is continuous,

T =Z8,Z" + D), + ZDy, + S, Z°

o F=-GT*G*.
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Application of the factorization Theorem

Theorem [Grinberg 2002]

If F=—-GT*G* with
@ G compact with dense range,
@ Re(T) = C + K with C coercive and K compact,

@ —Om(T™) compact and strictly positive on R(G*),
then R(G) = R(F}/%).
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Application of the factorization Theorem

Theorem [Grinberg 2002]
If FF = —-GT*G* with
@ G compact with dense range,
@ Re(T) = C + K with C coercive and K compact,

@ —Sm(T™) compact and strictly positive on R(G*),
1/2
then R(G) = R(F}/%).

Conclusion: if k? is not an eigenvalue for the interior GIBC
problem

2€ D+ ¢ € R(F)?)

V is compactly embedded into H/?(T),

Z is an admissible impedance boundary operator.
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What if?

o Treated case: the embedding V'  H'/?(I') is compact,
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What if?

o Treated case: the embedding V'  H'/?(I') is compact,
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What if?

o Treated case: the embedding V < H'/?(I') is compact,

o Intermediate case: none of the compact embeddings hold.

Re(T') fails to be signed! X
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Outline

© Numerical examples
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Numerical framework

Z = divp(uVr:) + A,
For N=50, the synthetic data are

YANTN )i N

The wavelength is equivalent to the size of the scatterer

For each z in a given sampling grid we solve a discrete
version of
1/2
F #/ 9. = ¢°
with Tikhonov-Morozov regularization and plot
1

Zh— —.
ngH
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Influence of 1

0,8
0,6
0,4
0,2



21 / 21

Influence of the wavelength

(d) p =1, wavelength =3  (e) u =1, wavelength = 1.5
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Influence of the wavelength

(d) p =1, wavelength =3  (e) u =1, wavelength = 1.5

Thank you for your attention!
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