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The Generalized Impedance Boundary
Conditions in acoustic scattering

Context:

Imperfectly conducting obstacles

Periodic coatings (homogenized
model)

Thin layers

Thin periodic coatings

...

Advantages:

Cheaper direct computation (no
mesh refinement)

Inverse problem less unstable
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Imperfectly conducting obstacles
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Thin layers

Thin periodic coatings

...

Advantages:

Cheaper direct computation (no
mesh refinement)

Inverse problem less unstable

Inverse problem: recover Z from the scattered field.
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Example of generalized impedance
boundary condition

Most commonly used impedance operator:

Z = λ a function.

A more general model:

Zu = divΓ(µ∇Γu) + λu.

For example the first order approximation of the field given by
sound hard obstacles with thin coatings involves

Zu = divΓ(δ∇Γu) + k2
cδu

where
k2
c is the wave number inside the coating,

and δ is the width of the coating (non necessarily constant).
3 / 20



The forward problem

Find u = us + ui such that

us ∈
{
v ∈ D′(Ω) , ϕv ∈ H1(Ω) ∀ϕ ∈ D(Rd); v|∂D ∈ H1(∂D)

}
and

(P)



∆u+ k2u = 0 in Ω := Rd \D
∂u

∂ν
+ divΓ(µ∇Γu) + λu = 0 on ∂D

lim
R→∞

∫
|x|=R

∣∣∣∣∣∂us∂r − ikus
∣∣∣∣∣
2

ds = 0.

u exists and is unique if
I =m(λ) ≥ 0, =m(µ) ≤ 0 a.e. on ∂D (physical assumption)
I <e(µ) ≥ c a.e. on ∂D for c > 0.
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The inverse coefficient problem

The far field map

For ui(x, θ̂) = eikθ̂·x define

T : (λ, µ, ∂D, θ̂) 7→ u∞(x̂, θ̂)

where u∞ associated with us is defined in dimension d by

us(x) =
eikr

r(d−1)/2

(
u∞(x̂) +O

(
1
r

))
r −→ +∞.

The inverse coefficient problem

Given a geometry ∂D and N incident directions (θ̂j)j=1,··· ,N and the
corresponding far fields, retrieve λ and µ,

(u∞(·, θ̂j))j=1,··· ,N 7→ (λ, µ).

Uniqueness fails in general for constant µ and non–constant λ
with a single incident wave!
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The inverse coefficient problem

The inverse coefficient problem

Given a geometry ∂D and N incident directions (θ̂j)j=1,··· ,N and the
corresponding far fields, retrieve λ and µ,

(u∞(·, θ̂j))j=1,··· ,N 7→ (λ, µ).

Quantify the stability of this inversion with respect to an
inexact knowledge of the geometry

Main objective

Motivations:
I Recover (λ, µ) on a geometry reconstructed using a qualitative
method.
I Understand the convergence of the reconstruction of (∂D, λ, µ)
using an iterative procedure where (λ, µ) and the geometry ∂D are
updated alternatively.
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Outline

1 Stability with respect to an inexact geometry

2 A stability estimate on an exact geometry

3 Numerical experiments
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The inverse coefficient problem on an
inexact geometry

I The far–field data correspond to (λ, µ, ∂D)
and we search (λε, µε) that approximate (λ, µ)
on

∂Dε := fε(∂D) with fε := Id + ε.

The stability issue

For some small δ and ε if one finds (λε, µε) ∈ (L∞(∂Dε))2 such that

‖T (λε, µε, ∂Dε)− T (λ, µ, ∂D)‖L2(Sd−1) ≤ δ

do we have

‖λε ◦ fε − λ‖L∞(∂D) + ‖µε ◦ fε − µ‖L∞(∂D) ≤ G(δ, ε)

for some function G(δ, ε) −→
δ,ε→0

0.

δ can be the tolerance of some reconstruction procedure.
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A stable reconstruction on an inexact
geometry

Assume that the inverse problem is stable for an exact geometry: for
(λ, µ) in a compact set K ⊂ (L∞(∂D))2 and (λ̃, µ̃) ∈ K, there exists
CK such that

‖λ− λ̃‖+ ‖µ− µ̃‖ ≤ CK‖T (λ, µ, ∂D)− T (λ̃, µ̃, ∂D)‖.

Theorem

For small ε and for all (λε ◦ fε, µε ◦ fε) ∈ K that satisfy

‖T (λε, µε, ∂Dε)− T (λ, µ, ∂D)‖ ≤ δ

we have
‖λε ◦ fε − λ‖+ ‖µε ◦ fε − µ‖ ≤ CK(δ + ‖ε‖).
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Proof

Main tools:

1 Stability for the exact geometry:

‖λ− eλ‖+ ‖µ− eµ‖ ≤ CK‖T (λ, µ, ∂D)− T (eλ, eµ, ∂D)‖,

2 continuity of the forward problem w.r.t. the geometry

‖T (λ ◦ f−1
ε , µ ◦ f−1

ε , ∂Dε)− T (λ, µ, ∂D)‖ ≤ CK‖ε‖

CK does not depend on (λ, µ).
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Stability results for exact geometries

‖λ− λ̃‖+ ‖µ− µ̃‖ ≤ CK‖T (λ, µ, ∂D)− T (λ̃, µ̃, ∂D)‖

I The case µ = 0: Sincich [07].
I The case µ 6= 0 and λ known: Bourgeois, Chaulet and Haddar
(accepted).

Other stability results
The case µ = 0

Log–type global stability estimate for continuous λ: Sincich
[06], Labreuche [99].

The case µ 6= 0
Local stability estimate for λ and µ: Bourgeois and Haddar
[10].
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Lipschitz stability for piecewise constant µ

Let (∂Di)i=1,··· ,I be a partition of ∂D,

let KI be a compact subset of L∞(∂D)2 such that if (λ, µ) ∈ KI ,

λ(x) =
I∑
i=1

λiχ ∂Di(x) , µ(x) =
I∑
i=1

µiχ ∂Di(x)

and assumptions for the forward problem are satisfied.

∀i = 1, · · · , I it exists Si ⊂ ∂Di such that ∀(λ, µ) ∈ KI

(H) ∆Γuλ,µ 6= 0 on Si.

Stability for µ

There exists CKI > 0 such that for all (λ, µ1) and (λ, µ2) in KI ,

‖µ1 − µ2‖ ≤ CKI‖T (λ, µ1, ∂D)− T (λ, µ2, ∂D)‖.
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Sketch of the proof for constant µ

Denote uj the total field associated with (λ, µj , ∂D)j=1,2.

The auxiliary function

v :=
u2 − u1

|µ2 − µ1|
is a radiating solution of the Helmholtz equation with

divΓ(µ1∇Γv) +
∂v

∂ν
+ λv =

µ1 − µ2

|µ2 − µ1|
∆Γu

2.

Objective:
1 bound the left hand side from above by an increasing function of
‖v∞‖,

2 bound the right hand side from below by cKI > 0,

to obtain
‖v∞‖ ≥ cKI > 0.
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Sketch of the proof for constant µ∣∣∣∣divΓ(µ1∇Γv) +
∂v

∂ν
+ λv

∣∣∣∣ =
∣∣∆Γu

2
∣∣ on ∂D.

Upper bound for N(‖v‖S) :=
∥∥divΓ(µ1∇Γv) + ∂v

∂ν + λv
∥∥
L2(S)

:

Propagation of the smallness:

N(‖v‖S) ≤ f1

(
‖v‖H1(ω)

)
trace inequality
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L2(S)

:

Propagation of the smallness:

N(‖v‖S) ≤ f1

(
‖v‖H1(ω)

)
≤ f2

(
‖v‖H1(B)

)
≤ f3

(
‖v‖H1(B∞)

)
Interior Carleman estimate

and continuity of the near field to far field
map:

N(‖v‖S) ≤ f (‖v∞‖)
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∥∥∥∥divΓ(µ1∇Γv) +
∂v

∂ν
+ λv

∥∥∥∥
L2(S)

≤ f (‖v∞‖)

for f an increasing function independent of µ1 and µ2.

Lower bound for ‖∆Γu
2‖L2(S):

(H) =⇒ min
(λ,µ)∈KI

‖∆Γuλ,µ‖L2(S) 6= 0

=⇒ ‖∆Γu
2‖L2(S) ≥ cKI > 0.
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A steepest descent method to solve the
inverse coefficient problem

Assume that λ is known and minimize

F (µ) :=
1
2

I∑
j=1

‖T (µ, θ̂j)− u∞obs(·, θ̂j)‖2L2(Sj)
.

A regularization procedure is needed!
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A steepest descent method to solve the
inverse coefficient problem

First strategy: regularization on the gradient

Minimize

F (µ) :=
1

2

IX
j=1

‖T (µ, θ̂j)− u∞obs(·, θ̂j)‖2L2(Sj)
,

by taking µn+1 = µn+ δµ where for every φ in some finite dimensional space

ηµ

Z
∂D

∇Γ(δµ) · ∇Γφds+

Z
∂D

δµφ ds = −αµ F ′(µn) · φ.

Second strategy: total variation regularization

Minimize

Fηµ(µ) :=
1

2

IX
j=1

‖T (µ, θ̂j)− u∞obs(·, θ̂j)‖2L2(Sj)
+ ηµ|∇Γµ|L1(∂D)

and µn+1 = µn + δµ with

Z
∂D

δµφ ds = −αµ F ′ηµ(µn) · φ.
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Numerical reconstruction
Total variation VS H1 regularization

D

∼ 2π
k

Reconstruction of µ, from µinit = 0.7 with
10 incident waves uniformly distributed on
the unit circle and an aperture of π/5.
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Reconstruction on an inexact geometry
A fast oscillating boundary

Minimize

Fε(µ) :=
1
2

I∑
j=1

‖T (µ, θ̂j , ∂Dε)− T (µsearched, θ̂j , ∂D)‖2L2(Sj)
.

Exact geometry ∂D

Inexact geometry ∂Dε
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Reconstruction on an inexact geometry
Partially reconstructed boundary

Minimize

Fε(µ) :=
1
2

I∑
j=1

‖T (µ, θ̂j , ∂Dε)− T (µsearched, θ̂j , ∂D)‖2L2(Sj)

with θ̂j uniformly distributed in [−π/2;π/2].

Exact geometry ∂D

Inexact geometry ∂Dε
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Conclusion

Stable recovery of piecewise constant µ on exact and inexact
geometries.

Open questions
I Global stability for constant λ and µ.
I Uniqueness for piecewise constant λ and µ with a few

incident waves.
I · · ·

Stable reconstruction of generalized impedance boundary conditions. L.
Bourgeois, N. Chaulet and H. Haddar. Inverse Problems (accepted).
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