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The Generalized Impedance Boundary
Conditions in acoustic scattering

Context:
@ Imperfectly conducting obstacles

@ Periodic coatings (homogenized
model)

@ Thin layers

@ Thin periodic coatings

° ..
Advantages:
Au+k*u=0 @ Cheaper direct computation (no
w=u’+u ) mesh refinement)
lim 0 kus| ds=0
R—oc0 |z|=R ar
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The Generalized Impedance Boundary
Conditions in acoustic scattering

Context:
@ Imperfectly conducting obstacles

@ Periodic coatings (homogenized
model)

@ Thin layers

@ Thin periodic coatings

° ..
Advantages:
Au+k*u=0 @ Cheaper direct computation (no
u=u'tu ) mesh refinement)
Rlijnoo \ol=R ch; —iku®| ds=0 @ Inverse problem less unstable

‘ Inverse problem: recover Z from the scattered field.




\_
3/20

Example of generalized impedance
boundary condition

Most commonly used impedance operator:
Z =)\ a function.

A more general model:

Zu = divp(uVru) + Au.

sound hard obstacles with thin coatings involves
Zu = divp (0Vru) + k25u

where

e k2 is the wave number inside the coating,

e and ¢ is the width of the coating (non necessarily constant).

( )
For example the first order approximation of the field given by

J




The forward problem
Find u = u® + v such that

[us e {v eD(Q), pv e HY(Q) Vo € DRY; vyp € Hl(aD)}}

and

Au+k?u=0 inQ:=RI\D

ou
— +di = D
P) ey + divp(uVru) + \u ) 0 ond
. ou®
lim —iku®| ds =0.
R—o0 |z|=R or

u exists and is unique if
» Im(A) >0, Sm(pn) <0 ae. on 9D

(physical assumption)
» Re(u) >c¢ a.e. on 9D for ¢ > 0.
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The inverse coefficient problem

The far field map

For u'(z,0) = 9= define

T : (A, 0D, 0) — u™(&, 0)

where u>° associated with u® is defined in dimension d by

. eikr - 1
u(x)zm u™(z)+ 0O - r — —+00.

The inverse coefficient problem

Given a geometry dD and N incident directions (6;);=;... x and the
corresponding far fields, retrieve A and g,

(uoo('v éj))j=1,“' N = (>‘7 H)~

Uniqueness fails in general for constant p and non—constant A
with a single incident wave!
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The inverse coefficient problem

The inverse coefficient problem

Given a geometry 0D and N incident directions (é]) j=1,...,~ and the
corresponding far fields, retrieve A and g,

(> (-, 0;))j=1, v = (A ).

'Je(}t.lve

Main ob

Quantify the stability of this inversion with respect to an
inexact knowledge of the geometry

Motivations:

» Recover (A, 1) on a geometry reconstructed using a qualitative
method.

» Understand the convergence of the reconstruction of (0D, A, i)
using an iterative procedure where (A, 1) and the geometry 0D are

updated alternatively.
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Outline

@ Stability with respect to an inexact geometry

© A stability estimate on an exact geometry

© Numerical experiments
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The inverse coefficient problem on an
inexact geometry

» The far—field data correspond to (A, y, 9D)
and we search (., o) that approximate (A, u)
on

0D, := f.(0D) with f.:=Id+e.

The stability issue

For some small § and ¢ if one finds (A, p.) € (L°°(9D.))? such that

”T()‘S’,usaaDs) - T()‘nu’ aD)”Lz(SUl*l) <9
do we have
|Ae © fe = Allpoe(ap) + |lpte © fo — pll Loy < G(9,¢€)

for some function G(d, ) — 0.
e

0 can be the tolerance of some reconstruction procedure.
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A stable reconstruction on an inexact
geometry

Assume that the inverse problem is stable for an exact geometry: for
(\, i) in a compact set K C (L>°(dD))? and (\, i) € K, there exists
C'k such that

IA =X + llp = Al < CxlIT(A p,0D) = T(A, i, OD)|.

For small ¢ and for all (\; o f., pe o fo) € K that satisfy

IT(Ae, pe, 0De) = T(A, 1, OD)|| < 6

we have

[Ae © fo = All + llpe o fe — pll < Ck (6 + le])).-
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Proof

( .
Main tools:

@ Stability for the exact geometry:
1A= X[l + [l = Bl < Cx|IT(A, 1, 0D) = T(, i, D)),
@ continuity of the forward problem w.r.t. the geometry
IT(Xo £ o f,0D2) = T(A, , OD)| < Cic el

Ck does not depend on (A, p).
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Proof

( .
Main tools:

@ Stability for the exact geometry:
@ continuity of the forward problem w.r.t. the geometry

IT(Xo f=* wo f=*,0D:) — T(A, p, 0D)|| < Cx|le|

Ck does not depend on (A, p).
-

X:)\Eofe and I = pe o f- in @ gives

[Ae o fo = Al +[lpe o fo = pll < O IT(Ac 0 fe, pre © fe, 0D) = T (A, 1, OD))|
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Proof

p
Main tools: )
@ Stability for the exact geometry:
@ continuity of the forward problem w.r.t. the geometry
IT(\o f=* o f21,0D:) = T(A, 1, D) || < Ck|le]|
Ck does not depend on (A, p).
_ Y,

X:)\Eofe and I = pe o f- in @ gives

IAc o fe = All + llue © fo = pll < Ox(IT(e © fe e © f2,0D) = T(A, p, D))
<

(17O 0 fe, e © f2,0D) = TOv, e, D)) + (IO, 2, 0D2) = T 1, 0D)])
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Proof

p
Main tools: )
@ Stability for the exact geometry:
@ continuity of the forward problem w.r.t. the geometry
IT(\o f=* o f21,0D:) = T(A, 1, D) || < Ck|le]|
Ck does not depend on (A, p).
_ Y,

X:)\Eofe and I = pe o f- in @ gives

IAc o fe = All + llue © fo = pll < Ox(IT(e © fe e © f2,0D) = T(A, p, D))
<

(17O 0 fe, e © f2,0D) = TOv, e, D)) + (IO, 2, 0D2) = T 1, 0D)])

< Cklel by @ <
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Outline

© A stability estimate on an exact geometry
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Stability results for exact geometries

1A= X+ [l = il < Cx | T(A, p, @D) = T(X, i, 0D)]|

» The case p = 0: Sincich [07].
» The case p # 0 and A known: Bourgeois, Chaulet and Haddar
(accepted).

Other stability results
@ The case u =10

o Log-type global stability estimate for continuous A: Sincich
[06], Labreuche [99].

@ The case y # 0

e Local stability estimate for A\ and u: Bourgeois and Haddar
[10].
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Lipschitz stability for piecewise constant u

@ Let (0D;);=1,... 1 be a partition of 9D,
@ let K be a compact subset of L>(0D)? such that if (\, p) € K7,

I I
AMz) = Z AiXap, (z), W) = ZMiXBDi (z)

and assumptions for the forward problem are satisfied.

o Vi=1,--- 1 it exists S; C OD; such that V(\, u) € K;

(H) AFUA,;L 7& 0 on Sl

There exists Cg, > 0 such that for all (A, p1) and (A, pe) in K7,

”lu‘l _ /1‘2” < OKI”T()\HU’I3 aD) o T()‘hu'27 aD)”
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Sketch of the proof for constant u

Denote u? the total field associated with (X, 7, 0D) =1 2.

The auxiliary function

uz—ul

|2 — pt

is a radiating solution of the Helmholtz equation with

v =

) 81} 1_ ,,2
divr (p' Vo) + E + = ﬁAFU?.

Objective:

@ bound the left hand side from above by an increasing function of
o>,

@ bound the right hand side from below by cx, > 0,

to obtain

o] > cxe, >0,
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Sketch of the proof for constant u

divp (' Vo) + % + M| = ‘Apu2| on OD.

Upper bound for N(||v|s) := ||divr(u*Vrv) + 9 4 )\UHLz(S) :

Propagation of the smallness:

N(llvlls) < f1 (vl w))

trace inequality

oD
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Sketch of the proof for constant u

divp (' Vo) + % + M| = ‘Apu2| on OD.

Upper bound for N(||v||s) := ||divr(u!Vrv) + 9 4 )\UHLz(S) :

Propagation of the smallness:
N(llvlls) < fr (vl arw))
< fo (Ivllaes)

Carleman estimate near the boundary
oD



Sketch of the proof for constant u

divp (' Vo) + % + M| = ‘Apu2| on OD.

Upper bound for N(||v||s) := ||divr(u!Vrv) + 9 4 )\UHLz(S) :

Propagation of the smallness:

N(l[vlls) < f1 (vl w))
< fa (||v||H1(B))
< f3 (Ivllm s.))

o0

oD Interior Carleman estimate

and continuity of the near field to far field
map:

[N(llvlls) < £ (1o>])]
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Sketch of the proof for constant u

0
divr (u' Vo) + a—z + v

:‘Apu2| on OD.

Upper bound for N(||v||s) := ||divr(u!Vrv) + 9 4 )\UHLz(S) :

for f an increasing function independent of u! and u?.

o

A
81/+ v

divr (p* Vo) +

< Sl

L2(S)
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Sketch of the proof for constant u

0
divr (u' Vo) + AV

ey :‘Apu2| on OD.

Upper bound for N(||v||s) := ||divr(u!Vrv) + 9 4 )\UHLz(S) :

for f an increasing function independent of u! and u?.

o

A
81/+ v

divr (p* Vo) + < f (v

L2(S)

Lower bound for || Apu?||zz2(s):

(H) (A%IQKI | FU/\,u||L2(S) #

= [|Aru?|L2(s) = ek, > 0.
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Outline

© Numerical experiments
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A steepest descent method to solve the
inverse coefficient problem

Assume that ) is known and minimize
1z
F() 1= 5 31T, 05) = uial 65) B s,
j=1

q A regularization procedure is needed!
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A steepest descent method to solve the
inverse coefficient problem

First strategy: regularization on the gradient

Minimize I
1 A oo )
F(/,L EZ luaeJ)_uobS(vej)”i?(S])’

by taking pn+1 = pn + dp where for every ¢ in some finite dimensional space

e | Vre(6n) - Vrgds+ | Supds = —apu F'(un) - 6.
oD oD

Second strategy: total variation regularization

Minimize

Fy (e Z IT (1, 6;) — udps (- éj)”zm(sj) + 1u|Vral L1 o)

and fin4+1 = pn + op with oppds = —ay F,;M (tbn) - .
aD
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Numerical reconstruction
Total variation VS H' regularization

Reconstruction of p, from g3 = 0.7 with
10 incident waves uniformly distributed on

the unit circle and an aperture of /5.

—>
~ —271-
k
12 Searched [ 12

11

Reconstructed p: 1% of noise —-+--
Reconstructed p: 5% of noise -

| Ittt

0.4

11
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TV regularization

Searched
Reconstructed p: 1% of noise —-+--
Reconstructed p1: 5% of noise o
*x

04

H' (D) regularization



Reconstruction on an inexact geometry
A fast oscillating boundary

Minimize
1 I
o H. ¢ ) 2
Fe(n) =5 > T (11,65, 0Dz) = T(piscarened; 05, 0D)[ 725, -
Jj=1
11 Searchedp ——
Reconstructed p: 1% of noise ===
1 Reconstructed p: 5% of noisg_~-x
[ g F
0.9
0.8
Ezxact geometry 0D
07
06 ]
\
05 § ]
\ ’g‘mé""ag(xxg
0.4 &““‘
Inexact geometry 0D, 3 2 4 0 1 2 3
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Reconstruction on an inexact geometry
Partially reconstructed boundary

Minimize

I
1 N .
FE(N) = § Z HT(M ‘9‘]'7 aDa) - T(,U/searcheda ejv 0D)H2L2(SJ)

Jj=1

with éj uniformly distributed in [—7/2;7/2].

11 Searchedy ——
Reconstructed p: 1% of noise =+—
1 Reconstructed pi: 5% of noise
09
E oD o8
zact geometry
0.7
0.6
05
0.4
-3 2 1 0 1 2 3

Inezact geometry 0D,
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Conclusion

Stable recovery of piecewise constant p on exact and inexact
geometries.

Open questions
» Global stability for constant A and pu.

» Uniqueness for piecewise constant A and p with a few
incident waves.

>

(1] Stable reconstruction of generalized impedance boundary conditions. L.
L] Bourgeois, N. Chaulet and H. Haddar. Inverse Problems (accepted).
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