Stability results for the identification of generalized impedance boundary coefficients

Laurent Bourgeois, <u>Nicolas Chaulet</u> and Houssem Haddar

INRIA Saclay

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

centre de recherche SACLAY - ÎLE-DE-FRANCE

WAVES 2011

The Generalized Impedance Boundary Conditions in acoustic scattering

$$\begin{split} \Delta u + k^2 u &= 0 \\ u &= u^s + u^i \\ \lim_{R \to \infty} \int_{|x| = R} \left| \frac{\partial u^s}{\partial r} - iku^s \right|^2 ds = 0 \end{split}$$

 $\underline{\text{Context}}$:

- Imperfectly conducting obstacles
- Periodic coatings (homogenized model)
- Thin layers
- Thin periodic coatings
- ...

Advantages:

• Cheaper direct computation (no mesh refinement)

The Generalized Impedance Boundary Conditions in acoustic scattering

$$\begin{split} \Delta u + k^2 u &= 0 \\ u &= u^s + u^i \\ \lim_{R \to \infty} \int_{|x|=R} \left| \frac{\partial u^s}{\partial r} - iku^s \right|^2 ds = 0 \end{split}$$

 $\underline{Context}$:

- Imperfectly conducting obstacles
- Periodic coatings (homogenized model)
- Thin layers
- Thin periodic coatings
- ...

Advantages:

- Cheaper direct computation (no mesh refinement)
- Inverse problem less unstable

Inverse problem: recover ${\bf Z}$ from the scattered field.

Example of generalized impedance boundary condition

Most commonly used impedance operator:

 $\mathbf{Z} = \lambda$ a function.

A more general model:

$$\mathbf{Z}u = \operatorname{div}_{\Gamma}(\mu \nabla_{\Gamma} u) + \lambda u.$$

For example the first order approximation of the field given by sound hard obstacles with thin coatings involves

$$\mathbf{Z}u = \operatorname{div}_{\Gamma}(\delta \nabla_{\Gamma} u) + k_c^2 \delta u$$

where

- k_c^2 is the wave number inside the coating,
- and δ is the width of the coating (non necessarily constant).

The forward problem

Find $u = u^s + u^i$ such that

$$u^{s} \in \left\{ v \in \mathcal{D}'(\Omega), \ \varphi v \in H^{1}(\Omega) \ \forall \varphi \in \mathcal{D}(\mathbb{R}^{d}); \ v_{|\partial D} \in H^{1}(\partial D) \right\}$$

and

$$(\mathcal{P}) \quad \begin{cases} \Delta u + k^2 u = 0 \quad \text{in } \Omega := \mathbb{R}^d \setminus \overline{D} \\ \frac{\partial u}{\partial \nu} + \operatorname{div}_{\Gamma}(\mu \nabla_{\Gamma} u) + \lambda u = 0 \quad \text{on } \partial D \\ \lim_{R \to \infty} \int_{|x|=R} \left| \frac{\partial u^s}{\partial r} - iku^s \right|^2 ds = 0. \end{cases}$$

u exists and is unique if

Sm(λ) ≥ 0, Sm(μ) ≤ 0 a.e. on ∂D (physical assumption)
 ℜe(μ) ≥ c a.e. on ∂D for c > 0.

The inverse coefficient problem

 $\frac{\text{The far field map}}{\text{For } u^i(x,\hat{\theta}) = e^{ik\hat{\theta}\cdot x} \text{ define}$

$$T:(\lambda,\mu,\partial D,\hat{\theta})\mapsto u^\infty(\hat{x},\hat{\theta})$$

where u^{∞} associated with u^s is defined in dimension d by

$$u^{s}(x) = \frac{e^{ikr}}{r^{(d-1)/2}} \left(u^{\infty}(\hat{x}) + \mathcal{O}\left(\frac{1}{r}\right) \right) \qquad r \longrightarrow +\infty.$$

The inverse coefficient problem

Given a geometry ∂D and N incident directions $(\hat{\theta}_j)_{j=1,\dots,N}$ and the corresponding far fields, retrieve λ and μ ,

$$(u^{\infty}(\cdot,\hat{\theta}_j))_{j=1,\cdots,N}\mapsto (\lambda,\mu).$$

Uniqueness fails in general for constant μ and non–constant λ with a single incident wave!

The inverse coefficient problem

The inverse coefficient problem

Given a geometry ∂D and N incident directions $(\hat{\theta}_j)_{j=1,\dots,N}$ and the corresponding far fields, retrieve λ and μ ,

$$(u^{\infty}(\cdot,\hat{\theta}_j))_{j=1,\cdots,N} \mapsto (\lambda,\mu).$$

Main objective Quantify the stability of this inversion with respect to an inexact knowledge of the geometry

Motivations:

▶ Recover (λ, μ) on a geometry reconstructed using a qualitative method.

▶ Understand the convergence of the reconstruction of $(\partial D, \lambda, \mu)$ using an iterative procedure where (λ, μ) and the geometry ∂D are updated alternatively.

Outline

1 Stability with respect to an inexact geometry

2 A stability estimate on an exact geometry

The inverse coefficient problem on an inexact geometry

► The far-field data correspond to $(\lambda, \mu, \partial D)$ and we search $(\lambda_{\varepsilon}, \mu_{\varepsilon})$ that approximate (λ, μ) on

$$\partial D_{\varepsilon} := f_{\varepsilon}(\partial D) \quad \text{with} \quad f_{\varepsilon} := \mathrm{Id} + \varepsilon.$$

The stability issue

For some small δ and ε if one finds $(\lambda_{\varepsilon}, \mu_{\varepsilon}) \in (L^{\infty}(\partial D_{\varepsilon}))^2$ such that

$$\|T(\lambda_{\varepsilon},\mu_{\varepsilon},\partial D_{\varepsilon}) - T(\lambda,\mu,\partial D)\|_{L^{2}(S^{d-1})} \leq \delta$$

do we have

$$\|\lambda_{\varepsilon} \circ f_{\varepsilon} - \lambda\|_{L^{\infty}(\partial D)} + \|\mu_{\varepsilon} \circ f_{\varepsilon} - \mu\|_{L^{\infty}(\partial D)} \le G(\delta, \varepsilon)$$

for some function $G(\delta, \varepsilon) \xrightarrow[\delta, \varepsilon \to 0]{} 0.$

 δ can be the tolerance of some reconstruction procedure.

A stable reconstruction on an inexact geometry

Assume that the inverse problem is stable for an exact geometry: for (λ, μ) in a compact set $K \subset (L^{\infty}(\partial D))^2$ and $(\tilde{\lambda}, \tilde{\mu}) \in K$, there exists C_K such that

$$\|\lambda - \widetilde{\lambda}\| + \|\mu - \widetilde{\mu}\| \le C_K \|T(\lambda, \mu, \partial D) - T(\widetilde{\lambda}, \widetilde{\mu}, \partial D)\|.$$

Theorem

For small ε and for all $(\lambda_{\varepsilon} \circ f_{\varepsilon}, \mu_{\varepsilon} \circ f_{\varepsilon}) \in K$ that satisfy

$$\|T(\lambda_{\varepsilon},\mu_{\varepsilon},\partial D_{\varepsilon}) - T(\lambda,\mu,\partial D)\| \le \delta$$

we have

$$\|\lambda_{\varepsilon} \circ f_{\varepsilon} - \lambda\| + \|\mu_{\varepsilon} \circ f_{\varepsilon} - \mu\| \le C_K(\delta + \|\varepsilon\|).$$

Main tools:

Stability for the exact geometry: ||λ - λ̃|| + ||μ - μ̃|| ≤ C_K ||T(λ, μ, ∂D) - T(λ̃, μ̃, ∂D)||,
continuity of the forward problem w.r.t. the geometry ||T(λ ∘ f_ε⁻¹, μ ∘ f_ε⁻¹, ∂D_ε) - T(λ, μ, ∂D)|| ≤ C_K ||ε|| C_K does not depend on (λ, μ).

Main tools:

Stability for the exact geometry: ||λ - λ̃|| + ||μ - μ̃|| ≤ C_K ||T(λ, μ, ∂D) - T(λ̃, μ̃, ∂D)||,
continuity of the forward problem w.r.t. the geometry ||T(λ ∘ f_ε⁻¹, μ ∘ f_ε⁻¹, ∂D_ε) - T(λ, μ, ∂D)|| ≤ C_K ||ε|| C_K does not depend on (λ, μ).

 $\widetilde{\lambda} = \lambda_{\varepsilon} \circ f_{\varepsilon}$ and $\widetilde{\mu} = \mu_{\varepsilon} \circ f_{\varepsilon}$ in **1** gives

 $\|\lambda_{\varepsilon} \circ f_{\varepsilon} - \lambda\| + \|\mu_{\varepsilon} \circ f_{\varepsilon} - \mu\| \le C_K \|T(\lambda_{\varepsilon} \circ f_{\varepsilon}, \mu_{\varepsilon} \circ f_{\varepsilon}, \partial D) - T(\lambda, \mu, \partial D)\|$

Main tools:

Stability for the exact geometry: ||λ - λ̃|| + ||μ - μ̃|| ≤ C_K ||T(λ, μ, ∂D) - T(λ̃, μ̃, ∂D)||,
continuity of the forward problem w.r.t. the geometry ||T(λ ∘ f_ε⁻¹, μ ∘ f_ε⁻¹, ∂D_ε) - T(λ, μ, ∂D)|| ≤ C_K ||ε|| C_K does not depend on (λ, μ).

$$\begin{split} \widetilde{\lambda} &= \lambda_{\varepsilon} \circ f_{\varepsilon} \text{ and } \widetilde{\mu} = \mu_{\varepsilon} \circ f_{\varepsilon} \text{ in } \textcircled{0} \text{ gives} \\ \|\lambda_{\varepsilon} \circ f_{\varepsilon} - \lambda\| + \|\mu_{\varepsilon} \circ f_{\varepsilon} - \mu\| &\leq C_{K} \underbrace{\|T(\lambda_{\varepsilon} \circ f_{\varepsilon}, \mu_{\varepsilon} \circ f_{\varepsilon}, \partial D) - T(\lambda, \mu, \partial D)\|}_{\leq} \\ \underbrace{\|T(\lambda_{\varepsilon} \circ f_{\varepsilon}, \mu_{\varepsilon} \circ f_{\varepsilon}, \partial D) - T(\lambda_{\varepsilon}, \mu_{\varepsilon}, \partial D_{\varepsilon})\|}_{\leq} + \underbrace{\|T(\lambda_{\varepsilon}, \mu_{\varepsilon}, \partial D_{\varepsilon}) - T(\lambda, \mu, \partial D)\|}_{\leq} \end{split}$$

Main tools:

Stability for the exact geometry: ||λ - λ̃|| + ||μ - μ̃|| ≤ C_K ||T(λ, μ, ∂D) - T(λ̃, μ̃, ∂D)||,
continuity of the forward problem w.r.t. the geometry ||T(λ ∘ f_ε⁻¹, μ ∘ f_ε⁻¹, ∂D_ε) - T(λ, μ, ∂D)|| ≤ C_K ||ε||
C_K does not depend on (λ, μ).

$$\begin{split} \widetilde{\lambda} &= \lambda_{\varepsilon} \circ f_{\varepsilon} \text{ and } \widetilde{\mu} = \mu_{\varepsilon} \circ f_{\varepsilon} \text{ in } \textcircled{1} \text{ gives} \\ \|\lambda_{\varepsilon} \circ f_{\varepsilon} - \lambda\| + \|\mu_{\varepsilon} \circ f_{\varepsilon} - \mu\| &\leq C_{K} \underbrace{\|T(\lambda_{\varepsilon} \circ f_{\varepsilon}, \mu_{\varepsilon} \circ f_{\varepsilon}, \partial D) - T(\lambda, \mu, \partial D)\|}_{\leq} \\ \underbrace{\left(\|T(\lambda_{\varepsilon} \circ f_{\varepsilon}, \mu_{\varepsilon} \circ f_{\varepsilon}, \partial D) - T(\lambda_{\varepsilon}, \mu_{\varepsilon}, \partial D_{\varepsilon})\|\right)}_{\leq C_{K} \|\varepsilon\| \text{ by } \underbrace{2} &\leq \delta \end{split}$$

Outline

1 Stability with respect to an inexact geometry

2 A stability estimate on an exact geometry

3 Numerical experiments

Stability results for exact geometries

Other stability results

- The case $\mu = 0$
 - Log-type global stability estimate for continuous λ: Sincich [06], Labreuche [99].
- The case $\mu \neq 0$
 - Local stability estimate for λ and μ : Bourgeois and Haddar [10].

Lipschitz stability for piecewise constant μ

- Let $(\partial D_i)_{i=1,\dots,I}$ be a partition of ∂D ,
- let K_I be a compact subset of $L^{\infty}(\partial D)^2$ such that if $(\lambda, \mu) \in K_I$,

$$\lambda(x) = \sum_{i=1}^{I} \lambda_i \chi_{\partial D_i}(x), \qquad \mu(x) = \sum_{i=1}^{I} \mu_i \chi_{\partial D_i}(x)$$

and assumptions for the forward problem are satisfied.

• $\forall i = 1, \cdots, I$ it exists $S_i \subset \partial D_i$ such that $\forall (\lambda, \mu) \in K_I$

$$(\mathcal{H}) \qquad \Delta_{\Gamma} u_{\lambda,\mu} \neq 0 \quad \text{on } S_i.$$

Stability for μ

There exists $C_{K_I} > 0$ such that for all (λ, μ_1) and (λ, μ_2) in K_I ,

$$\|\mu^1 - \mu^2\| \le C_{K_I} \|T(\lambda, \mu^1, \partial D) - T(\lambda, \mu^2, \partial D)\|.$$

Sketch of the proof for constant μ

Denote u^j the total field associated with $(\lambda, \mu^j, \partial D)_{j=1,2}$.

The auxiliary function

$$v := \frac{u^2 - u^1}{|\mu^2 - \mu^1|}$$

is a radiating solution of the Helmholtz equation with

$$\operatorname{div}_{\Gamma}(\mu^{1}\nabla_{\Gamma}v) + \frac{\partial v}{\partial \nu} + \lambda v = \frac{\mu^{1} - \mu^{2}}{|\mu^{2} - \mu^{1}|} \Delta_{\Gamma}u^{2}$$

Objective:

• bound the left hand side from above by an increasing function of $||v^{\infty}||$,

2 bound the right hand side from below by $c_{K_I} > 0$,

to obtain

$$\|v^{\infty}\| \ge c_{K_I} > 0.$$

Sketch of the proof for constant μ $\left|\operatorname{div}_{\Gamma}(\mu^{1}\nabla_{\Gamma}v) + \frac{\partial v}{\partial \nu} + \lambda v\right| = \left|\Delta_{\Gamma}u^{2}\right| \quad \text{on} \quad \partial D.$

Upper bound for $N(||v||_S) := \left\| \operatorname{div}_{\Gamma}(\mu^1 \nabla_{\Gamma} v) + \frac{\partial v}{\partial \nu} + \lambda v \right\|_{L^2(S)}$:

Propagation of the smallness:

 $N(\|v\|_S) \le f_1\left(\|v\|_{H^1(\omega)}\right)$

trace inequality

Sketch of the proof for constant μ

$$\left|\operatorname{div}_{\Gamma}(\mu^{1}\nabla_{\Gamma}v) + \frac{\partial v}{\partial \nu} + \lambda v\right| = \left|\Delta_{\Gamma}u^{2}\right| \quad \text{on} \quad \partial D.$$

Upper bound for $N(\|v\|_S) := \left\| \operatorname{div}_{\Gamma}(\mu^1 \nabla_{\Gamma} v) + \frac{\partial v}{\partial \nu} + \lambda v \right\|_{L^2(S)}$:

Propagation of the smallness:

$$N(\|v\|_{S}) \le f_1(\|v\|_{H^1(\omega)}) \le f_2(\|v\|_{H^1(\mathcal{B})})$$

Carleman estimate near the boundary

Sketch of the proof for constant μ $\left|\operatorname{div}_{\Gamma}(\mu^{1}\nabla_{\Gamma}v) + \frac{\partial v}{\partial \nu} + \lambda v\right| = \left|\Delta_{\Gamma}u^{2}\right| \quad \text{on} \quad \partial D.$

Upper bound for $N(||v||_S) := \left\| \operatorname{div}_{\Gamma}(\mu^1 \nabla_{\Gamma} v) + \frac{\partial v}{\partial \nu} + \lambda v \right\|_{L^2(S)}$:

and continuity of the near field to far field map:

$$N(\|v\|_S) \le f(\|v^\infty\|)$$

Sketch of the proof for constant μ

$$\operatorname{div}_{\Gamma}(\mu^{1}\nabla_{\Gamma}v) + \frac{\partial v}{\partial \nu} + \lambda v \bigg| = \big|\Delta_{\Gamma}u^{2}\big| \quad \text{on} \quad \partial D.$$

Upper bound for $N(||v||_S) := \left\| \operatorname{div}_{\Gamma}(\mu^1 \nabla_{\Gamma} v) + \frac{\partial v}{\partial \nu} + \lambda v \right\|_{L^2(S)}$:

$$\left\| \operatorname{div}_{\Gamma}(\mu^{1} \nabla_{\Gamma} v) + \frac{\partial v}{\partial \nu} + \lambda v \right\|_{L^{2}(S)} \leq f\left(\|v^{\infty}\| \right)$$

for f an increasing function independent of μ^1 and μ^2 .

Sketch of the proof for constant μ

$$\operatorname{div}_{\Gamma}(\mu^{1}\nabla_{\Gamma}v) + \frac{\partial v}{\partial \nu} + \lambda v \bigg| = \big|\Delta_{\Gamma}u^{2}\big| \quad \text{on} \quad \partial D.$$

Upper bound for $N(||v||_S) := \left\| \operatorname{div}_{\Gamma}(\mu^1 \nabla_{\Gamma} v) + \frac{\partial v}{\partial \nu} + \lambda v \right\|_{L^2(S)}$:

$$\left\| \operatorname{div}_{\Gamma}(\mu^{1} \nabla_{\Gamma} v) + \frac{\partial v}{\partial \nu} + \lambda v \right\|_{L^{2}(S)} \leq f\left(\|v^{\infty}\| \right)$$

for f an increasing function independent of μ^1 and μ^2 .

Lower bound for $\|\Delta_{\Gamma} u^2\|_{L^2(S)}$:

$$(\mathcal{H}) \implies \min_{(\lambda,\mu)\in K_I} \|\Delta_{\Gamma} u_{\lambda,\mu}\|_{L^2(S)} \neq 0$$
$$\implies \|\Delta_{\Gamma} u^2\|_{L^2(S)} \ge c_{K_I} > 0.$$

Outline

1 Stability with respect to an inexact geometry

2 A stability estimate on an exact geometry

A steepest descent method to solve the inverse coefficient problem

Assume that λ is known and minimize

$$F(\mu) := \frac{1}{2} \sum_{j=1}^{I} \|T(\mu, \hat{\theta}_j) - u_{\text{obs}}^{\infty}(\cdot, \hat{\theta}_j)\|_{L^2(S_j)}^2.$$

A regularization procedure is needed!

A steepest descent method to solve the inverse coefficient problem

First strategy: regularization on the gradient

Minimize

$$F(\mu) := \frac{1}{2} \sum_{j=1}^{I} \|T(\mu, \hat{\theta}_j) - u_{\text{obs}}^{\infty}(\cdot, \hat{\theta}_j)\|_{L^2(S_j)}^2,$$

by taking $\mu_{n+1} = \mu_n + \delta \mu$ where for every ϕ in some finite dimensional space

$$\eta_{\mu} \int_{\partial D} \nabla_{\Gamma}(\delta\mu) \cdot \nabla_{\Gamma} \phi \, ds + \int_{\partial D} \delta\mu \phi \, ds = -\alpha_{\mu} \, F'(\mu_n) \cdot \phi.$$

Second strategy: total variation regularization

Minimize

$$F_{\eta_{\mu}}(\mu) := \frac{1}{2} \sum_{j=1}^{I} \|T(\mu, \hat{\theta}_j) - u_{\text{obs}}^{\infty}(\cdot, \hat{\theta}_j)\|_{L^2(S_j)}^2 + \eta_{\mu} |\nabla_{\Gamma} \mu|_{L^1(\partial D)}$$

and
$$\mu_{n+1} = \mu_n + \delta \mu$$
 with $\int_{\partial D} \delta \mu \phi \, ds = -\alpha_\mu \, F'_{\eta_\mu}(\mu_n) \cdot \phi.$

Numerical reconstruction *Total variation* VS H^1 regularization

Reconstruction of μ , from $\mu_{\text{init}} = 0.7$ with 10 incident waves uniformly distributed on the unit circle and an aperture of $\pi/5$.

 $H^1(\partial D)$ regularization

Reconstruction on an inexact geometry A fast oscillating boundary

Minimize

0.4

-3

-2

-1

0

2

3

Inexact geometry ∂D_{ε}

Reconstruction on an inexact geometry

Partially reconstructed boundary

Minimize

$$F_{\varepsilon}(\mu) := \frac{1}{2} \sum_{j=1}^{I} \|T(\mu, \hat{\theta}_j, \partial D_{\varepsilon}) - T(\mu_{\text{searched}}, \hat{\theta}_j, \partial D)\|_{L^2(S_j)}^2$$

with $\hat{\theta}_j$ uniformly distributed in $[-\pi/2; \pi/2]$.

Conclusion

Stable recovery of piecewise constant μ on exact and inexact geometries.

Open questions

- Global stability for constant λ and μ .
- ▶ Uniqueness for piecewise constant λ and μ with a few incident waves.

• • •

Stable reconstruction of generalized impedance boundary conditions. L. Bourgeois, N. Chaulet and H. Haddar. Inverse Problems (accepted).