Reconstruction of a perfectly conducting obstacle coated with a thin dielectric layer

Laurent Bourgeois, <u>Nicolas Chaulet</u> and Houssem Haddar

INRIA Saclay, France

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

PICOF 2012, Ecole Polytechnique, April 2012

The scattering problem for coated obstacles in the harmonic regime

The inverse scattering problem for coated obstacles

Qualitative techniques

+ Fast

- Need a lot of data
- Not very accurate

Quantitative techniques

- + Provide accurate reconstruction
- Need a priori information

- Computational cost

Design an optimization procedure to find the shape and the thickness from scattered field data.

Outline

Formulation of the inverse problem
An optimization point of view
A GIBC approximate model

2 Derivatives of the cost function

The inverse problem

 $\underline{ \text{The far field map}}_{T^{\text{coat}}} \text{ For } u^i(x, \hat{\theta}) = e^{ik\hat{\theta}\cdot x} \text{ define}$ $T^{\text{coat}} : (\epsilon, \mu, \delta, \Gamma, \hat{\theta}) \mapsto u^{\infty}(\hat{x}, \hat{\theta})$

where u^{∞} associated with u^s is defined in dimension d by

$$u^{s}(x) = \frac{e^{ikr}}{r^{(d-1)/2}} \left(u^{\infty}(\hat{x}) + \mathcal{O}\left(\frac{1}{r}\right) \right) \qquad r \longrightarrow +\infty.$$

The inverse problem

Given N far-fields $(u_{\text{coat}}^{\infty}(\cdot, \hat{\theta}_j))_{j=1,\dots,N}$, retrieve the geometry Γ and the properties of the layer.

The inverse problem

 $\underline{ \text{The far field map}}_{T^{\text{coat}}} \text{ For } u^i(x, \hat{\theta}) = e^{ik\hat{\theta}\cdot x} \text{ define}$ $T^{\text{coat}} : (\epsilon, \mu, \delta, \Gamma, \hat{\theta}) \mapsto u^{\infty}(\hat{x}, \hat{\theta})$

where u^{∞} associated with u^s is defined in dimension d by

$$u^{s}(x) = \frac{e^{ikr}}{r^{(d-1)/2}} \left(u^{\infty}(\hat{x}) + \mathcal{O}\left(\frac{1}{r}\right) \right) \qquad r \longrightarrow +\infty.$$

The inverse problem

Given N far-fields $(u_{\text{coat}}^{\infty}(\cdot, \hat{\theta}_j))_{j=1,\dots,N}$, retrieve the geometry Γ and the properties of the layer.

Minimize

$$\overline{F^{\text{coat}}}(\epsilon,\mu,\delta,\Gamma) := \frac{1}{2} \sum_{j=1}^{N} \|T^{\text{coat}}(\epsilon,\mu,\delta,\Gamma,\hat{\theta}_j) - u^{\infty}_{\text{coat}}(\cdot,\hat{\theta}_j)\|^2_{L^2(S_j)}$$

 T^{coat} is computationally expensive to evaluate!

The inverse problem

 $\underline{ \text{The far field map}}_{T^{\text{coat}}} \text{ For } u^i(x, \hat{\theta}) = e^{ik\hat{\theta}\cdot x} \text{ define}$ $T^{\text{coat}} : (\epsilon, \mu, \delta, \Gamma, \hat{\theta}) \mapsto u^{\infty}(\hat{x}, \hat{\theta})$

The inverse problem

Given N far-fields $(u_{\text{coat}}^{\infty}(\cdot, \hat{\theta}_j))_{j=1,\dots,N}$, retrieve the geometry Γ and the properties of the layer.

Minimize

$$\overline{F^{\text{coat}}}(\epsilon,\mu,\delta,\Gamma) := \frac{1}{2} \sum_{j=1}^{N} \|T^{\text{coat}}(\epsilon,\mu,\delta,\Gamma,\hat{\theta}_j) - u^{\infty}_{\text{coat}}(\cdot,\hat{\theta}_j)\|^2_{L^2(S_j)}$$

 T^{coat} is computationally expensive to evaluate!

$$\underbrace{\frac{\text{Minimize}}{F^{equi}(\epsilon,\mu,\delta,\Gamma)}}_{F^{equi}(\epsilon,\mu,\delta,\Gamma,\hat{\theta}_j) - u^{\infty}_{\text{coat}}(\cdot,\hat{\theta}_j)\|^2_{L^2(S_j)}}$$

An approximate GIBC model

In dimension 2: (Aslanyüreck, Haddar, Şahintürk [11])

$$\mathbf{Z}_1 = \frac{\partial}{\partial s} \delta \epsilon^{-1} \frac{\partial}{\partial s} + \delta k^2 \mu$$
$$\mathbf{Z}_2 = \frac{\partial}{\partial s} \left(\delta - \frac{\delta^2 c}{2} \right) \epsilon^{-1} \frac{\partial}{\partial s} + \left(\delta + \frac{\delta^2 c}{2} \right) k^2 \mu.$$

The GIBC forward problem

Find $u = u^s + u^i$ such that

$$u^{s} \in \left\{ v \in \mathcal{D}'(\Omega_{\text{ext}}), \ \varphi v \in H^{1}(\Omega_{\text{ext}}) \ \forall \varphi \in \mathcal{D}(\mathbb{R}^{d}); \ v_{|\Gamma} \in H^{1}(\Gamma) \right\}$$

and

$$(\mathcal{P}) \begin{cases} \Delta u + k^2 u = 0 \quad \text{in } \Omega_{\text{ext}} \\ \frac{\partial u}{\partial \nu} + \operatorname{div}_{\Gamma}(\eta \nabla_{\Gamma} u) + \lambda u = 0 \quad \text{on } \Gamma \\ \lim_{R \to \infty} \int_{|x|=R} \left| \frac{\partial u^s}{\partial r} - iku^s \right|^2 ds = 0. \end{cases}$$

u exists and is unique if

Sm(λ) ≥ 0, Sm(η) ≤ 0 a.e. on Γ (physical assumption)
ℜe(η) ≥ c a.e. on Γ for c > 0.

Reformulation of the inverse problem

 $\frac{\text{The far field map for the GIBC model}}{\text{For } u^i(x, \hat{\theta}) = e^{ik\hat{\theta}\cdot x} \text{ define}}$

$$T^{GIBC}: (\lambda, \eta, \Gamma, \hat{\theta}) \mapsto u^{\infty}(\hat{x}, \hat{\theta}).$$

For thin layer we have:

$$T^{GIBC}(\delta k^2 \mu, \delta \epsilon^{-1}, \Gamma, \hat{\theta}_j) = T^{\text{coat}}(\epsilon, \mu, \delta, \Gamma, \hat{\theta}_j) + \mathcal{O}(\delta^{3/2})$$

New functional to minimize

Given N far–fields $(u_{\text{coat}}^{\infty}(\cdot,\hat{\theta}_j))_{j=1,\cdots,N}$ corresponding to the coated obstacle, minimize

$$F^{GIBC}(\lambda,\eta,\Gamma) := \frac{1}{2} \sum_{j=1}^{N} \|T^{GIBC}(\lambda,\eta,\Gamma,\hat{\theta}_j) - u^{\infty}_{\text{coat}}(\cdot,\hat{\theta}_j)\|^2_{L^2(S_j)}$$

Outline

Formulation of the inverse problem An optimization point of view A GIBC approximate model

2 Derivatives of the cost function

Difficulty related to the shape derivative

$$\label{eq:GIBC model: } \text{GIBC model: } \frac{\partial u}{\partial \nu} + \text{div}_{\Gamma}(\eta \nabla_{\Gamma} u) + \lambda u = 0 \quad \text{on } \Gamma$$

$$F^{GIBC}(\lambda,\eta,\Gamma) := \frac{1}{2} \sum_{j=1}^{I} \|T^{GIBC}(\lambda,\eta,\Gamma,\hat{\theta}_j) - u^{\infty}_{\text{coat}}(\cdot,\hat{\theta}_j)\|^2_{L^2(S_j)}$$

For minimizing F^{GIBC} we use a steepest descent method:

- we need partial derivatives of the far–field with respect to λ and η (quite standard),
- we need an appropriate derivative w.r.t. the obstacle.

Difficulty: the unknown impedances are supported by Γ .

Derivative of the cost function with respect to the obstacle

 $h \in C^{1,\infty}(\mathbb{R}^d, \mathbb{R}^d)$ is "small" $f_h := \mathrm{Id} + h$ $\Gamma_h := f_h(\Gamma)$ λ and η being constant

We define the derivative v_h of the scattered field with respect to the geometry at point (λ, η, Γ) by

$$u^{s}(\lambda,\eta,\Gamma_{h}) - u^{s}(\lambda,\eta,\Gamma) = v_{h} + o(||h||)$$

where $h \mapsto v_h$ is linear.

Derivative of the cost function with respect to the obstacle

 $h \in C^{1,\infty}(\mathbb{R}^d, \mathbb{R}^d) \text{ is "small"}$ $f_h := \mathrm{Id} + h$ $\Gamma_h := f_h(\Gamma)$ $\lambda_h := \lambda \circ f_h^{-1}, \quad \eta_h := \eta \circ f_h^{-1}$

We define the derivative v_h of the scattered field with respect to the geometry at point (λ, η, Γ) by

$$u^{s}(\lambda_{h},\eta_{h},\Gamma_{h}) - u^{s}(\lambda,\eta,\Gamma) = v_{h} + o(||h||)$$

where $h \mapsto v_h$ is linear.

Derivative of the cost function with respect to the obstacle

 $h \in C^{1,\infty}(\mathbb{R}^d, \mathbb{R}^d) \text{ is "small"}$ $f_h := \mathrm{Id} + h$ $\Gamma_h := f_h(\Gamma)$ $\lambda_h := \lambda \circ f_h^{-1}, \quad \eta_h := \eta \circ f_h^{-1}$

We define the derivative v_h of the scattered field with respect to the geometry at point (λ, η, Γ) by

$$u^{s}(\lambda_{h},\eta_{h},\Gamma_{h}) - u^{s}(\lambda,\eta,\Gamma) = v_{h} + o(||h||)$$

where $h \mapsto v_h$ is linear.

One may find f_h such that $\Gamma = f_h(\Gamma)$ and

$$F'_{\lambda,\eta}(\Gamma) \cdot h \neq 0.$$

 $F'_{\lambda,\eta}(\Gamma)$ does not satisfy the classical shape derivative's properties!

Derivative of the scattered field with respect to the obstacle

Let (λ,η,Γ) be given and analytic, for some small $h\in C^{1,\infty}$ define

$$\Gamma_h = f_h(\Gamma), \quad \lambda_h := \lambda \circ f_h^{-1} \text{ and } \eta_h := \eta \circ f_h^{-1}.$$

Let $u_h^s [u^s]$ be scattered field associated with $(\lambda_h, \eta_h, \Gamma_h) [(\lambda, \eta, \Gamma)]$.

$$u_h^s(x) - u^s(x) = v_h(x) + o(||h||),$$

where $v_h(x)$ is the solution of the scattering problem with

$$\begin{aligned} \frac{\partial v_h}{\partial \nu} + \mathbf{Z} v_h &= B_h u \quad \text{on} \quad \Gamma \\ B_h u &= (h \cdot \nu) (k^2 - 2H\lambda) u + \operatorname{div}_{\Gamma} ((Id + 2\eta (R - H Id))(h \cdot \nu) \nabla_{\Gamma} u) \\ &+ (\nabla_{\Gamma} \lambda \cdot h) u + \operatorname{div}_{\Gamma} ((\nabla_{\Gamma} \eta \cdot h) \nabla_{\Gamma} u) \\ &+ \mathbf{Z} ((h \cdot \nu) \mathbf{Z} u) \,, \end{aligned}$$

with
$$2H := \operatorname{div}_{\Gamma} \nu$$
, $R := \nabla_{\Gamma} \nu$ and $\mathbf{Z} \cdot = \operatorname{div}_{\Gamma}(\eta \nabla_{\Gamma} \cdot) + \lambda \cdot$

12 / 19

Outline

Formulation of the inverse problem An optimization point of view A GIBC approximate model

2 Derivatives of the cost function

Numerical algorithm

$$F^{\text{GIBC}}(\lambda,\eta,\Gamma) := \frac{1}{2} \sum_{j=1}^{I} \|T^{\text{GIBC}}(\lambda,\eta,\Gamma,\hat{\theta}_j) - u^{\infty}_{\text{obs}}(\cdot,\hat{\theta}_j)\|_{L^2(S_j)}^2$$

Numerical procedure:

• update alternatively λ , η and Γ with a direction given by the partial derivative of the cost function,

$$\lambda^{\mathsf{n}+1} = \lambda^{\mathsf{n}} - \alpha_{\mathsf{n}} \mathsf{F}'_{\eta, \mathsf{\Gamma}}(\lambda^{\mathsf{n}})$$

The regularization procedure

$$F^{\text{GIBC}}(\lambda,\eta,\Gamma) = \frac{1}{2} \sum_{j=1}^{I} \|T^{\text{GIBC}}(\lambda,\eta,\Gamma,\hat{\theta}_j) - u^{\infty}_{\text{obs}}(\cdot,\hat{\theta}_j)\|^2_{L^2(S_j)}$$

We regularize the gradient, NOT the cost function, using a $H^1(\Gamma)$ regularization.

▶ Descent direction for λ : find $\delta\lambda$ that solves for every ϕ in some finite dimensional space:

$$\beta_{\lambda} \int_{\Gamma} \nabla_{\Gamma}(\delta \lambda) \cdot \nabla_{\Gamma} \phi \, ds + \int_{\Gamma} \delta \lambda \phi \, ds = -\alpha_{\lambda} \, F_{\eta,\Gamma}'(\lambda) \cdot \phi$$

where β_{λ} is the regularization coefficient and α_{λ} is the descent coefficient.

▶ Do the same for $\delta\eta$ and $\delta\Gamma$.

Numerical reconstruction

Finite elements method and remeshing procedure $using \ FreeFem++$

Reconstruction of the geometry with 2 incident waves and 1% noise on the far-field, $\lambda = ik/2$ and $\eta = 2/k$ being known. The synthetic data come from the GIBC model

Application to the reconstruction of a coated obstacle

Reconstruction of an obstacle using the generalized impedance boundary condition model of order 1 minimizing

$$F^{GIBC}(\mu,\delta,\Gamma) := \frac{1}{2} \sum_{j=1}^{I} \|T^{GIBC}(\mu,\delta,\Gamma,\hat{\theta}_j) - u^{\infty}_{\text{coat}}(\cdot,\hat{\theta}_j)\|^2_{L^2(S_j)}$$

with $\epsilon = 0.1$ known.

Application to the reconstruction of a coated obstacle

Numerical results

Artificial data created with

- $\epsilon = 0.1$ is known,
- $\delta = 0.04l(1 0.4\sin(\theta))$ is unknown; *l* being the wavelength,
- $\mu = 2.5$ is unknown.

Reconstructed μ : 2.3.

Fails with a classical impedance boundary condition model!

Conclusion

- ▶ The quantitative reconstruction of coated obstacles can be quite fast and accurate.
- ▶ The optimization methods also provide the thickness of the coating as well as its physical parameters.

- \blacktriangleright Extension to the 3D Maxwell equations.
- ▶ Can be applied for any complex structure that can be approximated by a GIBC.

On simultaneous identification of a scatterer and its generalized impedance boundary condition. L. Bourgeois, N. Chaulet and H. Haddar. INRIA Research Report n 7645, 2011. Submitted