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The scattering problem for coated
obstacles in the harmonic regime

div(e 'Vus) + pk?us = 0 Qext

ui
Jus /
00
dvs us
\
Aus + kus =0
us = us + ui D = Gray +Red
lim |0,uf — ikug*ds =0

R—oo |z|=R



The inverse scattering problem for coated
obstacles
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Qualitative techniques

+ Fast
— Need a lot of data
— Not very accurate

Quantitative techniques

+ Provide accurate reconstruction
— Need a priori information
— Computational cost

Design an optimization procedure to find the
shape and the thickness from scattered field data.
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Outline

@ Formulation of the inverse problem
@ An optimization point of view
o A GIBC approximate model

© Derivatives of the cost function

© Numerical experiments
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The inverse problem

The far field map For u'(x,0) = €02 define
T : (e, 1,6, T,0) — u™(%,0)

where u® associated with u*® is defined in dimension d by

5 ezkr - 1

r

The inverse problem

Given N far-fields (uy(-,8;))j=1.. N, retrieve the geometry T
and the properties of the layer.
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Given N far-fields (uy(-,8;))j=1.. N, retrieve the geometry T
and the properties of the layer.

Minimize
Fcoat(e 1, 0, F Z ”1160&t 6 1,0, T 0 ) coat("aj)Hiz(Sj)
J 1
T3 is computationally expensive to evaluate!
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The inverse problem

Given N far—fields (4 (-, 6;))j=1... N, retrieve the geometry T
and the properties of the layer.

Minimize
Fcoat(e ,LL,(S F Z ”1160&t 6 .UJ’(S L, 0 ) coat("aj)”%Z(Sj)
J 1
T is computationally expensive to evaluate!
f \
Minimize
Fequl(e s 6, F Z ||Teqm € 1,0, T, 0 ) coat( 93’)”%2(5]-)
] 1
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An approximate GIBC model

|us — um| < CE™FL/2

Qus 0 Dy,
s dv

+ Zmuy =0

div(e~'Vug) + pk?us = 0

Ay, + kK2, =0

Augs + k*us =0

Ezact model Equivalent model of order m

(1n dimension 2: (Aslanyitireck, Haddar, Sahintirk [11] )

_ 0. .40 2
Z, = 8856 s + 0k*p
0 §%c¢\ _, 0 52c\ o




The GIBC forward problem
Find u = u® + v such that

[us = {v € D' (Qut), v € H' (Qews) Vio € DRY); vpp € Hl(F)}}

and
Au+k?u=0 1in Qex
ou
— +divr(nVru) +Adu=0 onT
(P) o r(nVru) ;
. ou®
lim —iku®| ds = 0.
R—oo |z|=R or

u exists and is unique if
» Im(A) >0, Sm(n) <0ae onT

(physical assumption)
» Re(n) >c¢ a.e. onl for c>0.
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Reformulation of the inverse problem

The far field map for the GIBC model
For u/(x,0) = e define

TEIBC . (X, n,T,0) — u>®(,0).

For thin layer we have:

(76120 (5h2p, 561, 0,65) = T (e, 16,7, 0) + O[5

New functional to minimize

Given N farfields (uZ(-6;))j=1... n corresponding to the
coated obstacle, minimize

FOIBC() p T . Z |TBE (N n, T, 0;) — coat('?éj)||%2(5j)
] 1
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Outline

© Derivatives of the cost function
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Difficulty related to the shape derivative

[GIBC model: % +divr(nVru) + Au =0 on 1"}
v

I
1 .
FGIBC()\ p T) . =3 § | TCTBC (X, n, T, 6, i) —u coat('aej)H%Z(Sj)

FGIBC

For minimizing we use a steepest descent method:

@ we need partial derivatives of the far—field with respect to A and
7 (quite standard),

@ we need an appropriate derivative w.r.t. the obstacle.

& Difficulty: the unknown impedances are supported by I'.
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Derivative of the cost function with
respect to the obstacle
h € C1°(R% RY) is “small”
fh =1d + h
Ph = fh(l“)

A and 7 being constant

We define the derivative vy, of the scattered field with respect to the
geometry at point (A, 7,T) by

w(A,n,Tn) —u® (X0, 1) = vn + o(||h]])

where h — vy, is linear.
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Derivative of the cost function with
respect to the obstacle
h € C1°(R% RY) is “small”
fh =1d + h
Ph = fh(l“)
Ani=Xofit, mni=mno !

We define the derivative vy, of the scattered field with respect to the
geometry at point (A, 7,T) by

(A s Tn) — u® (X, 1, T) = wn + o(||A]])

where h — vy, is linear.

One may find f; such that T' = f;,(T") and
F{,(T)-h #0.

Q 3 FY ,(I') does not satisfy the classical shape derivative’s
properties!
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Derivative of the scattered field with

respect to the obstacle
Let (A, n,T) be given and analytic, for some small h € C**° define

I'n=/ @), A ::)\of}jl andnh::nofhfl‘

Let uj, [u’] be scattered field associated with (An, s, Tn) [(X, 7, T)].

(wi@) = v (@) = ou@) + o(l11]). )

where vp () is the solution of the scattering problem with

81}h
—+Zvy, = Bpu on T
ov
Bru =(h-v)(k* — 2HN)u + divr ((Id + 29(R — H Id))(h - v)Vru)
+ (Vr)\ . h)u + divr ((Vr’l? . h)Vpu)
+Z((h-v)Zu),

with 2H := divrv, R := Vrv and Z- = divr(nVr-) + A
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Outline

© Numerical experiments
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Numerical algorithm

FOBC() 5 T) ZHTGIBC(/\ 0,1, 07) = ughs (- 0)|2(s,)
] 1

Numerical procedure:

e update alternatively A, n and I" with a direction given by
the partial derivative of the cost function,

A= AN — anFy (A7)




The regularization procedure

I
1 7 © (.9
FGIBC()\,U,F) _ 5 2 : ||TGIBC()\717,F,9]') — uobs('7‘9?)||%2(5j)
Jj=1

We regularize the gradient, NOT the cost function, using a H'(T")
regularization.

» Descent direction for A: find A that solves for every ¢ in
some finite dimensional space:

By / Vr(5/\)~vr</)ds+/5)\¢ds: —a\Flr(A) - ¢
JT r

where ) is the regularization coefficient and « is the descent
coefficient.
» Do the same for én and 6T
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Numerical reconstruction
Finite elements method and remeshing procedure
using FreeFem++

Exact geometry

04 Initial geometry ~ x

Reconstructed geometry
0.2

0 QJ
-0.2 P
-04
wavelength
-04 -0.2 0 0.2 04

Reconstruction of the geometry with 2 incident waves and 1%
noise on the far—field, A = ik/2 and n = 2/k being known.
The synthetic data come from the GIBC model
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Application to the reconstruction of a
coated obstacle

Jus duy
v

. = — +divp(de ' Vruy) + dpk*u; =0
div(e™'Vus) + pk?us = 0 o

Auy + kuy =0

Augs + kus =0

Ezact model Equivalent model of order 1

Reconstruction of an obstacle using the generalized impedance bound-
ary condition model of order 1 minimizing

FEIBC(,6,T) Z TP (1, 6,T,05) — uggar (- 65| 72(s,)
j 1

with € = 0.1 known.
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Application to the reconstruction of a

coated obstacle
Numerical results

Artificial data created with

@ ¢ =0.1is known,
@ 6 =0.04/(1 — 0.4sin(0)) is unknown; [ being the wavelength,
@ 1 = 2.5 is unknown.

Reconstructed p: 2.3.
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007

Exact geometry
Initial geometry ~ x 0065
Reconstructed geometry

006

0055

005 [/

0045

004

0035

003

wavelength

0025

-1.5 -1 -0.5 0 0.5 1 1.5 3 2 B 0 1 2 3

[Fails with a classical impedance boundary condition modcl!)




Conclusion

» The quantitative reconstruction of coated obstacles can be
quite fast and accurate.

» The optimization methods also provide the thickness of the
coating as well as its physical parameters.

» Extension to the 3D Maxwell equations.

» Can be applied for any complex structure that can be
approximated by a GIBC.

On simultaneous identification of a scatterer and its generalized impedance
m boundary condition. L. Bourgeois, N. Chaulet and H. Haddar. INRIA Research
Report n 7645, 2011. Submitted
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