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The scattering problem for coated
obstacles in the harmonic regime
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The inverse scattering problem for coated
obstacles

Qualitative techniques

+ Fast
� Need a lot of data
� Not very accurate

Quantitative techniques

+ Provide accurate reconstruction
� Need a priori information
� Computational cost

Design an optimization procedure to find the
shape and the thickness from scattered field data.
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Outline

1 Formulation of the inverse problem
An optimization point of view
A GIBC approximate model

2 Derivatives of the cost function

3 Numerical experiments
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The inverse problem

The far field map For ui(x, ✓̂) = eik✓̂·x define

T coat : (✏, µ, �,�, ✓̂) 7! u1(x̂, ✓̂)

where u1 associated with us is defined in dimension d by

us(x) =
eikr

r(d�1)/2

✓

u1(x̂) +O
✓

1

r

◆◆

r �! +1.

The inverse problem

Given N far–fields (u1coat(·, ✓̂j))j=1,··· ,N , retrieve the geometry �
and the properties of the layer.
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T coat is computationally expensive to evaluate!
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An approximate GIBC model

ku� � umk  C�m+1/2

Exact model Equivalent model of order m

In dimension 2: (Aslanyüreck, Haddar, Şahintürk [11] )

Z
1

=
@

@s
�✏�1

@
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+ �k2µ

Z
2
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@

@s

✓

� � �2c

2

◆

✏�1

@

@s
+
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� +
�2c

2

◆

k2µ.
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The GIBC forward problem

Find u = us + ui such that

us 2
n

v 2 D0(⌦ext) , 'v 2 H1(⌦ext) 8' 2 D(Rd); v|� 2 H1(�)
o

and

(P)

8

>

>

>

>

>

<

>

>

>

>

>

:

�u+ k2u = 0 in ⌦ext

@u

@⌫
+ div�(⌘r�u) + �u = 0 on �

lim
R!1

Z

|x|=R

�

�

�

�

�

@us

@r
� ikus

�

�

�

�

�

2

ds = 0.

u exists and is unique if

I =m(�) � 0, =m(⌘)  0 a.e. on � (physical assumption)

I <e(⌘) � c a.e. on � for c > 0.
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Reformulation of the inverse problem

The far field map for the GIBC model

For ui(x, ✓̂) = eik✓̂·x define

TGIBC : (�, ⌘,�, ✓̂) 7! u1(x̂, ✓̂).

For thin layer we have:

TGIBC(�k2µ, �✏�1,�, ✓̂
j

) = T coat(✏, µ, �,�, ✓̂
j

) +O(�3/2)

New functional to minimize

Given N far–fields (u1coat(·, ✓̂j))j=1,··· ,N corresponding to the
coated obstacle, minimize

FGIBC(�, ⌘,�) :=
1

2

N

X

j=1

kTGIBC(�, ⌘,�, ✓̂
j

)� u1coat(·, ✓̂j)k2
L

2(Sj)
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Outline

1 Formulation of the inverse problem
An optimization point of view
A GIBC approximate model

2 Derivatives of the cost function

3 Numerical experiments
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Di�culty related to the shape derivative

GIBC model:
@u

@⌫
+ div

�

(⌘r
�

u) + �u = 0 on �

FGIBC(�, ⌘,�) :=
1

2

I
X

j=1

kTGIBC(�, ⌘,�, ✓̂j)� u1
coat

(·, ✓̂j)k2L2
(Sj)

For minimizing FGIBC we use a steepest descent method:

we need partial derivatives of the far–field with respect to � and
⌘ (quite standard),

we need an appropriate derivative w.r.t. the obstacle.

Di�culty: the unknown impedances are supported by �.
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Derivative of the cost function with
respect to the obstacle

h 2 C1,1(Rd,Rd) is “small”

fh := Id + h

�h := fh(�)

� and ⌘ being constant

We define the derivative vh of the scattered field with respect to the
geometry at point (�, ⌘,�) by

us(�, ⌘,�h)� us(�, ⌘,�) = vh + o(||h||)

where h 7! vh is linear.

One may find fh such that � = fh(�) and

F 0
�,⌘(�) · h 6= 0.

F 0
�,⌘(�) does not satisfy the classical shape derivative’s

properties!
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Derivative of the scattered field with
respect to the obstacle

Let (�, ⌘,�) be given and analytic, for some small h 2 C1,1
define

�h = fh(�) , �h := � � f�1
h and ⌘h := ⌘ � f�1

h .

Let us
h [us

] be scattered field associated with (�h, ⌘h,�h) [(�, ⌘,�)].

us
h(x)� us

(x) = vh(x) + o(||h||),

where vh(x) is the solution of the scattering problem with

@vh

@⌫
+ Zvh = Bhu on �

Bhu =(h · ⌫)(k2 � 2H�)u+ div� ((Id+ 2⌘(R�H Id))(h · ⌫)r�u)

+ (r�� · h)u+ div� ((r�⌘ · h)r�u)

+ Z ((h · ⌫)Zu) ,

with 2H := div�⌫, R := r�⌫ and Z· = div�(⌘r�·) + �·
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Numerical algorithm

FGIBC(�, ⌘,�) :=
1

2

I

X

j=1

kTGIBC(�, ⌘,�, ✓̂
j

)� u1obs(·, ✓̂j)k2
L

2(Sj)

Numerical procedure:

update alternatively �, ⌘ and � with a direction given by
the partial derivative of the cost function,

�n+1 = �n � ↵nF
0
⌘,�(�

n)
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The regularization procedure

FGIBC(�, ⌘,�) =
1

2

I

X

j=1

kTGIBC(�, ⌘,�, ✓̂
j

)� u1obs(·, ✓̂j)k2
L

2(Sj)

We regularize the gradient, NOT the cost function, using aH1(�)
regularization.

I Descent direction for �: find �� that solves for every � in
some finite dimensional space:

�
�

Z

�
r�(��) ·r�� ds+

Z

�
��� ds = �↵

�

F 0
⌘,�(�) · �

where �
�

is the regularization coe�cient and ↵
�

is the descent
coe�cient.
I Do the same for �⌘ and ��.
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Numerical reconstruction
Finite elements method and remeshing procedure

using FreeFem++
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Reconstructed geometry

Reconstruction of the geometry with 2 incident waves and 1%
noise on the far–field, � = ik/2 and ⌘ = 2/k being known.

The synthetic data come from the GIBC model
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Application to the reconstruction of a
coated obstacle

Exact model Equivalent model of order 1

Reconstruction of an obstacle using the generalized impedance bound-
ary condition model of order 1 minimizing

FGIBC(µ, �,�) :=
1

2

I
X

j=1

kTGIBC(µ, �,�, ✓̂j)� u1
coat

(·, ✓̂j)k2L2
(Sj)

with ✏ = 0.1 known.
17 / 19



Application to the reconstruction of a
coated obstacle

Numerical results
Artificial data created with

✏ = 0.1 is known,

� = 0.04l(1� 0.4 sin(✓)) is unknown; l being the wavelength,

µ = 2.5 is unknown.

Reconstructed µ: 2.3.
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Fails with a classical impedance boundary condition model!
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Conclusion

I The quantitative reconstruction of coated obstacles can be
quite fast and accurate.

I The optimization methods also provide the thickness of the
coating as well as its physical parameters.

I Extension to the 3D Maxwell equations.

I Can be applied for any complex structure that can be
approximated by a GIBC.

On simultaneous identification of a scatterer and its generalized impedance
boundary condition. L. Bourgeois, N. Chaulet and H. Haddar. INRIA Research
Report n 7645, 2011. Submitted
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