Generalized impedance models in inverse scattering

Nicolas Chaulet
Supervisors: L. Bourgeois and H. Haddar

Corráa
PhD defense,
Palaiseau, November 27, 2012

Inverse electromagnetic scattering problems Radar imaging, non destructive testing, medical imaging..

Inverse electromagnetic scattering with Generalized Impedance Boundary Conditions

$\rightarrow \mathbf{Z}$ characterizes the inhomogeneity Ω

Inverse electromagnetic scattering with Generalized Impedance Boundary Conditions

\rightarrow We consider GIBC: \mathbf{Z} is local

Inverse electromagnetic scattering with Generalized Impedance Boundary Conditions

Examples for which \mathbf{Z} is local

[Bouchitté 90, Engquist-Nédélec 93...]

Inverse electromagnetic scattering with Generalized Impedance Boundary Conditions

$$
\left\|u_{\delta}-u_{\mathrm{app}}\right\| \leq C \delta^{2}
$$

ex: scattering by thin coatings (TM electromagnetic mode)

$$
\frac{\partial u_{\mathrm{app}}}{\partial \nu}-\frac{1}{\delta} u_{\mathrm{app}}=0
$$

$$
\Delta u_{\mathrm{app}}+k^{2} u_{\mathrm{app}}=0
$$

$\rightarrow \mathbf{Z}$ is the multiplication operator

Inverse electromagnetic scattering with Generalized Impedance Boundary Conditions

$$
\left\|u_{\delta}-u_{\mathrm{app}}\right\| \leq C \delta^{2}
$$

ex: scattering by thin coatings (TE electromagnetic mode)

$\rightarrow \mathbf{Z}$ is of the form $\operatorname{div}_{\Gamma} \eta \nabla_{\Gamma}+\lambda$

Inverse electromagnetic scattering with Generalized Impedance Boundary Conditions

\rightarrow We consider GIBC: \mathbf{Z} is local

$$
\text { Inverse problem: Find } \Omega \text { and } \mathbf{Z} \text { from the scattered fields }
$$

Difficulties

- The problem is non linear
- and ill-posed
\rightarrow uniqueness may fail, unstable w.r.t noise on the data

Inverse electromagnetic scattering with Generalized Impedance Boundary Conditions

$$
\nu \times \mathbf{E}+\mathbf{Z H}_{T}=0
$$

$(\mathbf{E}, \mathbf{H}):=\left(\mathbf{E}^{s}, \mathbf{H}^{s}\right)+\left(\mathbf{E}^{i}, \mathbf{H}^{i}\right)$

\rightarrow We consider GIBC: \mathbf{Z} is local
Inverse problem: Find Ω and \mathbf{Z} from the scattered fields
Main inversion methods

- Qualitative methods or sampling methods (Colton-Kirsch 96...) \rightarrow Few a priori information but a lot of data
- Quantitative methods (e.g. non-linear optimization methods) \rightarrow Adapted to limited data but more a priori information and simple model

Outline of the talk

(1) The GIBC forward problem

- The scalar case
- The Maxwell case
- We prove well-posedness for rather general impedance operators in the scalar case (with M. Chamaillard)
- We extend this to the 3D Maxwell's equations, theoretical difficulties arise from the variational spaces

Outline of the talk

(1) The GIBC forward problem

- The scalar case
- The Maxwell case
- We prove well-posedness for rather general impedance operators in the scalar case (with M. Chamaillard)
- We extend this to the 3D Maxwell's equations, theoretical difficulties arise from the variational spaces
(2) Use of qualitative methods in the scalar case
- The factorization method
- Application to a uniqueness proof
- We justify the factorization method for general impedance operators in the scalar case (with M. Chamaillard)
- We compute and justify an asymptotic development of the interior transmission eigenvalues for thin coating imaging (with F. Cakoni) (not in this talk)

Outline of the talk

(3) Use of optimization methods

- The scalar case
- The Maxwell case
- Restriction to the case of

$$
\mathbf{Z}=\operatorname{div}_{\Gamma} \eta \nabla_{\Gamma}+\lambda
$$

- Stability for the reconstruction of (λ, η) on exact or inexact geometries
- We compute the shape and coefficients derivatives of the scattered field for non-constant impedances and second order surface operators
- We validate this method with numerical experiments for the $2 D$ scalar case and the $3 D$ Maxwell case

Outline

(1) The GIBC forward problem

- The scalar case
- The Maxwell case
(2) Use of qualitative methods in the scalar case
(3) Use of optimization methods

The GIBC forward problem

A volume formulation

- V an Hilbert space such that $C^{\infty}(\Gamma) \subset V \subset L^{2}(\Gamma)$
- $\mathbf{Z}: V \longrightarrow V^{*}$ is linear and continuous

For example for complex functions $(\lambda, \eta) \in\left(L^{\infty}(\Gamma)\right)^{2}$

$$
\begin{gathered}
\mathbf{Z}=\operatorname{div}_{\Gamma} \eta \nabla_{\Gamma}+\lambda \\
V=H^{1}(\Gamma)
\end{gathered}
$$

The GIBC forward problem

A volume formulation

- V an Hilbert space such that $C^{\infty}(\Gamma) \subset V \subset L^{2}(\Gamma)$
- $\mathbf{Z}: V \longrightarrow V^{*}$ is linear and continuous
- $\Im m\langle\mathbf{Z} u, u\rangle_{V^{*}, V} \geq 0$ for uniqueness reasons

The GIBC forward problem

A volume formulation

- V an Hilbert space such that $C^{\infty}(\Gamma) \subset V \subset L^{2}(\Gamma)$
- $\mathbf{Z}: V \longrightarrow V^{*}$ is linear and continuous
- $\Im m\langle\mathbf{Z} u, u\rangle_{V^{*}, V} \geq 0$ for uniqueness reasons

Find $u^{s} \in\left\{v \in \mathcal{D}^{\prime}\left(\Omega_{\text {ext }}\right), \varphi v \in H^{1}\left(\Omega_{\text {ext }}\right) \forall \varphi \in \mathcal{D}\left(\mathbb{R}^{d}\right) ; v_{\mid \Gamma} \in V\right\}$

$$
\left(\mathcal{P}_{\text {vol }}\right)\left\{\begin{array}{l}
\Delta u^{s}+k^{2} u^{s}=0 \text { in } \Omega_{\mathrm{ext}}:=\mathbb{R}^{d} \backslash \bar{\Omega}, \\
\frac{\partial u^{s}}{\partial \nu}+\mathbf{Z} u^{s}=f \text { on } \Gamma, \quad\left(f=-\frac{\partial u^{i}}{\partial \nu}-Z u^{i}\right) \\
\lim _{R \rightarrow \infty} \int_{|x|=R}\left|\partial_{r} u^{s}-i k u^{s}\right|^{2}=0 .
\end{array}\right.
$$

The GIBC forward problem

A volume formulation

- V an Hilbert space such that $C^{\infty}(\Gamma) \subset V \subset L^{2}(\Gamma)$
- $\mathbf{Z}: V \longrightarrow V^{*}$ is linear and continuous
- $\Im m\langle\mathbf{Z} u, u\rangle_{V^{*}, V} \geq 0$ for uniqueness reasons

Find $u^{s} \in\left\{v \in \mathcal{D}^{\prime}\left(\Omega_{\text {ext }}\right), \varphi v \in H^{1}\left(\Omega_{\text {ext }}\right) \forall \varphi \in \mathcal{D}\left(\mathbb{R}^{d}\right) ; v_{\mid \Gamma} \in V\right\}$

$$
\left(\mathcal{P}_{\text {vol }}\right)\left\{\begin{array}{l}
\Delta u^{s}+k^{2} u^{s}=0 \text { in } \Omega_{\mathrm{ext}}:=\mathbb{R}^{d} \backslash \bar{\Omega}, \\
\frac{\partial u^{s}}{\partial \nu}+\mathbf{Z} u^{s}=f \text { on } \Gamma, \quad\left(f=-\frac{\partial u^{i}}{\partial \nu}-Z u^{i}\right) \\
\lim _{R \rightarrow \infty} \int_{|x|=R}\left|\partial_{r} u^{s}-i k u^{s}\right|^{2}=0 .
\end{array}\right.
$$

Theorem

If $\Re e(\mathbf{Z}) \geq 0$ then the forward problem is well posed and the continuity constant does not depend on \mathbf{Z}.

Well posedness of the forward problem

A surface equivalent formulation

Find $u^{s} \in\left\{v \in \mathcal{D}^{\prime}\left(\Omega_{\text {ext }}\right), \varphi v \in H^{1}\left(\Omega_{\text {ext }}\right) \forall \varphi \in \mathcal{D}\left(\mathbb{R}^{d}\right) ; v_{\mid \Gamma} \in V\right\}$

$$
\left(\mathcal{P}_{\text {vol }}\right)\left\{\begin{array}{l}
\Delta u^{s}+k^{2} u^{s}=0 \text { in } \Omega_{\mathrm{ext}}, \\
\frac{\partial u^{s}}{\partial \nu}+\mathbf{Z} u^{s}=f \text { on } \Gamma, \quad\left(f=-\frac{\partial u^{i}}{\partial \nu}-Z u^{i}\right) \\
\lim _{R \rightarrow \infty} \int_{|\times|=R}\left|\partial_{r} u^{s}-i k u^{s}\right|^{2}=0 .
\end{array}\right.
$$

- $S_{\Gamma}: H^{1 / 2}(\Gamma) \longrightarrow H^{-1 / 2}(\Gamma)$ the exterior DtN map

$$
f \longmapsto \frac{\partial u_{f}}{\partial \nu}
$$

where

$$
\left\{\begin{array}{l}
\Delta u_{f}+k^{2} u_{f}=0 \text { in } \Omega_{\text {ext }}, \\
u_{f}=f \text { on } \Gamma, \\
\lim _{R \rightarrow \infty} \int_{|x|=R}\left|\partial_{r} u_{f}-i k u_{f}\right|^{2}=0 .
\end{array}\right.
$$

Well posedness of the forward problem

A surface equivalent formulation

Find $u^{s} \in\left\{v \in \mathcal{D}^{\prime}\left(\Omega_{\text {ext }}\right), \varphi v \in H^{1}\left(\Omega_{\text {ext }}\right) \forall \varphi \in \mathcal{D}\left(\mathbb{R}^{d}\right) ; v_{\mid \Gamma} \in V\right\}$

$$
\left(\mathcal{P}_{\text {vol }}\right)\left\{\begin{array}{l}
\Delta u^{s}+k^{2} u^{s}=0 \text { in } \Omega_{\mathrm{ext}}, \\
\frac{\partial u^{s}}{\partial \nu}+\mathbf{Z} u^{s}=f \text { on } \Gamma, \quad\left(f=-\frac{\partial u^{i}}{\partial \nu}-\mathbf{Z} u^{i}\right) \\
\lim _{R \rightarrow \infty} \int_{|x|=R}\left|\partial_{r} u^{s}-i k u^{s}\right|^{2}=0 .
\end{array}\right.
$$

- $S_{\Gamma}: H^{1 / 2}(\Gamma) \longrightarrow H^{-1 / 2}(\Gamma)$ the exterior DtN map

$$
f \longmapsto \frac{\partial u_{f}}{\partial \nu}
$$

$\left(\mathcal{P}_{\text {vol }}\right) \Longleftrightarrow\left(\mathcal{P}_{\text {surf }}\right)$
Find $u_{\Gamma}^{s} \in V \cap H^{1 / 2}(\Gamma)$ such that $\left(\mathbf{Z}+S_{\Gamma}\right) u_{\Gamma}^{s}=f$

Well posedness of the forward problem

 A Fredholm operator$$
\left(\mathcal{P}_{\text {vol }}\right) \Longleftrightarrow\left(\mathcal{P}_{\text {surf }}\right) \quad\left\{\begin{array}{l}
\text { Find } u_{\Gamma}^{s} \in V \cap H^{1 / 2}(\Gamma) \text { such that } \\
\left(\mathbf{Z}+S_{\Gamma}\right) u_{\Gamma}^{s}=f
\end{array}\right.
$$

Remark: $S_{\Gamma}: H^{1 / 2}(\Gamma) \rightarrow H^{-1 / 2}(\Gamma)$ is a Fredholm operator of index 0

Theorem

If one of the following holds
1 the embedding $H^{1 / 2}(\Gamma) \subset V$ is compact,
2 the embedding $V \subset H^{1 / 2}(\Gamma)$ is compact and $\mathbf{Z}: V \rightarrow V^{*}$ is Fredholm of index 0 ,
then $\left(\mathbf{Z}+S_{\Gamma}\right):\left(V \cap H^{1 / 2}(\Gamma)\right) \rightarrow\left(V \cap H^{1 / 2}(\Gamma)\right)^{*}$ is an isomorphism.

Application: $\mathbf{Z}=\lambda$.

Well posedness of the forward problem

 A Fredholm operator$$
\left(\mathcal{P}_{\text {vol }}\right) \Longleftrightarrow\left(\mathcal{P}_{\text {surf }}\right) \quad\left\{\begin{array}{l}
\text { Find } u_{\Gamma}^{s} \in V \cap H^{1 / 2}(\Gamma) \text { such that } \\
\left(\mathbf{Z}+S_{\Gamma}\right) u_{\Gamma}^{s}=f
\end{array}\right.
$$

Remark: $S_{\Gamma}: H^{1 / 2}(\Gamma) \rightarrow H^{-1 / 2}(\Gamma)$ is a Fredholm operator of index 0

Theorem

If one of the following holds
1 the embedding $H^{1 / 2}(\Gamma) \subset V$ is compact,
2 the embedding $V \subset H^{1 / 2}(\Gamma)$ is compact and $\mathbf{Z}: V \rightarrow V^{*}$ is Fredholm of index 0 ,
then $\left(\mathbf{Z}+S_{\Gamma}\right):\left(V \cap H^{1 / 2}(\Gamma)\right) \rightarrow\left(V \cap H^{1 / 2}(\Gamma)\right)^{*}$ is an isomorphism.

Application: $\mathbf{Z}=\operatorname{div}_{\Gamma} \eta \nabla_{\Gamma}+\lambda$ with $\Re e(\eta)>0$ or $\Re e(\eta)<0$.

A forward model for Maxwell's equations

First order model for thin layers

Find $\left(\mathbf{E}^{s}, \mathbf{H}^{s}\right) \in \mathbf{H}_{\text {loc }}^{\text {rot }}\left(\Omega_{\text {ext }}\right) \times \mathbf{H}_{\text {loc }}^{\text {rot }}\left(\Omega_{\text {ext }}\right)$ such that

$$
\left(\mathcal{P}_{M a x}\right)\left\{\begin{array}{l}
\operatorname{rot}^{s}+i k \mathbf{E}^{s}=0 \quad \text { in } \Omega_{\text {ext }}, \\
\operatorname{rot}^{s}-i k \mathbf{H}^{s}=0 \quad \text { in } \Omega_{\text {ext }}, \\
\nu \times \mathbf{E}^{s}+\mathbf{Z} \mathbf{H}_{T}^{s}=-\left(\nu \times \mathbf{E}^{i}+\mathbf{Z} \mathbf{H}_{T}^{i}\right) \quad \text { on } \Gamma, \\
\lim _{R \rightarrow \infty} \int_{\partial B_{R}}\left|\mathbf{H}^{s} \times \hat{x}-\left(\hat{x} \times \mathbf{E}^{s}\right) \times \hat{x}\right|^{2} d s=0
\end{array}\right.
$$

with

$$
\mathbf{Z H}_{T}=\boldsymbol{\operatorname { r o t }}_{\Gamma}\left(\eta \operatorname{rot}_{\Gamma} \mathbf{H}_{T}\right)+\lambda \mathbf{H}_{T}
$$

and

$$
\begin{gathered}
\mathbf{H}_{T}:=(\nu \times \mathbf{H}) \times \nu \\
\operatorname{rot}_{\Gamma}=\nu \cdot \operatorname{rot} \\
\boldsymbol{\operatorname { r o t }}_{\Gamma}=-\nu \times \nabla_{\Gamma}
\end{gathered}
$$

A forward model for Maxwell's equations

First order model for thin layers

$$
\left(\mathcal{P}_{\text {Max }}\right) \Longleftrightarrow\left(\mathcal{P}_{\text {surf }}\right) \quad\left\{\begin{array}{l}
\text { Find } \mathbf{H}_{\Gamma} \in \mathbf{H}_{\text {rotr }}(\Gamma) \text { such that } \\
\left(\mathbf{Z}+S_{\Gamma}\right) \mathbf{H}_{\Gamma}=f
\end{array}\right.
$$

with

$$
\mathbf{Z} \mathbf{H}_{T}=\boldsymbol{\operatorname { r o t }}_{\Gamma}\left(\eta \operatorname{rot}_{\Gamma} \mathbf{H}_{T}\right)+\lambda \mathbf{H}_{T}
$$

and

$$
S_{\Gamma}: \mathbf{H}_{\mathrm{rot}_{\Gamma}}^{-1 / 2} \longrightarrow \mathbf{H}_{\mathrm{div}_{\Gamma}}^{-1 / 2}
$$

is the exterior Magnetic to Electric operator.
Notation: $\mathbf{H}_{\text {rot }_{\Gamma}}(\Gamma):=\left\{\mathbf{v} \in\left(L^{2}(\Gamma)\right)^{3} \mid \mathbf{v} \cdot \nu=0\right.$ and $\left.\operatorname{rot}_{\Gamma} \mathbf{v} \in L^{2}(\Gamma)\right\}$

A forward model for Maxwell's equations

First order model for thin layers

$$
\left(\mathcal{P}_{\text {Max }}\right) \Longleftrightarrow\left(\mathcal{P}_{\text {surf }}\right) \quad\left\{\begin{array}{l}
\text { Find } \mathbf{H}_{\Gamma} \in \mathbf{H}_{\text {rot }}(\Gamma) \text { such that } \\
\left(\mathbf{Z}+S_{\Gamma}\right) \mathbf{H}_{\Gamma}=f
\end{array}\right.
$$

with

$$
\mathbf{Z H}_{T}=\boldsymbol{\operatorname { r o t }}_{\Gamma}\left(\eta \operatorname{rot}_{\Gamma} \mathbf{H}_{T}\right)+\lambda \mathbf{H}_{T}
$$

and

$$
S_{\Gamma}: \mathbf{H}_{\mathrm{rot}_{\Gamma}}^{-1 / 2} \longrightarrow \mathbf{H}_{\mathrm{div}_{\Gamma}}^{-1 / 2}
$$

is the exterior Magnetic to Electric operator.
Notation: $\mathbf{H}_{\text {rot }_{\Gamma}}(\Gamma):=\left\{\mathbf{v} \in\left(L^{2}(\Gamma)\right)^{3} \mid \mathbf{v} \cdot \nu=0\right.$ and $\left.\operatorname{rot}_{\Gamma} \mathbf{v} \in L^{2}(\Gamma)\right\}$

Difficulty:

- $\lambda \mathbf{H}_{T}$ is not a compact perturbation of the $\boldsymbol{\operatorname { r o t }}_{\Gamma} \eta \mathrm{rot}_{\Gamma}: \mathbf{H}_{\text {rot }_{\Gamma}} \rightarrow\left(\mathbf{H}_{\text {rot }}^{\Gamma}\right)^{*}$ operator
\rightarrow introduce a Helmholtz' decomposition on the boundary

A forward model for Maxwell's equations

First order model for thin layers

$$
\left(\mathcal{P}_{\text {Max }}\right) \Longleftrightarrow\left(\mathcal{P}_{\text {surf }}\right) \quad\left\{\begin{array}{l}
\text { Find } \mathbf{H}_{\Gamma} \in \mathbf{H}_{\text {rotr }}(\Gamma) \text { such that } \\
\left(\mathbf{Z}+S_{\Gamma}\right) \mathbf{H}_{\Gamma}=f
\end{array}\right.
$$

with

$$
\mathbf{Z} \mathbf{H}_{T}=\boldsymbol{\operatorname { r o t }}_{\Gamma}\left(\eta \operatorname{rot}_{\Gamma} \mathbf{H}_{T}\right)+\lambda \mathbf{H}_{T}
$$

and

$$
S_{\Gamma}: \mathbf{H}_{\mathrm{rot}_{\Gamma}}^{-1 / 2} \longrightarrow \mathbf{H}_{\mathrm{div}_{\Gamma}}^{-1 / 2}
$$

is the exterior Magnetic to Electric operator.

Theorem (Well-posed)

If

$$
\begin{array}{cl}
\Re e(\lambda) \geq 0, & \Re e(\eta) \geq 0, \\
\Im m(\lambda)<(>) 0, & \Im m(\eta)<(>) 0,
\end{array}
$$

then $\left(\mathcal{P}_{\text {Max }}\right)$ has a unique solution.

Outline

(1) The GIBC forward problem

(2) Use of qualitative methods in the scalar case

- The factorization method
- Application to a uniqueness proof

(3) Use of optimization methods

The inverse problem with infinitely many data

The far-field pattern

The far field $u_{\mathbf{Z}, \Gamma}^{\infty}$ associated with $u_{\mathbf{Z}, \Gamma}^{s}$ is defined in dimension d by

$$
u_{\mathbf{Z}, \Gamma}^{s}(x)=\frac{e^{i k r}}{r^{(d-1) / 2}}\left(u_{\mathbf{Z}, \Gamma}^{\infty}(\hat{x})+\mathcal{O}\left(\frac{1}{r}\right)\right) \quad r \longrightarrow+\infty .
$$

for \hat{x} in the unit sphere of \mathbb{R}^{d}.

The inverse problem with infinitely many data

The far-field pattern

The far field $u_{\mathbf{Z}, \Gamma}^{\infty}$ associated with $u_{\mathbf{Z}, \Gamma}^{s}$ is defined in dimension d by

$$
u_{\mathbf{Z}, \Gamma}^{s}(x)=\frac{e^{i k r}}{r^{(d-1) / 2}}\left(u_{\mathbf{Z}, \Gamma}^{\infty}(\hat{x})+\mathcal{O}\left(\frac{1}{r}\right)\right) \quad r \longrightarrow+\infty
$$

for \hat{x} in the unit sphere of \mathbb{R}^{d}.

The data:

For $u^{i}(x)=e^{i k \hat{\theta} \cdot x}$ we know

$$
u_{\mathrm{obs}}^{\infty}(\hat{x}, \hat{\theta})
$$

Objective:
Find Ω without knowing \mathbf{Z}.
for all $\hat{x}, \hat{\theta}$ on the unit sphere of \mathbb{R}^{d}.

The inverse problem with infinitely many data

The far-field pattern

The far field $u_{\mathbf{Z}, \Gamma}^{\infty}$ associated with $u_{\mathbf{Z}, \Gamma}^{s}$ is defined in dimension d by

$$
u_{\mathbf{Z}, \Gamma}^{s}(x)=\frac{e^{i k r}}{r^{(d-1) / 2}}\left(u_{\mathbf{Z}, \Gamma}^{\infty}(\hat{x})+\mathcal{O}\left(\frac{1}{r}\right)\right) \quad r \longrightarrow+\infty
$$

for \hat{x} in the unit sphere of \mathbb{R}^{d}.

The data:

For $u^{i}(x)=e^{i k \hat{\theta} \cdot x}$ we know

$$
u_{\mathrm{obs}}^{\infty}(\hat{x}, \hat{\theta})
$$

Objective:
Find Ω without knowing \mathbf{Z}.
for all $\hat{x}, \hat{\theta}$ on the unit sphere of \mathbb{R}^{d}.

Strategy:

Use a sampling method: the factorization method [Kirsch 98]

Does not need \mathbf{Z} !

The inverse problem with infinitely many data

The far-field pattern

The far field $u_{\mathbf{Z}, \Gamma}^{\infty}$ associated with $u_{\mathbf{Z}, \Gamma}^{s}$ is defined in dimension d by

$$
u_{\mathbf{Z}, \Gamma}^{s}(x)=\frac{e^{i k r}}{r^{(d-1) / 2}}\left(u_{\mathbf{Z}, \Gamma}^{\infty}(\hat{x})+\mathcal{O}\left(\frac{1}{r}\right)\right) \quad r \longrightarrow+\infty
$$

for \hat{x} in the unit sphere of \mathbb{R}^{d}.

The data:

For $u^{i}(x)=e^{i k \hat{\theta} \cdot x}$ we know

$$
u_{\mathrm{obs}}^{\infty}(\hat{x}, \hat{\theta})
$$

Objective:
 Find Ω without knowing \mathbf{Z}.

for all $\hat{x}, \hat{\theta}$ on the unit sphere of \mathbb{R}^{d}.

Strategy:

Use a sampling method: the factorization method [Kirsch 98]

Does not need \mathbf{Z} !

State of the art:

- Neumann, Dirichlet B.C.: Kirsch 98
- Impedance B.C. $(\mathbf{Z}=\lambda)$: Grinberg \& Kirsch 02

Characterization of the support of Ω

Use of the factorization theorem [Kirsch \& Grinberg 2008]

(1) First step: characterization of Ω Define the solution operator for the forward problem

$$
\begin{aligned}
G: V^{*} & \longrightarrow L^{2}\left(S^{d}\right) \\
f & \longmapsto u_{f}^{\infty}
\end{aligned}
$$

Then
$y \in \Omega \Longleftrightarrow \phi_{y}^{\infty}(\hat{x}) \in \mathcal{R}(G) \quad$ where $\phi_{y}^{\infty}:=e^{i k \hat{x} \cdot y}$

$$
\left\{\begin{array}{l}
\Delta u_{f}+k^{2} u_{f}=0 \text { in } \Omega_{\mathrm{ext}} \\
\frac{\partial u_{f}}{\partial \nu}+\mathbf{Z} u_{f}=f \text { on } \Gamma \\
\lim _{R \rightarrow \infty} \int_{|x|=R}\left|\frac{\partial u_{f}}{\partial r}-i k u_{f}\right|^{2} d s=0
\end{array}\right.
$$

Characterization of the support of Ω
 Use of the factorization theorem [Kirsch \& Grinberg 2008]

(1) First step: characterization of Ω

Define the solution operator for the forward problem

$$
\begin{aligned}
G: V^{*} & \longrightarrow L^{2}\left(S^{d}\right) \\
f & \longmapsto u_{f}^{\infty}
\end{aligned}
$$

Then

$$
y \in \Omega \Longleftrightarrow \phi_{y}^{\infty}(\hat{x}) \in \mathcal{R}(G) \quad \text { where } \phi_{y}^{\infty}:=e^{i k \hat{x} \cdot y}
$$

(2) Second step: link with the far field operator $F g:=\int_{S^{d}} g(\hat{\theta}) u_{\text {obs }}^{\infty}(\hat{\theta}, \hat{x}) d \hat{\theta}$

Characterization of the support of Ω
 Use of the factorization theorem [Kirsch \& Grinberg 2008]

(1) First step: characterization of Ω

Define the solution operator for the forward problem

$$
\begin{aligned}
G: V^{*} & \longrightarrow L^{2}\left(S^{d}\right) \\
f & \longmapsto u_{f}^{\infty}
\end{aligned}
$$

Then

$$
y \in \Omega \Longleftrightarrow \phi_{y}^{\infty}(\hat{x}) \in \mathcal{R}(G) \quad \text { where } \phi_{y}^{\infty}:=e^{i k \hat{x} \cdot y}
$$

(2) Second step: link with the far field operator $F g:=\int_{S^{d}} g(\hat{\theta}) u_{\text {obs }}^{\infty}(\hat{\theta}, \hat{x}) d \hat{\theta}$ Prove that

$$
\mathcal{R}(G)=\mathcal{R}\left(F_{\#}^{1 / 2}\right) \quad \text { with } \quad F_{\#}:=|\Re e(F)|+|\Im m(F)|
$$

by factorizing F like

$$
F=G T^{*} G^{*}
$$

Results

$$
y \in \Omega \Longleftrightarrow \phi_{y}^{\infty}(\hat{x}) \in \mathcal{R}\left(F_{\#}^{1 / 2}\right)
$$

Provided k^{2} is not an eigenvalue of,

$$
\left\{\begin{array}{l}
\Delta u+k^{2} u=0 \quad \text { in } \Omega \\
\frac{\partial u}{\partial \nu}+\mathbf{Z} u=0 \quad \text { on } \Gamma
\end{array}\right.
$$

and

- The embedding $H^{1 / 2}(\Gamma) \subset V$ is compact,

Results

$$
y \in \Omega \Longleftrightarrow \phi_{y}^{\infty}(\hat{x}) \in \mathcal{R}\left(F_{\#}^{1 / 2}\right)
$$

Provided k^{2} is not an eigenvalue of,

$$
\begin{cases}\Delta u+k^{2} u=0 & \text { in } \Omega \\ \frac{\partial u}{\partial \nu}+\mathbf{Z} u=0 & \text { on } \Gamma\end{cases}
$$

and

- The embedding $H^{1 / 2}(\Gamma) \subset V$ is compact,

$$
\begin{gathered}
\mathbf{Z}=\lambda . \\
V=L^{2}(\Gamma)
\end{gathered}
$$

- The embedding $V \subset H^{1 / 2}(\Gamma)$ is compact,

$$
\begin{gathered}
\mathbf{Z}=\operatorname{div}_{\Gamma}\left(\eta \nabla_{\Gamma} \cdot\right)+\lambda . \\
V=H^{1}(\Gamma)
\end{gathered}
$$

Results

$$
y \in \Omega \Longleftrightarrow \phi_{y}^{\infty}(\hat{x}) \in \mathcal{R}\left(F_{\#}^{1 / 2}\right)
$$

Provided k^{2} is not an eigenvalue of,

$$
\begin{cases}\Delta u+k^{2} u=0 & \text { in } \Omega \\ \frac{\partial u}{\partial \nu}+\mathbf{Z} u=0 & \text { on } \Gamma\end{cases}
$$

and

- The embedding $H^{1 / 2}(\Gamma) \subset V$ is compact,
- The embedding $V \subset H^{1 / 2}(\Gamma)$ is compact,
- Intermediate case: none of the compact embeddings hold.

This is the case when \mathbf{Z} is the interior DtN map!
\rightarrow Requires subtle hypothesis on \mathbf{Z} !

A uniqueness result

$$
\left\{\begin{array}{l}
\mathbf{Z} u=\operatorname{div}(\eta \nabla\ulcorner u)+\lambda u \\
V=H^{1}(\Gamma)
\end{array}\right.
$$

Regularity and sign assumptions:

- 「 is Lipschitz,
- λ is in $L^{\infty}(\Gamma)$ and $\Im m(\lambda) \geq 0$
- η is continuous, $\Im m(\eta) \leq 0$ and $\Re e(\eta)>0($ or $<0)$.

Theorem (Uniqueness)

Let $\left(\lambda_{1}, \eta_{1}, \Gamma_{1}\right)$ and $\left(\lambda_{2}, \eta_{2}, \Gamma_{2}\right)$ be such that

$$
u_{1}^{\infty}(\hat{x}, \hat{\theta})=u_{2}^{\infty}(\hat{x}, \hat{\theta}) \quad \forall \quad(\hat{x}, \hat{\theta}) \in S^{d} \times S^{d}
$$

then

$$
\lambda_{1}=\lambda_{2}, \quad \eta_{1}=\eta_{2} \quad \text { and } \quad \Gamma_{1}=\Gamma_{2}
$$

Proof of uniqueness

$$
u_{1}^{\infty}(\hat{x}, \hat{\theta})=u_{2}^{\infty}(\hat{x}, \hat{\theta})
$$

- $\Gamma_{1}=\Gamma_{2}$ by using the factorization theorem.

Proof of uniqueness

$$
u_{1}^{\infty}(\hat{x}, \hat{\theta})=u_{2}^{\infty}(\hat{x}, \hat{\theta})
$$

- $\Gamma_{1}=\Gamma_{2}$ by using the factorization theorem.
- For the impedance we have

$$
\frac{\partial u_{1}}{\partial \nu}+\mathbf{Z}_{1} u_{1}=\frac{\partial u_{2}}{\partial \nu}+\mathbf{Z}_{2} u_{2}=0 \text { on } \Gamma
$$

Proof of uniqueness

$$
u_{1}^{u_{1}^{\infty}(\hat{x}, \hat{\theta})=u_{2}^{\infty}(\hat{x}, \hat{\theta})}
$$

- $\Gamma_{1}=\Gamma_{2}$ by using the factorization theorem.
- For the impedance we have

$$
\frac{\partial u_{1}}{\partial \nu}+\mathbf{Z}_{2} u_{1}=\frac{\partial u_{1}}{\partial \nu}+\mathbf{Z}_{1} u_{1}=\frac{\partial u_{2}}{\partial \nu}+\mathbf{Z}_{2} u_{2}=0 \text { on } \Gamma
$$

hence

$$
\left(\mathbf{Z}_{1}-\mathbf{Z}_{2}\right) u_{1}(x, \hat{\theta})=0 \quad \forall \quad(x, \hat{\theta}) \in \Gamma \times S^{d}
$$

Proof of uniqueness

$$
u_{1}^{\infty}(\hat{x}, \hat{\theta})=u_{2}^{\infty}(\hat{x}, \hat{\theta})
$$

- $\Gamma_{1}=\Gamma_{2}$ by using the factorization theorem.
- For the impedance we have

$$
\frac{\partial u_{1}}{\partial \nu}+\mathbf{Z}_{2} u_{1}=\frac{\partial u_{1}}{\partial \nu}+\mathbf{Z}_{1} u_{1}=\frac{\partial u_{2}}{\partial \nu}+\mathbf{Z}_{2} u_{2}=0 \text { on } \Gamma
$$

hence

$$
\left(\mathbf{Z}_{1}-\mathbf{Z}_{2}\right) u_{1}(x, \hat{\theta})=0 \quad \forall(x, \hat{\theta}) \in \Gamma \times S^{d}
$$

- But

Prop: $\left\{u_{1}(x, \hat{\theta})\right.$ for $\left.\hat{\theta} \in S^{d}\right\}$ is dense in $H^{1}(\Gamma)$

$$
\rightarrow \quad \operatorname{div}_{\Gamma}\left[\left(\eta_{1}-\eta_{2}\right) \nabla_{\Gamma} \varphi\right]+\left(\lambda_{1}-\lambda_{2}\right) \varphi=0 \quad \forall \varphi \in H^{1}(\Gamma)
$$

Proof of uniqueness

$$
u_{1}^{\infty}(\hat{x}, \hat{\theta})=u_{2}^{\infty}(\hat{x}, \hat{\theta})
$$

- $\Gamma_{1}=\Gamma_{2}$ by using the factorization theorem.
- For the impedance we have

$$
\frac{\partial u_{1}}{\partial \nu}+\mathbf{Z}_{2} u_{1}=\frac{\partial u_{1}}{\partial \nu}+\mathbf{Z}_{1} u_{1}=\frac{\partial u_{2}}{\partial \nu}+\mathbf{Z}_{2} u_{2}=0 \text { on } \Gamma
$$

hence

$$
\left(\mathbf{Z}_{1}-\mathbf{Z}_{2}\right) u_{1}(x, \hat{\theta})=0 \quad \forall(x, \hat{\theta}) \in \Gamma \times S^{d}
$$

- But

Prop: $\left\{u_{1}(x, \hat{\theta})\right.$ for $\left.\hat{\theta} \in S^{d}\right\}$ is dense in $H^{1}(\Gamma)$

$$
\rightarrow \quad \operatorname{div}_{\Gamma}\left[\left(\eta_{1}-\eta_{2}\right) \nabla_{\Gamma} \varphi\right]+\left(\lambda_{1}-\lambda_{2}\right) \varphi=0 \quad \forall \varphi \in H^{1}(\Gamma)
$$

- Good choices for φ gives

$$
\lambda_{1}=\lambda_{2} \quad \text { and } \quad \eta_{1}=\eta_{2}
$$

Proof of uniqueness

$$
u_{1}^{\infty}(\hat{x}, \hat{\theta})=u_{2}^{\infty}(\hat{x}, \hat{\theta})
$$

- $\Gamma_{1}=\Gamma_{2}$ by using the factorization theorem.
- For the impedance we have

- Good choices for φ gives

$$
\lambda_{1}=\lambda_{2} \quad \text { and } \quad \eta_{1}=\eta_{2} \text {. }
$$

Numerical framework

- $\mathbf{Z}=\operatorname{div}_{\Gamma}\left(\eta \nabla_{\Gamma} \cdot\right)$ with $\eta=1$,
- For $N=100$, the synthetic data are

$$
\left\{u^{\infty}\left(\frac{2 i \pi}{N}, \frac{2 j \pi}{N}\right)\right\}_{i, j=1, \cdots, N}
$$

- For each z in a given sampling grid we solve a discrete version of

$$
F_{\#}^{1 / 2} g_{z}=\phi_{z}^{\infty}
$$

with Tikhonov-Morozov regularization and plot

$$
z \longmapsto \frac{1}{\left\|g_{z}\right\|}
$$

Numerical framework

Numerical framework

Numerical framework

Numerical reconstructions

(a) no noise, ellipse, $k=2$

(a) 1% noise, $k=2$

(b) 1% noise, $k=5$

Outline

(1) The GIBC forward problem

(2) Use of qualitative methods in the scalar case
(3) Use of optimization methods

- The scalar case
- The Maxwell case

Solving the inverse problem with few incident waves

The data:
For $u^{i}(x)=e^{i k \hat{\theta}_{i} \cdot x}$ we know

$$
u_{\mathrm{obs}}^{\infty}\left(\hat{x}, \hat{\theta}_{i}\right)
$$

for few $\hat{\theta}_{j}$ and for $\hat{x} \in S_{j}$ a portion of the unit circle.

The use of the sampling methods is not appropriate anymore \rightarrow Use non linear optimization methods!

Solving the inverse problem with few incident waves

$$
\left\{\begin{array}{l}
\Delta u^{s}+k^{2} u^{s}=0 \text { in } \Omega_{\mathrm{ext}} \\
u=u^{s}+u^{i}(\cdot, \hat{\theta}) \\
\frac{\partial u}{\partial \nu}+\operatorname{div} v_{r}(\eta \nabla r u)+\lambda u=0 \text { on } \Gamma \\
\lim _{R \rightarrow \infty} \int_{|\times|=R}\left|\frac{\partial u^{s}}{\partial r}-i k u^{s}\right|^{2} d s=0
\end{array}\right.
$$

The data:
For $u^{i}(x)=e^{i k \hat{\theta}_{i} \cdot x}$ we know

$$
u_{\mathrm{obs}}^{\infty}\left(\hat{x}, \hat{\theta}_{i}\right)
$$

for few $\hat{\theta}_{j}$ and for $\hat{x} \in S_{j}$ a portion of the unit circle.
Require an a priori model for \mathbf{Z} :

$$
\mathbf{Z}=\operatorname{div}_{\Gamma} \eta \nabla_{\Gamma}+\lambda
$$

Solving the inverse problem with few incident waves

$$
\left\{\begin{array}{l}
\Delta u^{s}+k^{2} u^{s}=0 \text { in } \Omega_{\mathrm{ext}} \\
u=u^{s}+u^{i}(\cdot, \hat{\theta}) \\
\frac{\partial u}{\partial \nu}+\operatorname{div} v_{r}(\eta \nabla r u)+\lambda u=0 \text { on } \Gamma \\
\lim _{R \rightarrow \infty} \int_{|\times|=R}\left|\frac{\partial u^{s}}{\partial r}-i k u^{s}\right|^{2} d s=0
\end{array}\right.
$$

The data:
For $u^{i}(x)=e^{i k \hat{\theta}_{i} \cdot x}$ we know

$$
u_{\mathrm{obs}}^{\infty}\left(\hat{x}, \hat{\theta}_{i}\right)
$$

for few $\hat{\theta}_{j}$ and for $\hat{x} \in S_{j}$ a portion of the

$$
\Gamma \text { and } \lambda, \eta \text {. }
$$ unit circle.

$$
\text { Minimize } F(\lambda, \eta, \Gamma):=\frac{1}{2} \sum_{j=1}^{1}\left\|u_{\lambda, \eta, \Gamma}^{\infty}\left(\cdot, \hat{\theta}_{j}\right)-u_{\mathrm{obs}}^{\infty}\left(\cdot, \hat{\theta}_{j}\right)\right\|_{L^{2}\left(S_{j}\right)}^{2}
$$

Solving the inverse problem with few incident waves

$$
\text { Minimize } F(\lambda, \eta, \Gamma):=\frac{1}{2} \sum_{j=1}^{1}\left\|u_{\lambda, \eta, \Gamma}^{\infty}\left(\cdot, \hat{\theta}_{j}\right)-u_{\mathrm{obs}}^{\infty}\left(\cdot, \hat{\theta}_{j}\right)\right\|_{L^{2}\left(S_{j}\right)}^{2}
$$

(1) Reconstruction of parameters with a known shape \rightarrow Given an error on the shape, what is the error on the reconstructed coefficients?
(2) Reconstruction of the parameters and the shape \rightarrow How to characterize the shape derivative?

The inverse coefficient problem on an inexact shape

- The far-field data correspond to (λ, η, Γ) and we reconstruct $\left(\lambda_{\varepsilon}, \eta_{\varepsilon}\right)$ an approximation of (λ, η) on

$$
\Gamma_{\varepsilon}:=(I d+\varepsilon)(\Gamma) .
$$

Assume that $\left(\lambda_{\varepsilon}, \eta_{\varepsilon}\right) \in\left(L^{\infty}\left(\Gamma_{\varepsilon}\right)\right)^{2}$ are such that

$$
\left\|u_{\lambda_{\varepsilon}, \eta_{\varepsilon}, \Gamma_{\varepsilon}}^{\infty}-u_{\lambda, \eta, \Gamma}^{\infty}\right\|_{L^{2}\left(S^{d}\right)} \leq \delta,
$$

do we have

$$
\left\|\lambda_{\varepsilon} \circ f_{\varepsilon}-\lambda\right\|_{L^{\infty}(\Gamma)}+\left\|\eta_{\varepsilon} \circ f_{\varepsilon}-\eta\right\|_{L^{\infty}(\Gamma)} \leq G(\delta, \varepsilon)
$$

for some function $G(\delta, \varepsilon) \underset{\delta, \varepsilon \rightarrow 0}{\longrightarrow} 0$?

The inverse coefficient problem on an inexact shape

Result

Hypothesis: The inverse problem is stable for an exact geometry.
There exists a compact set $K \subset\left(L^{\infty}(\Gamma)\right)^{2}$ and a constant C_{K} such that for (λ, η) and $(\widetilde{\lambda}, \widetilde{\eta}) \in K$,

$$
\|\lambda-\widetilde{\lambda}\|+\|\eta-\widetilde{\eta}\| \leq C_{K}\left\|u_{\lambda, \eta, \Gamma}^{\infty}-u_{\tilde{\lambda}, \widetilde{\eta}, \Gamma}^{\infty}\right\| .
$$

Allessandrini, Chaabane, Labreuche, Leblond, Rondi, Sincich... for λ and Bourgeois-C.-Haddar for λ and η.

The inverse coefficient problem on an inexact shape

Result

Hypothesis: The inverse problem is stable for an exact geometry.
There exists a compact set $K \subset\left(L^{\infty}(\Gamma)\right)^{2}$ and a constant C_{K} such that for (λ, η) and $(\widetilde{\lambda}, \widetilde{\eta}) \in K$,

$$
\|\lambda-\widetilde{\lambda}\|+\|\eta-\widetilde{\eta}\| \leq C_{K}\left\|u_{\lambda, \eta, \Gamma}^{\infty}-u_{\tilde{\lambda}, \tilde{\eta}, \Gamma}^{\infty}\right\| .
$$

Allessandrini, Chaabane, Labreuche, Leblond, Rondi, Sincich... for λ and Bourgeois-C.-Haddar for λ and η.

Theorem

For small ε and for all $\left(\lambda_{\varepsilon} \circ f_{\varepsilon}, \eta_{\varepsilon} \circ f_{\varepsilon}\right) \in K$ that satisfy

$$
\left\|u_{\lambda_{\varepsilon}, \eta_{\varepsilon}, \Gamma_{\varepsilon}}^{\infty}-u_{\lambda, \eta, \Gamma}^{\infty}\right\| \leq \delta
$$

we have

$$
\left\|\lambda_{\varepsilon} \circ f_{\varepsilon}-\lambda\right\|+\left\|\eta_{\varepsilon} \circ f_{\varepsilon}-\eta\right\| \leq C_{K}(\delta+\|\varepsilon\|) .
$$

Practical resolution of the inverse problem

$$
\left\{\begin{array}{l}
\Delta u^{s}+k^{2} u^{s}=0 \text { in } \Omega_{\mathrm{ext}} \\
u=u^{s}+u^{i}(\cdot, \hat{\theta}) \\
\frac{\partial u}{\partial \nu}+\operatorname{div}_{\Gamma}(\eta \nabla\ulcorner u)+\lambda u=0 \text { on } \Gamma \\
\lim _{R \rightarrow \infty} \int_{|x|=R}\left|\frac{\partial u^{s}}{\partial r}-i k u^{s}\right|^{2} d s=0
\end{array}\right.
$$

$$
F(\lambda, \eta, \Gamma):=\frac{1}{2} \sum_{j=1}^{l}\left\|u_{\lambda, \eta, \Gamma}^{\infty}\left(\cdot, \hat{\theta}_{j}\right)-u_{\mathrm{obs}}^{\infty}\left(\cdot, \hat{\theta}_{j}\right)\right\|_{L^{2}\left(S_{j}\right)}^{2}
$$

For minimizing F we use a steepest descent method: inspired by shape optimization (ex: Allaire-Jouve...)

- we need partial derivatives of the far-field with respect to λ and η (quite standard),
- we need an appropriate derivative w.r.t. the obstacle.

Difficulty: the unknown impedances are supported by Γ.

Shape derivative

- λ, η and Γ are given
- $\varepsilon \in C^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ such that $\|\varepsilon\|_{C^{1}}<1$
- $f_{\varepsilon}:=\operatorname{ld}+\varepsilon$
- $\Gamma_{\varepsilon}:=f_{\varepsilon}(\Gamma)$

Definition 1: constant coefficients

The shape derivative of the scattered field is given by the Fréchet derivative at 0 of

$$
R_{0}: \varepsilon \longrightarrow u^{s}\left(\lambda, \eta, \Gamma_{\varepsilon}\right) .
$$

Shape derivative

- λ, η and Γ are given
- $\varepsilon \in C^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ such that $\|\varepsilon\|_{C^{1}}<1$
- $f_{\varepsilon}:=\operatorname{ld}+\varepsilon$
- $\Gamma_{\varepsilon}:=f_{\varepsilon}(\Gamma)$

Definition 2: non-constant coefficients with intrinsic extension

The shape derivative of the scattered field is given by the Fréchet derivative at 0 of

$$
R_{1}: \varepsilon \longrightarrow u^{s}\left(\lambda_{\varepsilon}, \eta_{\varepsilon}, \Gamma_{\varepsilon}\right) .
$$

First choice: λ_{ε} and η_{ε} : extensions of λ and η in the ν direction

$$
\lambda_{\varepsilon}(x)=\lambda\left(x_{\Gamma}\right), \quad \eta_{\varepsilon}(x)=\eta\left(x_{\Gamma}\right)
$$

for $x \in \Gamma_{\varepsilon}$ and x_{Γ} is the orthogonal projection of x on Γ.
\rightarrow Same expression for the derivative as in the constant case

Shape derivative

- λ, η and Γ are given
- $\varepsilon \in C^{1, \infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ such that $\|\varepsilon\|_{C^{1}}<1$
- $f_{\varepsilon}:=\mathrm{ld}+\varepsilon$
- $\Gamma_{\varepsilon}:=f_{\varepsilon}(\Gamma)$

Definition 3: non-constant coefficients with extension in the ε direction
The shape derivative of the scattered field is given by the Fréchet derivative at 0 of

$$
R_{2}: \varepsilon \longrightarrow u^{s}\left(\lambda_{\varepsilon}, \eta_{\varepsilon}, \Gamma_{\varepsilon}\right) .
$$

Second choice: $\lambda_{\varepsilon}:=\lambda \circ f_{\varepsilon}^{-1}, \quad \eta_{\varepsilon}:=\eta \circ f_{\varepsilon}^{-1}$
\rightarrow Different expression and one may find f_{ε} such that $\Gamma=f_{\varepsilon}(\Gamma)$ and

$$
R_{2}^{\prime}(0) \cdot \varepsilon \neq 0
$$

$R_{2}^{\prime}(0)$ does not satisfy the classical shape derivative's properties!

Derivative of the scattered field with respect to the obstacle

Let (λ, η, Γ) be given and analytic, for all $\varepsilon \in C^{1, \infty}$ such that $\|\varepsilon\|<1$ we have

$$
R_{2}^{\prime}(0) \cdot \varepsilon=v_{\varepsilon}(x),
$$

where $v_{\varepsilon}(x)$ is the solution of the scattering problem with

$$
\begin{aligned}
& \frac{\partial v_{\varepsilon}}{\partial \nu}+\mathbf{Z} v_{\varepsilon}=B_{\varepsilon} u \text { on } \Gamma \\
& B_{\varepsilon} u=(\varepsilon \cdot \nu)\left(k^{2}-2 H \lambda\right) u+\operatorname{div}_{\Gamma}\left((I d+2 \eta(R-H I d))(\varepsilon \cdot \nu) \nabla_{\Gamma} u\right) \\
&+\left(\nabla_{\Gamma} \lambda \cdot \varepsilon\right) u+\operatorname{div}_{\Gamma}\left(\left(\nabla_{\Gamma} \eta \cdot \varepsilon\right) \nabla_{\Gamma} u\right) \\
&+\mathbf{Z}((\varepsilon \cdot \nu) \mathbf{Z} u),
\end{aligned}
$$

with

- $2 H:=\operatorname{div} \nu, R:=\nabla_{\Gamma} \nu, \mathbf{Z} \cdot=\operatorname{div}_{\Gamma}\left(\eta \nabla_{\Gamma} \cdot\right)+\lambda$,
- u is the total field given by (λ, η, Γ).

Main tools of the proof

- Domain derivative tools: Murat and Simon 73, Kirsch 93, Hettlich 94, Potthast 94.
- Green's theorems and integral representation of the scattered field: Kress and Päivärinta 99, Haddar and Kress 04.

Main tools of the proof

- Domain derivative tools: Murat and Simon 73, Kirsch 93, Hettlich 94, Potthast 94.
- Green's theorems and integral representation of the scattered field: Kress and Päivärinta 99, Haddar and Kress 04.

Green's theorems and integral representation: prove that

$$
u_{\varepsilon}^{s}-u^{s}=-\int_{\Gamma}\left(B_{\varepsilon} u\right) w(\cdot, y) d s(y)+o(\|\varepsilon\|)
$$

where for $y \in \Omega_{\mathrm{ext}} w(\cdot, y)=w^{s}(\cdot, y)+\Phi(\cdot, y)$ is the Green function associated with the GIBC scattering problem

$$
\left\{\begin{array}{l}
\Delta w(\cdot, y)+k^{2} w(\cdot, y)=\delta_{y} \text { in } \Omega_{\mathrm{ext}} \\
\frac{\partial w}{\partial \nu}+\mathbf{Z} w=0 \text { on } \Gamma \\
+ \text { radiation condition. }
\end{array}\right.
$$

A steepest descent algorithm to solve the inverse problem

$$
F(\lambda, \eta, \Gamma):=\frac{1}{2} \sum_{j=1}^{l}\left\|u_{\lambda, \eta, \Gamma}^{\infty}\left(\cdot, \hat{\theta}_{j}\right)-u_{\mathrm{obs}}^{\infty}\left(\cdot, \hat{\theta}_{j}\right)\right\|_{L^{2}\left(S_{j}\right)}^{2}
$$

- update alternatively λ, η and Γ with a direction given by the partial derivative of the cost function,

A steepest descent algorithm to solve the inverse problem

$$
F(\lambda, \eta, \Gamma):=\frac{1}{2} \sum_{j=1}^{l}\left\|u_{\lambda, \eta, \Gamma}^{\infty}\left(\cdot, \hat{\theta}_{j}\right)-u_{\mathrm{obs}}^{\infty}\left(\cdot, \hat{\theta}_{j}\right)\right\|_{L^{2}\left(S_{j}\right)}^{2}
$$

- update alternatively λ, η and Γ with a direction given by the partial derivative of the cost function,

Numerical procedure for minimizing w.r.t. λ :

1. Take and initial guess $\lambda_{\text {init }}$
2. Solve the forward problem for I incidents plane waves to compute $u_{\lambda, \eta, \Gamma}$ 3. Solve the forward problem with I adjoint incident fields
\qquad
\square and update λ
\square Return to 2. until convergence

A steepest descent algorithm to solve the inverse problem

$$
F(\lambda, \eta, \Gamma):=\frac{1}{2} \sum_{j=1}^{l}\left\|u_{\lambda, \eta, \Gamma}^{\infty}\left(\cdot, \hat{\theta}_{j}\right)-u_{\mathrm{obs}}^{\infty}\left(\cdot, \hat{\theta}_{j}\right)\right\|_{L^{2}\left(S_{j}\right)}^{2}
$$

- update alternatively λ, η and Γ with a direction given by the partial derivative of the cost function,

Numerical procedure for minimizing w.r.t. λ :

1. Take and initial guess $\lambda_{\text {init }}$
2. Solve the forward problem for I incidents plane waves to compute $u_{\lambda, \eta, \Gamma}$ Solve the forward problem with I adjoint incident fields
3. Deduce F $h=\sum_{j=1}^{l}$ $\Re \epsilon\left(\int_{\Gamma} G\left(y, \hat{\theta}_{j}\right) u\left(y, \hat{\theta}_{j}\right) h(y) d y\right)$ and update λ
\qquad Return to 2 until convergence

A steepest descent algorithm to solve the inverse problem

$$
F(\lambda, \eta, \Gamma):=\frac{1}{2} \sum_{j=1}^{l}\left\|u_{\lambda, \eta, \Gamma}^{\infty}\left(\cdot, \hat{\theta}_{j}\right)-u_{\mathrm{obs}}^{\infty}\left(\cdot, \hat{\theta}_{j}\right)\right\|_{L^{2}\left(S_{j}\right)}^{2}
$$

- update alternatively λ, η and Γ with a direction given by the partial derivative of the cost function,

Numerical procedure for minimizing w.r.t. λ :

1. Take and initial guess $\lambda_{\text {init }}$
2. Solve the forward problem for I incidents plane waves to compute $u_{\lambda, \eta, \Gamma}$
3. Solve the forward problem with I adjoint incident fields

$$
G^{i}\left(y, \hat{\theta}_{j}\right)=\int_{S_{j}} e^{-i k \hat{x} \cdot y} \overline{\left(u_{\lambda, \eta, \Gamma}^{\infty}-u_{\mathrm{obs}}^{\infty}\right)}\left(\hat{x}, \hat{\theta}_{j}\right) d \hat{x}
$$

A steepest descent algorithm to solve the inverse problem

$$
F(\lambda, \eta, \Gamma):=\frac{1}{2} \sum_{j=1}^{l}\left\|u_{\lambda, \eta, \Gamma}^{\infty}\left(\cdot, \hat{\theta}_{j}\right)-u_{\mathrm{obs}}^{\infty}\left(\cdot, \hat{\theta}_{j}\right)\right\|_{L^{2}\left(S_{j}\right)}^{2}
$$

- update alternatively λ, η and Γ with a direction given by the partial derivative of the cost function,

Numerical procedure for minimizing w.r.t. λ :

1. Take and initial guess $\lambda_{\text {init }}$
2. Solve the forward problem for I incidents plane waves to compute $u_{\lambda, \eta, \Gamma}$
3. Solve the forward problem with I adjoint incident fields

$$
G^{i}\left(y, \hat{\theta}_{j}\right)=\int_{S_{j}} e^{-i k \hat{x} \cdot y} \overline{\left(u_{\lambda, \eta, \Gamma}^{\infty}-u_{\mathrm{obs}}^{\infty}\right)}\left(\hat{x}, \hat{\theta}_{j}\right) d \hat{x}
$$

4. Deduce $F_{\eta, \Gamma}^{\prime}(\lambda) \cdot h=\sum_{j=1}^{\prime} \Re e\left(\int_{\Gamma} G\left(y, \hat{\theta}_{j}\right) u\left(y, \hat{\theta}_{j}\right) h(y) d y\right)$ and update λ

A steepest descent algorithm to solve the inverse problem

$$
F(\lambda, \eta, \Gamma):=\frac{1}{2} \sum_{j=1}^{l}\left\|u_{\lambda, \eta, \Gamma}^{\infty}\left(\cdot, \hat{\theta}_{j}\right)-u_{\mathrm{obs}}^{\infty}\left(\cdot, \hat{\theta}_{j}\right)\right\|_{L^{2}\left(S_{j}\right)}^{2}
$$

- update alternatively λ, η and Γ with a direction given by the partial derivative of the cost function,

Numerical procedure for minimizing w.r.t. λ :

1. Take and initial guess $\lambda_{\text {init }}$
2. Solve the forward problem for I incidents plane waves to compute $u_{\lambda, \eta, \Gamma}$
3. Solve the forward problem with I adjoint incident fields

$$
G^{i}\left(y, \hat{\theta}_{j}\right)=\int_{S_{j}} e^{-i k \hat{x} \cdot y} \overline{\left(u_{\lambda, \eta, \Gamma}^{\infty}-u_{\mathrm{obs}}^{\infty}\right)}\left(\hat{x}, \hat{\theta}_{j}\right) d \hat{x}
$$

4. Deduce $F_{\eta, \Gamma}^{\prime}(\lambda) \cdot h=\sum_{j=1}^{\prime} \Re e\left(\int_{\Gamma} G\left(y, \hat{\theta}_{j}\right) u\left(y, \hat{\theta}_{j}\right) h(y) d y\right)$ and update λ
5. Return to 2. until convergence

The regularization procedure

$$
\left.F(\lambda, \eta, \Gamma)=\frac{1}{2} \sum_{j=1}^{\prime} \| u_{\lambda, \eta, \Gamma}^{\infty} \Gamma \cdot, \hat{\theta}_{j}\right)-u_{\mathrm{obs}}^{\infty}\left(\cdot, \hat{\theta}_{j}\right) \|_{L^{2}\left(S_{j}\right)}^{2}
$$

We regularize the gradient, NOT the cost function, using a $H^{1}(\Gamma)$ gradient (inspired by the shape optimization techniques: Allaire...)

- Descent direction for $\lambda: \delta \lambda$ that solves for every ϕ in some finite dimensional space:

$$
\beta_{\lambda} \int_{\Gamma} \nabla_{\Gamma}(\delta \lambda) \cdot \nabla_{\Gamma} \phi d s+\int_{\Gamma} \delta \lambda \phi d s=-\alpha_{\lambda} F_{\eta, \Gamma}^{\prime}(\lambda) \cdot \phi
$$

where β_{λ} is the regularization coefficient and α_{λ} is the descent coefficient.

- Do the same for $\delta \eta$ and $\delta \Gamma$.

Numerical reconstruction

Finite elements method and remeshing procedure using FreeFem++

Reconstruction of the geometry with 2 incident waves and 1% noise on the far-field, $\lambda=i k / 2$ and $\eta=2 / k$ being known

Numerical reconstruction

Simultaneous reconstruction of λ, η and Γ

8 incident waves, 5% of noise on far-field data.

Application to the reconstruction of a coated obstacle

Application to the reconstruction of a coated obstacle

(TE mode)

Reconstruction of an obstacle using the generalized impedance boundary condition model of order 1 minirnizing

$$
F(\epsilon, \delta, \Gamma):=\frac{1}{2} \sum_{j=1}^{\prime}\left\|u_{\mathrm{app}}^{\infty}\left(\epsilon, \delta, \Gamma, \hat{\theta}_{j}\right)-u_{\delta, \mathrm{obs}}^{\infty}\left(\cdot, \hat{\theta}_{j}\right)\right\|_{L^{2}\left(S_{j}\right)}^{2}
$$

with $\mu=0.1$ known.

Application to the reconstruction of a coated obstacle

Numerical results

Synthetic data created with

- $\mu=0.1$ is known,
- $\delta=0.04 /(1-0.4 \sin (\theta))$ is unknown; I being the wavelength,
- $\epsilon=2.5$ is unknown.

Reconstructed ϵ : 2.3.

Fails with a classical impedance boundary condition model!

Extension to the Maxwell case

$$
\nu \times \mathbf{E}+\operatorname{rot}_{\Gamma}\left(\eta \operatorname{rot}_{\Gamma} \mathbf{H}_{T}\right)+\lambda \mathbf{H}_{T}=0 \text { on } \Gamma
$$

The data:

For incident waves

$$
\begin{aligned}
& \mathbf{E}^{i}(z, \hat{\theta}, \mathbf{p})=i k[(\hat{\theta} \times \mathbf{p}) \times \hat{\theta}] e^{i k \hat{\theta} \cdot z} \\
& \left.\mathbf{H}^{i}(z, \hat{\theta}, \mathbf{p})\right)=i k(\hat{\theta} \times \mathbf{p}) e^{i k \hat{\theta} \cdot z}
\end{aligned}
$$

we know

The unknowns:

Γ, λ and η.
for few $\hat{\theta}_{j}$ and \mathbf{p}_{j} and for $\hat{x} \in S_{j}$ a portion of the unit circle.

$$
\text { Minimize } F(\lambda, \eta, \Gamma):=\frac{1}{2} \sum_{j=1}^{l}\left\|\mathbf{E}_{\lambda, \eta, \Gamma}^{\infty}\left(\cdot, \hat{\theta}_{j}, \mathbf{p}_{j}\right)-\mathbf{E}_{\mathrm{obs}}^{\infty}\left(\cdot, \hat{\theta}_{j}, \mathbf{p}_{j}\right)\right\|_{\mathbf{L}_{t}^{2}\left(S_{j}\right)}^{2}
$$

Shape derivative for Maxwell

Definition

The shape derivative of the scattered field is given by the Fréchet derivative at 0 of

$$
R: \varepsilon \longrightarrow \mathbf{E}^{s}\left(\lambda_{\varepsilon}, \eta_{\varepsilon}, \Gamma_{\varepsilon}\right) .
$$

Notations:

$$
\Gamma_{\varepsilon}:=f_{\varepsilon}(\Gamma), \quad \lambda_{\varepsilon}:=\lambda \circ f_{\varepsilon}, \quad \eta_{\varepsilon}:=\eta \circ f_{\varepsilon}
$$

Result:

$$
d R(0) \cdot \varepsilon=\mathbf{v}_{\varepsilon}^{s}
$$

where $\left(\mathbf{v}_{\varepsilon}^{s}, \mathbf{w}_{\varepsilon}^{s}\right)$ is an outgoing solution to the Maxwell equations outside Ω and

$$
\begin{aligned}
& \nu \times \mathbf{v}_{\varepsilon}^{s}+\mathbf{Z w}_{T, \varepsilon}^{s}=B_{\varepsilon}(\mathbf{E}, \mathbf{H}) \text { on } \Gamma \\
& B_{\varepsilon}(\mathbf{E}, \mathbf{H}):=-i k(\nu \cdot \varepsilon) \mathbf{H}_{T}+\operatorname{rot}_{\Gamma}[(\nu \cdot \varepsilon)(\nu \cdot \mathbf{E})]+\lambda(\nu \cdot \varepsilon)(2 R-2 H) \mathbf{H}_{T} \\
&-\lambda \nabla_{\ulcorner }[(\nu \cdot \varepsilon)(\nu \cdot \mathbf{H})]+2 \operatorname{rot}_{\Gamma}\left[H(\nu \cdot \varepsilon) \eta \operatorname{rot}_{\Gamma}\left(\mathbf{H}_{T}\right)\right] \\
&+\left(\nabla_{\Gamma \lambda \cdot \varepsilon)} \mathbf{H}_{T}+\operatorname{rot}_{\Gamma}\left[\left(\nabla_{\ulcorner } \eta \cdot \varepsilon\right) \operatorname{rot}_{\Gamma}\left(\mathbf{H}_{T}\right)\right.\right. \\
&+i k \mathbf{Z}\left[(\nu \cdot \varepsilon) \mathbf{Z H}_{T}\right]
\end{aligned}
$$

where \mathbf{E} and \mathbf{H} are the total fields for the reference shape Γ.

Numerical results

- $\lambda=0, \eta=-0.25 i, k=4, \delta=2 \%$
- 4 incident plane waves

(a) Initial shape

(b) Target

Numerical results

- $\lambda=0, \eta=-0.25 i, k=4, \delta=2 \%$
- 4 incident plane waves

Conclusions

- The forward problem.
\checkmark It is well posed for Helmholtz equation for general Fredholm type impedance operator
\checkmark It is also well posed in the Maxwell case with more restrictive assumptions on the impedance operator

Conclusions

- The forward problem.
\checkmark It is well posed for Helmholtz equation for general Fredholm type impedance operator
\checkmark It is also well posed in the Maxwell case with more restrictive assumptions on the impedance operator
- Qualitative methods.
\checkmark Fast and require very few a priori assumptions
x The reconstructions are a bit blurry

Conclusions

- The forward problem.
\checkmark It is well posed for Helmholtz equation for general Fredholm type impedance operator
\checkmark It is also well posed in the Maxwell case with more restrictive assumptions on the impedance operator
- Qualitative methods.
\checkmark Fast and require very few a priori assumptions
x The reconstructions are a bit blurry
- Quantitative methods.
\checkmark Provide accurate and robust results and allow thin coating reconstructions
x Difficult to extend to more general operators
\triangle We only considered second order surface operators
x Difficult to implement in $3 D$
\triangle Possible problems with the quality of the successive meshes

Open questions and future work

- The forward problem in the Maxwell case.
? How can we numerically solve a $\nabla_{\ulcorner } \eta$ div $_{\Gamma}$ problem?
? Implementation of boundary integral methods? (\rightarrow Pernet \& al.)
- The Qualitative methods.
? Extension to the case of $\mathbf{Z}: H^{1 / 2}(\Gamma) \rightarrow H^{-1 / 2}(\Gamma)$?
? Extension to the Maxwell case?
? Many open questions related to the interior transmission eigenvalues
- The Quantitative methods.
? Use of Newton type methods? (\rightarrow Farhat-Tezaur-Djellouli 02)
? Can we consider more general operators?
? Can boundary integral equation simplify the numerical resolution in 3D?

Open questions and future work

- The forward problem in the Maxwell case.
? How can we numerically solve a $\nabla_{\ulcorner } \eta$ div $_{\Gamma}$ problem?
? Implementation of boundary integral methods? (\rightarrow Pernet \& al.)
- The Qualitative methods.
? Extension to the case of $\mathbf{Z}: H^{1 / 2}(\Gamma) \rightarrow H^{-1 / 2}(\Gamma)$?
? Extension to the Maxwell case?
? Many open questions related to the interior transmission eigenvalues
- The Quantitative methods.
? Use of Newton type methods? (\rightarrow Farhat-Tezaur-Djellouli 02)
? Can we consider more general operators?
? Can boundary integral equation simplify the numerical resolution in 3D?

Thank You!

Numerical reconstruction

TV regularization for piecewise constant coefficients

Reconstruction of a piecewise constant η on an ellipse
TV cost functional:

$$
F_{\mathrm{TV}}(\eta)=\frac{1}{2}\left\|u_{\lambda, \eta, \Gamma}^{\infty}-u_{\mathrm{obs}}^{\infty}\right\|_{L^{2}\left(S^{d}\right)}+\gamma\left|\nabla_{\Gamma} \eta\right|_{L^{1}(\Gamma)}
$$

Numerical reconstruction

Simultaneous reconstruction of λ, Γ with $\eta=0$

8 incident waves, 5% of noise on far-field data.
We iterate only on the geometry.

$$
B_{\varepsilon} u=\left(\nabla_{\Gamma} \lambda \cdot \varepsilon\right) u+\cdots
$$

The interior transmission eigenvalues for coatings

(TM mode)

Def: Interior transmission eigenvalue problem
Find $\left(v_{\delta}, w_{\delta}\right) \in L^{2}(\Omega) \times L^{2}\left(\Omega \backslash \overline{\Omega_{\delta}}\right)$ and $k_{\delta}^{2}>0$ such that

$$
\left\{\begin{array}{l}
\Delta v_{\delta}+k_{\delta}^{2} v_{\delta}=0 \text { in } \Omega, \\
\Delta w_{\delta}+k_{\delta}^{2} n w_{\delta}=0 \text { in } \Omega \backslash \overline{\Omega_{\delta}} \\
\frac{\partial v_{\delta}}{\partial \nu}=\frac{\partial w_{\delta}}{\partial \nu}, \quad v_{\delta}=w_{\delta} \text { on } \Gamma \\
w_{\delta}=0 \text { on } \Gamma_{\delta}
\end{array}\right.
$$

Prop: [Cakoni-Cossonière-Haddar 13]
If $0<n<1$ then the interior transmission eigenvalues exist and form a discrete set of \mathbb{R}.

Theorem [Cakoni-C.-Haddar]

The first eigenvalue k_{δ}^{2} expands as

$$
k_{\delta}^{2}=\lambda_{0}+\delta \lambda_{1}+\delta^{2} \lambda_{2}+\mathcal{O}\left(\delta^{3}\right)
$$

Notation: $\lambda_{0}=$ first Laplacien-Dirichlet eigenvalue inside Ω
$\lambda_{1}=\int_{\Gamma}\left|\frac{\partial v_{0}}{\partial \nu}\right| d s$ where v_{0} is the first Dirichlet eigenvector.

