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Inverse electromagnetic scattering problems
Radar imaging, non destructive testing, medical imaging...
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Inverse electromagnetic scattering with Generalized
Impedance Boundary Conditions

[uxE+ZHT_o] (E’ H')

}: Es s

(E,H) := (E°,H°) + (E' H')

—> Z characterizes the inhomogeneity Q2
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Inverse electromagnetic scattering with Generalized
Impedance Boundary Conditions

(uxE+ZHT_o] (E’ H')

§ ES S

(E,H) := (E°,H°) + (E' H')

—» We consider GIBC: Z is local
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Inverse electromagnetic scattering with Generalized
Impedance Boundary Conditions

Examples for which Z is local
[Bouchitté 90, Engquist-Nédélec 93...]

Dielectric inclusion

Perfect conductor
Perfect
conductor

Dielectric layer Dielectric layer

Imperfectly conducting body Rough obstacle
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Inverse electromagnetic scattering with Generalized
Impedance Boundary Conditions

(115 — wsgel < 22

ex: scattering by thin coatings (TM electromagnetic mode)
(TM mode)

Ougpp _ 1 -0
div(1Vus) + k2eus = 0 VR

J

—-*

Aus + kZU5 =0 us =0 Auapp + kzuapp =0

—> Z is the multiplication operator
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Inverse electromagnetic scattering with Generalized
Impedance Boundary Conditions

(115 — wsgel < 22

ex: scattering by thin coatings (TE electromagnetic mode)

(TE mode) Ottapy
div(e *Vus) + k?pus = 0 v
0

+ divr(6715Vruapp) + k2u5uapp =0

—-*

Aus + k2U5 =0 % =0 AUapp + kzuapp =0
12

—> Z is of the form divrnVi + A
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Inverse electromagnetic scattering with Generalized
Impedance Boundary Conditions

(vxE+ZHr = (E’ H')

>: Es s

Inverse problem: Find © and Z from the scattered fields

(E,H) := (E°,H°) + (E' H')

—> We consider GIBC: Z is local

Difficulties
@ The problem is non linear

@ and ill-posed
—> uniqueness may fail, unstable w.r.t noise on the data
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Inverse electromagnetic scattering with Generalized
Impedance Boundary Conditions

(uxE+ZHT_o] (E’ H')

}: Es s

Inverse problem: Find © and Z from the scattered fields

(E,H) := (E°,H°) + (E' H')

—> We consider GIBC: Z is local

Main inversion methods

@ Qualitative methods or sampling methods (Colton-Kirsch 96...)
—> Few a priori information but a lot of data

@ Quantitative methods (e.g. non-linear optimization methods)
—> Adapted to limited data but more a priori information and simple

model
3/36



Outline of the talk

o The GIBC forward problem
@ The scalar case
@ The Maxwell case

@ We prove well-posedness for rather general impedance operators in the
scalar case (with M. Chamaillard)

@ We extend this to the 3D Maxwell's equations, theoretical difficulties
arise from the variational spaces

436



Outline of the talk

0 The GIBC forward problem
@ The scalar case
@ The Maxwell case

@ We prove well-posedness for rather general impedance operators in the
scalar case (with M. Chamaillard)

@ We extend this to the 3D Maxwell's equations, theoretical difficulties
arise from the variational spaces

e Use of qualitative methods in the scalar case
@ The factorization method
@ Application to a uniqueness proof
@ We justify the factorization method for general impedance operators in
the scalar case (with M. Chamaillard)

@ We compute and justify an asymptotic development of the interior
transmission eigenvalues for thin coating imaging (with F. Cakoni) (not
in this talk)



Outline of the talk

e Use of optimization methods
@ The scalar case
@ The Maxwell case

@ Restriction to the case of
Z =divinVr + A

@ Stability for the reconstruction of (\,7) on exact or inexact geometries

@ We compute the shape and coefficients derivatives of the scattered field
for non-constant impedances and second order surface operators

@ We validate this method with numerical experiments for the 2D scalar
case and the 3D Maxwell case

436



Outline

@ The GIBC forward problem
@ The scalar case
@ The Maxwell case
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The GIBC forward problem

@ V an Hilbert space such that C*(I') C V C L3(T)
@ Z : V — V*is linear and continuous



The GIBC forward problem

A volume formulation
@ V an Hilbert space such that C>(I') C V C L(I)
@ Z : V — V*is linear and continuous

@ Im(Zu, uyy~ v > 0 for uniqueness reasons
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The GIBC forward problem

@ V an Hilbert space such that C*(I') C V C L3(T)
@ Z : V — V*is linear and continuous

@ Im(Zu, uyy~ v > 0 for uniqueness reasons

N
Find u* € {v € D'(Qext), v € H'(Qext) Vo € D(RY); vr € V}
Au® 4+ K2u® =0 in Qo = RY\ Q,
O Zu—FonT
(Pw) ¢ PO TTOND

lim / |0,u° — iku®|? = 0.
R—oc0 |X|:R

. J
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The GIBC forward problem

A volume formulation
@ V an Hilbert space such that C>(I') C V C L(I)
@ Z : V — V*is linear and continuous

@ Im(Zu, uyy~ v > 0 for uniqueness reasons

N
Find u* € {v € D'(Qext), v € H'(Qext) Vo € D(RY); vr € V}

A+ K2u® =0 in Qo =R\ Q,
S

u ou' .
+Zu*=fonT, <f 5 Zu’)
v

(pvol) ov

lim / |0,u° — iku®|? = 0.
R— o0 |X|:R

If Re(Z) > 0 then the forward problem is well posed and the continuity
constant does not depend on Z.
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Well posedness of the forward problem

Find u* € {v € D'(Qext), v € H'(Qext) YV € D(RY); v € V}

AU+ Kk2u® =0 in Qex,

ou®
(Puol) Ov +Zu=fonl,
lim / |0,u° — iku®)? = 0.
R—o0 |X|:R
\§ J

@ Sr : HY2(I') — H~Y/2(I') the exterior DtN map

f— Out
v
where
Aur + k2ur =0 in Qext,
ur=fon'l,
lim / |0, ur — ikus|® = 0.
R— 00 |x|=R

7/36



Well posedness of the forward problem

Find u* € {v € D'(Qext), v € H'(Qext) YV € D(RY); v € V}

(onl)

AU+ Kk2u® =0 in Qex,

ou®
+Zuwr =fonT,
ov
lim / |0,u° — iku®)? = 0.
R—o0 |X|:R

736

@ Sr : HY2(I') — H~Y/2(I') the exterior DtN map

f

N an
ov

(onl) = (Psurf) {

Find uf € V N HY2(T") such that
(Z+Sr)up =o




Well posedness of the forward problem

Find u € V N HY2(T) such that

(onl) — (Psurf) {(Z + Sr)UF —f

Remark: Sr : HY/2(I') — H™/2(T") is a Fredholm operator of index 0

If one of the following holds
1 the embedding H'/2(T") C V is compact,

2 the embedding V C HY/?(I') is compact and Z : V — V* is Fredholm
of index 0,

then (Z + Sr) : (VN HY2(M)) — (V N HY?(T))* is an isomorphism.

Application: Z = \.
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Well posedness of the forward problem

Find u € V N HY2(T) such that

(onl) — (Psurf) {(Z + SF)UF —f

Remark: Sr : HY/2(I') — H=/2(T") is a Fredholm operator of index 0

If one of the following holds
1 the embedding H'/?(T") C V is compact,

2 the embedding V C HY/?(I") is compact and Z : V — V* is Fredholm
of index 0,

then (Z + Sr) : (VN HY2(M)) — (V N HY?(T))* is an isomorphism.

Application: Z = divrnVr + X with Re(n) > 0 or Re(n) < 0.
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A forward model for Maxwell's equations

p
Find (E°, H®) € HI®Y(Qexe) X H®(Qeye) such that

loc

rotH® + /kE° =0  in Qcq,
rotE° — ikH° =0 in Qu,
(Pmax) v xE*+ZHS = —(v x E'+ ZH,) onT,

Iim/ |H® x & — (% x E°) x X|°ds = 0
0Br

R— o0
N\
with
ZH+ = rOtr(nl"OtrHT) + AH T
and

’

! Hr = xH)xv
|

! rotr = v - rot w
|

! rotr = —v x Vr |
!
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A forward model for Maxwell’s equations
First order model for thin layers

with
ZH = rOtr(’I]I‘OtrHT) + AHT
and

is the exterior Magnetic to Electric operator.

Notation: Hyet (1) := {v € (L3(1))® | v-v =0 and rotrv € L?()}
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A forward model for Maxwell's equations

Find Hr € Hyor, (T) such that
(Z aF Sr)Hr =f

(PMaX) ~— (Psurf) {

with
ZH+ = I’Otr(?]I‘OtrHT) + AHT
and
SriH/? — Hy?

rotr divr
is the exterior Magnetic to Electric operator.

Notation: Hyet (1) := {v € (L3(1))® | v-v =0 and rotrv € L?()}

Difficulty:

@ AMH7 is not a compact perturbation of the rotrnrotr : Hyotr — (Hroty )™
operator

— introduce a Helmholtz' decomposition on the boundary

9/ 36



A forward model for Maxwell's equations
First order model for thin layers

Find Hr € Hyo () such that

(PMax) = (Psurf) {(Z + SF)HF _f

with
ZH = rotr(nrotrHT) + AHT
and 1/2 1/2
Sr . Hrotr — Hdivr
is the exterior Magnetic to Electric operator.

Theorem (Well-posed)

Re(A) >0, Re(n) >0,
Sm(A) < (>)0, Sm(n) < (>)0,

then (Pupax) has a unique solution.
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Outline

© Use of qualitative methods in the scalar case
@ The factorization method
@ Application to a uniqueness proof
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The inverse problem with infinitely many data

The far-field pattern
The far field vz associated with ug - is defined in dimension d by

eikr

s oo (0 1
uzr(x) = Ry <uzyr(x) +0 (;)) r — 400.

for % in the unit sphere of RY.
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The inverse problem with infinitely many data

The far-field pattern
The far field vz associated with ug - is defined in dimension d by

eikr

S o0 (& 1
UZ,F(X) = W <UZ,F(X) + O <r>) r — +OO.

for X in the unit sphere of RY.

The data: A
For u/(x) = e*9* we know
Objective:
uZ5(%,0) Find © without knowing Z.

for all )?,9 on the unit sphere of RY.
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The inverse problem with infinitely many data

The far-field pattern
The far field vz associated with ug - is defined in dimension d by

eikr

S o0 (& 1
UZ,F(X) = W <UZ,F(X) + O <r>> r — +OO.

for X in the unit sphere of RY.

The data: A
For u/(x) = e*9* we know
Objective:
uZ5(%,0) Find © without knowing Z.

for all )?,é on the unit sphere of RY.

Strategy:

Use a sampling method: the factoriza-
tion method [Kirsch 98]

—» Does not need Z!
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The inverse problem with infinitely many data

The far-field pattern
The far field vz associated with ug - is defined in dimension d by

eikr

S o0 (& 1
UZVF(X) = W <UZ,F(X) + O <r>> r — +OO.

for X in the unit sphere of RY.

The data: A
For u/(x) = e*9* we know
Objective:
uZ5(%,0) Find Q without knowing Z.

for all )?,é on the unit sphere of RY.

Strategy: State of the art:

Use a sampling method: the factoriza- @ Neumann, Dirichlet B.C.: Kirsch
tion method [Kirsch 98] o Impedance B.C. (Z = \):

—> Does not need Z! Grinberg & Kirsch 02
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Characterization of the support of 2

@ First step: characterization of

Define the solution operator for the forward problem
G : V' — [*(5%

f— u®

Then

y € Q<= ¢;°(X) € R(G)

where ¢J° 1= elk&y

Aur + K2ur = 0 in Qext

—— — ikur

% +Zusr=1fonl
ov
lim / e
i
R—o0 Ix|=R or

2
ds=0




Characterization of the support of 2

@ First step: characterization of
Define the solution operator for the forward problem

G : V' — [*(5%
f— u®

Then

y € Q= ¢5°(%) € R(G) where ¢0° = elkXy

@ Second step: link with the far field operator Fg := [, g(@)uz.(0,%)db
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Characterization of the support of 2

@ First step: characterization of Q
Define the solution operator for the forward problem

G : V' — [*(5%
f— u®

Then

y € Q= ¢5°(%) € R(G) where ¢0° = elkXy

@ Second step: link with the far field operator Fg := [, g(@)uz.(0,%)db
Prove that

R(G) = R(Fy/?) with Fy = |Re(F)| + |Sm(F)|

by factorizing F like

F=GT*G*

)3 for some appropriate linear operator T.



Results

y € Qe ¢3(%) € R(F/?)

Provided k? is not an eigenvalue of,

Au+Kku=0 inQ

@—FZu:O onl
ov

and
@ The embedding H'/?(I") € V is compact, v/
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Results

y € Qe ¢3(%) € R(F/?)

Provided k? is not an eigenvalue of,

Au+Kku=0 inQ

@—FZu:O onl
ov

and
@ The embedding H'/?(I") € V is compact, v/
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Results

y € Q= ¢(%) e R(F/?)

Provided k? is not an eigenvalue of,

Au+Kku=0 inQ
ou

$+Zu:0 onl

and
@ The embedding H'/?(I") € V/ is compact, v
@ The embedding V < HY/?(I) is compact, v/

@ Intermediate case: none of the compact embeddings hold.

X

This is the case when Z is the interior DtN map!

—> Requires subtle hypothesis on Z!
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A uniqueness result

Zu =divr(nVru) + \u
V = HY(I)

Regularity and sign assumptions:

o [ is Lipschitz,
@ Aisin L®(I') and Sm(\) >0
@ 7 is continuous, Im(n) < 0 and Re(n) > 0 (or < 0).

Theorem (Uniqueness)
Let (A1,m1,11) and (A2,72,12) be such that

u(%,0) = u®(%,0) vV (%,0)e SS9

then

A=A, m=mn and [1=1Ts
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Proof of uniqueness

e 1 =TI, by using the factorization theorem.
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Proof of uniqueness

e 1 =TI, by using the factorization theorem.

e For the impedance we have
ouy ou

E+Zlulza—;+22U2:OonF
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Proof of uniqueness

e 1 =TI, by using the factorization theorem.

e For the impedance we have

Bul (9U1 3uz

R Zoun = T 4 Zyu = =2+ Zyup = r

£y + Lo o + £1u By + Zu; =0 on
hence

(Z1 - Zy)u(x,0) =0 V¥ (x,0) el x s

15 / 36



Proof of uniqueness

[uf"(f(, 0) = ug° (%, é)]

e 1 =TI, by using the factorization theorem.

e For the impedance we have

ou ou ou
87;+ZQU1287;+21U1287;+Z2U2ZOOH r
hence R .
(Zy — Z)u(x,0) =0 ¥V (x,0)elxS?
e But

Prop: {ui(x,f) for § € S} is dense in H(T)

— | divr[(m —m)Vrel + (M — X))o =0 Vo e HY(I)
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Proof of uniqueness

[uf"(f(, 0) = ug° (%, é)]

e 1 =TI, by using the factorization theorem.

e For the impedance we have

ou ou ou
87;+ZQU1287;+21U1287;+Z2U2ZOOH r
hence R .
(Zy — Z)u(x,0) =0 ¥V (x,0)elxS?
e But

Prop: {ui(x,f) for § € S} is dense in H(T)

— | divr[(m —m)Vrel + (M — X))o =0 Vo e HY(I)

e Good choices for ¢ gives

)\1 = )\2 and m = n2.

15/ 36



Proof of uniqueness

? And with few incident waves?

For the impedance coefficients:
Bourgeois-Haddar 10, Cakoni-Kress 13
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Numerical framework

o Z =divr(nVr-) withn =1,
@ For N=100, the synthetic data are

{3}

) )

@ For each z in a given sampling grid we solve a discrete version of

12
#/gz—¢z

with Tikhonov-Morozov regularization and plot

1
Z— —
Ir:20n
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Numerical framework
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Numerical framework
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Numerical framework

(No solution!\
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Numerical reconstructions

(b) no noise, kite, k =2

0,8 0,8

0,6 0,6

0,4 0,4

0,2 0,2

0 -3 0 3 0
(a) 1% noise, k =2 (b) 1% noise, k =5
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Outline

© Use of optimization methods
@ The scalar case
@ The Maxwell case
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Solving the inverse problem with few incident waves

52

\ 2
/\ .

-
The data:

\unlt circle.

For u'(x) = ™0 e know

R The unknowns:
uobs()? 9) - r d 7
and Z.

for few 9j and for X € S; a portion of the

J/

19 /36

The use of the sampling methods is not appropriate anymore
—> Use non linear optimization methods!




Solving the inverse problem with few incident waves

Au® + k2us =0in Qext
u=u+ u(-,0)

ou .

o +divi(pVru) + Au=0o0nT

— iku®

ar ds=0

2
. ou’

lim

R—o0 |x|=R

s N
The data:

\unlt circle.

For u'(x) = 0 e know
uobs()? 9 ) -

for few 9j and for X € S; a portion of the

J/

Require an a priori model for Z:

19 /36

52

\51
/

The unknowns:

I and A, 7.

Z =divinVr + A




Solving the inverse problem with few incident waves

Au® + kZUS =0in Qext

u=u+ u(-,0)

ou .

o +divr(pVru) + Au=0o0nT
5 2

lim / O el ds=0

R— 00 [x|=R or

52

\51
/

19 /36

e N
The data:
For u'(x) = %> we know
. The unknowns:
uobs()? 9 ) -
A I and A\, 7.
for few 0; and for X € S; a portion of the
[ unit circle. )
Minimize F(\,1,T) := 5 Z 152, (4 8) = 65, 0 ags,




Solving the inverse problem with few incident waves

Minimize F(A\,n,T) : Z s A,nr U:to)s(‘aéj)”%Z(sj)

@ Reconstruction of parameters with a known shape
—> Given an error on the shape, what is the error on
the reconstructed coefficients?

@ Reconstruction of the parameters and the shape
—> How to characterize the shape derivative?

19 /36



The inverse coefficient problem on an inexact shape

» The far—field data correspond to (A,7,I)
and we reconstruct (-, 7).) an approximation
of (\,n) on

Mo :=(ld+¢e)(IN).

Assume that (A, 7.) € (L°°(T'c))? are such that

? do we have

[Ae o fe = Mlroo(ry + 72 0 fo = Ml Lo ry < G(0,€)

||u§jv"7£7ra - uf\>?7hr||L2(5d) S 67

for some function G(d,e) — 07
5,e—0
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The inverse coefficient problem on an inexact shape

s X X N
Hypothesis: The inverse problem is stable for an exact geometry.

There exists a compact set K C (L°°(I'))? and a constant Cx such that for
(A;m) and (A7) € K,

A= M+l =l < Cilluyr — 65

Allessandrini, Chaabane, Labreuche, Leblond, Rondi,
Sincich... for A and Bourgeois-C.-Haddar for A and 7.

21/ 36



The inverse coefficient problem on an inexact shape
Result

s X X X 2
Hypothesis: The inverse problem is stable for an exact geometry.

There exists a compact set K C (L°°(I'))? and a constant Cx such that for
(A\,m) and (A, 7)) € K,

1A= Al [ =7l < CrlluSsyr = o5 Il

@ Allessandrini, Chaabane, Labreuche, Leblond, Rondi,

Sincich... for A and Bourgeois-C.-Haddar for A and 7.
-

For small £ and for all (A\; o fz, 7. o £2) € K that satisfy

||u§jy"75yrs _ ui?n,F” S 6

we have

[Ae o fe = All + [Ine o o — Il < Ck (S + [le]])-

21/ 36



Practical resolution of the inverse problem

S,
A + KU = 0 in Qax -
u = "+ () \ 2
ou . S
$+d|vr(nvru)—|—/\u?0 onl ‘A/\ 1
v / O _ k| ds=0 01
R— o0 Ix|=R 8[‘

[
1 A A
FOLn,T) =5 > M55 6) = ugsa(- )1 72s,)
j=1

For minimizing F we use a steepest descent method:
inspired by shape optimization (ex: Allaire-Jouve...)

@ we need partial derivatives of the far—field with respect to A and 7
(quite standard),

@ we need an appropriate derivative w.r.t. the obstacle.

@ Difficulty: the unknown impedances are supported by I'.
22



Shape derivative

@ A\, nand T are given

@ £ € CL®(RY RY) such that ||e]|c < 1
o f,:=Id+¢

o .:=1£(

Definition 1: constant coefficients

The shape derivative of the scattered field is given by the Fréchet derivative
at 0 of

Ro:e — uv®(A\,n,Te).

23 / 36



Shape derivative

@ A\, nand T are given

@ £ € CL®(RY RY) such that ||e]|c < 1
o f,:=Id+¢

o .:=1£(

Definition 2: non-constant coefficients with intrinsic extension

The shape derivative of the scattered field is given by the Fréchet derivative
at 0 of
Ry e — v®(Aeyme, Te).

First choice: A and 7.: extensions of A and 7 in the v direction

A(x) =AGr) s me(x) = nlxr)

for x € . and xr is the orthogonal projection of x on .
—> Same expression for the derivative as in the constant case

23 /36



Shape derivative

@ A\, nand T are given

@ £ € CL®(RY RY) such that ||e]|c < 1
o f:=Ild+e

o I.:=~(l

Definition 3: non-constant coefficients with extension in the e direction

The shape derivative of the scattered field is given by the Fréchet derivative
at 0 of
Ry e — v®(Aeyme, Te).

Second choice: A\; ;= Ao f 1, n.:=nofl

— Different expression and one may find f. such that I = £.(I') and

RL(0) - £ # 0.

R}(0) does not satisfy the classical shape derivative's properties!

23 /36



Derivative of the scattered field with respect to the
obstacle

Let (\,n,T) be given and analytic, for all e € C1> such that ||g]| < 1 we
have

R3(0) - & = ve(x),

where v(x) is the solution of the scattering problem with

ov,

ov

+2Zv. =B.u on [

B.u=(e - v)(k? = 2H\)u + divr ((Id + 2n(R — H Id))(e - v)Vru)
+ (VA -e)u+divr (Vrn - €)Vru)
+2Z((e-v)Zu),

with
e 2H :=divry, R:= Vv, Z- =divi(nVr-) + A+,

@ u is the total field given by (A, n,T).
24 /36



Main tools of the proof

@ Domain derivative tools: Murat and Simon 73, Kirsch 93,
Hettlich 94, Potthast 94.

@ Green's theorems and integral representation of the scattered field:
Kress and Paivarinta 99, Haddar and Kress 04.
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Main tools of the proof

@ Domain derivative tools: Murat and Simon 73, Kirsch 93,
Hettlich 94, Potthast 94.

@ Green's theorems and integral representation of the scattered field:
Kress and Paivarinta 99, Haddar and Kress 04.

(Green’s theorems and integral representation: prove that
u - = /(BEU)W(ny)dS(Y) + o([lell)
r

where for y € Qe w(-,y) = w?(-, y)+®(+, y) is the Green function associated
with the GIBC scattering problem

AW('aY)+k2W('7y) :6}/ in Qe><t

ow
—+Zw =0 onTl
ov

~+radiation condition.

25 / 36




A steepest descent algorithm to solve the inverse
problem

I
1 oo n oo n
F()\ﬂ% r) = 5 Z ”u/\,n,r('a 0J) - uobs('70j)”%2(5j)
=1

» update alternatively A, n and ' with a direction given by the partial
derivative of the cost function,
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A steepest descent algorithm to solve the inverse
problem

F(An,T) Z”U,\,nr( 0) — uge(-, 0l 7(s))

» update alternatively A, n and I with a direction given by the partial
derivative of the cost function,

( . s
Numerical procedure for minimizing w.r.t. \:

1. Take and initial guess Ainit

26 / 36



A steepest descent algorithm to solve the inverse
problem

F(An,T) Z”U,\,nr( 0) — uge(-, 0l 7(s))

» update alternatively A, n and I with a direction given by the partial
derivative of the cost function,

( . s
Numerical procedure for minimizing w.r.t. \:

1. Take and initial guess Ainit

2. Solve the forward problem for / incidents plane waves to compute uy . r

26 / 36



A steepest descent algorithm to solve the inverse
problem

F(An,T) ZII uSey (- 07) = ughe(, )1

» update alternatively A, n and I with a direction given by the partial
derivative of the cost function,

( . s
Numerical procedure for minimizing w.r.t. \:

1. Take and initial guess Ainit
2. Solve the forward problem for / incidents plane waves to compute uy . r
3. Solve the forward problem with / adjoint incident fields

Gi(y. b)) = /5 e M — un)(% 8))dx

J
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Numerical procedure for minimizing w.r.t. \:

1. Take and initial guess Ainit
2. Solve the forward problem for / incidents plane waves to compute uy . r

3. Solve the forward problem with / adjoint incident fields

Gi(y. b)) = /5 e M — un)(% 8))dx

J

4. Deduce Fjr(A)-h=Y!_ Re (fr G(y, éj)u(y,éj)h(y)dy) and update

5. Return to 2. until convergence
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The regularization procedure

F(\n,T Z |uxnr Ugﬁs("éj)ﬂfz(sj)

We regularize the gradient, NOT the cost function, using a H*(I") gra-
dient (inspired by the shape optimization techniques: Allaire...)

» Descent direction for A\: d\ that solves for every ¢ in some finite
dimensional space:

BA/ Vr(6N) - Vigds + / AP ds = —a F7’77r()\) X0
r r

where () is the regularization coefficient and « is the descent
coefficient.

» Do the same for 7 and JT.
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Numerical reconstruction
Finite elements method and remeshing procedure
using FreeFem-+

Exact geometry  +
04 Initial geometry ~ x
< Reconstructed geometry
=~
< s 02
s Pt T
<% N s
& s
- s 0
NS ssizﬁiin
= IR
o ‘iﬁﬁ'ﬂ?kﬂﬂk A
q‘ :,m o SRrenh ,;3&1%‘5‘5‘%‘# -02
R R R R =
KPNAAREAA D
R IR
}v»AV“\AVA‘EfAl‘gﬂ A wavelength
IR
EropboRy 04 02 0 02 04

Reconstruction of the geometry with 2 incident waves and 1% noise
on the farfield, A = ik/2 and n = 2/k being known
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Numerical reconstruction

Exact geometry

Initial geometry  x
0.4 Reconstructed geometry
0.2
0 8 incident waves, 5% of noise on
o2 far—field data.
-04
wavelength

-04 -0.2 0 0.2 04

" 11 Searchedn ——
- Searched A\ —=— Initial n
Initial A 1 Reconstructed n ——
1 Reconstructed A ——
0.9
09
0.8
L Y A S N PP -» WP A Y U
0.7
0.7
0.6
0.6
05
05
04
04 -3 -2 -1 0 1 2 3
-3 -2 -1 0 1 2 3
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Application to the reconstruction of a coated obstacle

Oltapp

ov

+ din(€_15VrUapp) + kQWS“app =0

Aapp + k2 tapp = 0
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(TE mode)
div(e 'Vus) + k?pius =0
é

8U5 —0

Aus + kus =0 e




Application to the reconstruction of a coated obstacle

(TE mode)
div(e 'Vus) + k?pius =0
é

% + divr(eflévruapp) + k2,u6u3pp =0

8U57
o °

Auzpp + K tzpp = 0 . Aus + kus =0
) Y

Reconstruction of an obstacle using the generalized impegance boundary con-
dition model of order 1 minimizing

/

1 - X
F(Ea 4, r) = 5 Z ||uapp(6? o, ()j) - ut?,%bs(" 9])”%2(51-)
j=1

with ¢ = 0.1 known.
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Application to the reconstruction of a coated obstacle

Synthetic data created with

@ 1 =0.1is known,
@ 5 =0.04/(1 — 0.4sin(0)) is unknown; / being the wavelength,
@ ¢ = 2.5 is unknown.

Reconstructed e: 2.3.

007
15 Exact geometry = + Searched § —+—

Initial geometry  x 0.065
Reconstructed geometry

0.5 0055

05 004

15 wavelength
45 -1 05 0 05 1 15 s 2 1 3 1 2 3

[Fails with a classical impedance boundary condition model!j
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Extension to the Maxwell case

v X E+ rotr(nrotrH7) + AHr =0on I

-

[ A
The data:
For incident waves
E'(z,0,p) = ik[(f x p) x 0]e™0=
H(z,0,p)) = ik(d x p)e™¥ )

we know
Eggs(;(’ 91" pj)

for few 0; and p; and for X € S; a portion
of the unit circle.

The unknowns:

I, A\ and 7.

J
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N 1 @ [l eco A o A 2
Minimize F(\, n,T) := 52 HEA,n,F("QJ? P;) — Eobs(, 0, p;)
j=1

L3(S))




Shape derivative for Maxwell

Definition
The shape derivative of the scattered field is given by the Fréchet derivative
at 0 of

R:e — E°(\e,me, Te).

Notations:
Me=1£(N, AX:=Xof, n.:=nof

Result:
dR(0) - e = vi

where (v, w:) is an outgoing solution to the Maxwell equations outside Q and

vxv;+2Zwr.=B(E,H) onT

B.(E,H) := — ik(v - e)Hr +rotr[(v-e)(v-E)] + AN(v - €) 2R — 2H)Hr
— AVr[(v-e)(v - H)] + 2rotr[H(v - €)nrotr(H7)]
+ (VrA-e)Hr +rotr[(Vrn - e)rotr (HT)
+ ikZ[(v - €)ZHT]

where E and H are the total fields for the reference shape I'.
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Numerical results

o A=0,n=—025 k=4,6=2%

@ 4 incident plane waves

(a) Initial shape



Numerical results

e A=0,7=-0.25/, k=4, =2%
@ 4 incident plane waves
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Conclusions

» The forward problem.

v It is well posed for Helmholtz equation for general Fredholm type
impedance operator

v It is also well posed in the Maxwell case with more restrictive assumptions
on the impedance operator
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Conclusions

» The forward problem.

v It is well posed for Helmholtz equation for general Fredholm type
impedance operator

v It is also well posed in the Maxwell case with more restrictive assumptions
on the impedance operator

» Qualitative methods.
v/ Fast and require very few a priori assumptions

X The reconstructions are a bit blurry

» Quantitative methods.
v/ Provide accurate and robust results and allow thin coating reconstructions

X Difficult to extend to more general operators
/\ We only considered second order surface operators

X Difficult to implement in 3D
I\ Possible problems with the quality of the successive meshes
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Open questions and future work

» The forward problem in the Maxwell case.
? How can we numerically solve a Vndivr problem?
? Implementation of boundary integral methods? (— Pernet & al.)

» The Qualitative methods.

? Extension to the case of Z : HY/2(T) — H='/2(T')?

? Extension to the Maxwell case?

? Many open questions related to the interior transmission eigenvalues

» The Quantitative methods.

? Use of Newton type methods? (— Farhat-Tezaur-Djellouli 02)
? Can we consider more general operators?

? Can boundary integral equation simplify the numerical resolution in 3D7
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» The forward problem in the Maxwell case.
? How can we numerically solve a Vndivr problem?
? Implementation of boundary integral methods? (— Pernet & al.)

» The Qualitative methods.

? Extension to the case of Z : HY/2(T) — H='/2(T')?

? Extension to the Maxwell case?

? Many open questions related to the interior transmission eigenvalues

» The Quantitative methods.

? Use of Newton type methods? (— Farhat-Tezaur-Djellouli 02)
? Can we consider more general operators?

? Can boundary integral equation simplify the numerical resolution in 3D7

' Thank You!)
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Numerical reconstruction
TV regularization for piecewise constant coefficients

09
0.8
0.7
0.6
0.5

04

34 /36

Mo —— n, ——

Ning * 1% de bruit. —wevpee Nfinal * 1% de bruit s

Nfinal * 2% de bruit ;: e 11 Nfinal : 5% de bruit -
Yk

FAAY

-3 2 -1 0 1 2 3

HY () regularization TV regularization

Reconstruction of a piecewise constant 1 on an ellipse




Numerical reconstruction
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11

09

08

0.7

0.6

05"

04

S Exa gty
Initial geometry  x
Reconstiycted A 04 Reconstructed geometry
0.2
0
-0.2
-04
wavelength
1 0 1 2 3 0.4 -0.2 0 0.2 04

8 incident waves, 5% of noise on far—field data.
We iterate only on the geometry.

B.u= (VrA-e)u+---




The interior transmission eigenvalues for coatings

(TM mode)
Aus + k2HU5 =0

Aus + k*us =0 us =0

Def: Interior transmission eigenvalue problem
Find (vs,ws) € L*(Q) x L2(2\ Qs) and k3 > 0
such that

Avs + k§V5 =0in Q,

Aws + kZnws = 0 in Q\ Qs

%L,f = %Lué y Vs = Ws on r

Ws — 0 on |_5

Prop: [Cakoni-Cossoniére-Haddar 13]
If 0 < n < 1 then the interior transmission eigenvalues exist and form a discrete set

of R.
Theorem [Cakoni-C.-Haddar]

The first eigenvalue k% expands as

k2 = Xo 4 A1 + 0° X2 + O(8°).

Notation: Ag = first Laplacien-Dirichlet eigenvalue inside 2

AL = fr ’%| ds where v is the first Dirichlet eigenvector.
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