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Inverse electromagnetic scattering problems
Radar imaging, non destructive testing, medical imaging...
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Inverse electromagnetic scattering with Generalized
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ν
Ω

ν × E + ZHT = 0

(E,H) := (Es ,Hs) + (Ei ,Hi )

(Ei ,Hi )

(Es ,Hs)
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ν
Ω

ν × E + ZHT = 0

(E,H) := (Es ,Hs) + (Ei ,Hi )

(Ei ,Hi )

(Es ,Hs)

We consider GIBC: Z is local

Examples for which Z is local
[Bouchitté 90, Engquist-Nédélec 93...]

Perfect conductor

Dielectric layer

Dielectric inclusion

Dielectric layer

Perfect
conductor

Imperfectly conducting body Rough obstacle
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ν
Ω

ν × E + ZHT = 0

(E,H) := (Es ,Hs) + (Ei ,Hi )

(Ei ,Hi )

(Es ,Hs)

We consider GIBC: Z is local

‖uδ − uapp‖ ≤ Cδ2

ex: scattering by thin coatings (TM electromagnetic mode)

∆uapp + k2uapp = 0

∂uapp

∂ν
− 1

δ
uapp = 0

δ

∆uδ + k2uδ = 0

div(µ−1∇uδ) + k2εuδ = 0

uδ = 0

(TM mode)

Z is the multiplication operator
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ν
Ω

ν × E + ZHT = 0

(E,H) := (Es ,Hs) + (Ei ,Hi )

(Ei ,Hi )

(Es ,Hs)

We consider GIBC: Z is local

Inverse problem: Find Ω and Z from the scattered fields

‖uδ − uapp‖ ≤ Cδ2

ex: scattering by thin coatings (TE electromagnetic mode)

∆uapp + k2uapp = 0

∂uapp

∂ν
+ divΓ(ε−1δ∇Γuapp) + k2µδuapp = 0

δ

∆uδ + k2uδ = 0

div(ε−1∇uδ) + k2µuδ = 0

∂uδ
∂ν

= 0

(TE mode)

Z is of the form divΓη∇Γ + λ
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ν
Ω

ν × E + ZHT = 0

(E,H) := (Es ,Hs) + (Ei ,Hi )

(Ei ,Hi )

(Es ,Hs)

We consider GIBC: Z is local

Inverse problem: Find Ω and Z from the scattered fields

Difficulties

The problem is non linear

and ill-posed
uniqueness may fail, unstable w.r.t noise on the data
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ν
Ω

ν × E + ZHT = 0

(E,H) := (Es ,Hs) + (Ei ,Hi )

(Ei ,Hi )

(Es ,Hs)

We consider GIBC: Z is local

Inverse problem: Find Ω and Z from the scattered fields

Main inversion methods

Qualitative methods or sampling methods (Colton-Kirsch 96...)

Few a priori information but a lot of data

Quantitative methods (e.g. non-linear optimization methods)
Adapted to limited data but more a priori information and simple

model



Outline of the talk

1 The GIBC forward problem
The scalar case
The Maxwell case

We prove well-posedness for rather general impedance operators in the
scalar case (with M. Chamaillard)

We extend this to the 3D Maxwell’s equations, theoretical difficulties
arise from the variational spaces

2 Use of qualitative methods in the scalar case
The factorization method
Application to a uniqueness proof

We justify the factorization method for general impedance operators in
the scalar case (with M. Chamaillard)

We compute and justify an asymptotic development of the interior
transmission eigenvalues for thin coating imaging (with F. Cakoni) (not
in this talk)
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Outline of the talk

3 Use of optimization methods
The scalar case
The Maxwell case

Restriction to the case of

Z = divΓη∇Γ + λ

Stability for the reconstruction of (λ, η) on exact or inexact geometries

We compute the shape and coefficients derivatives of the scattered field
for non-constant impedances and second order surface operators

We validate this method with numerical experiments for the 2D scalar
case and the 3D Maxwell case
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3 Use of optimization methods
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The GIBC forward problem
A volume formulation

V an Hilbert space such that C∞(Γ) ⊂ V ⊂ L2(Γ)

Z : V −→ V ∗ is linear and continuous

For example for complex functions (λ, η) ∈ (L∞(Γ))2

Z = divΓη∇Γ + λ

V = H1(Γ)
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V an Hilbert space such that C∞(Γ) ⊂ V ⊂ L2(Γ)

Z : V −→ V ∗ is linear and continuous

=m〈Zu, u〉V ∗,V ≥ 0 for uniqueness reasons

Find us ∈
{

v ∈ D′(Ωext) , ϕv ∈ H1(Ωext) ∀ϕ ∈ D(Rd); v|Γ ∈ V
}

(Pvol)



∆us + k2us = 0 in Ωext := Rd \ Ω,

∂us

∂ν
+ Zus = f on Γ,

(
f = −∂ui

∂ν
− Zui

)
lim

R→∞

∫
|x|=R

|∂rus − ikus |2 = 0.
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∆us + k2us = 0 in Ωext := Rd \ Ω,

∂us

∂ν
+ Zus = f on Γ,

(
f = −∂ui

∂ν
− Zui

)
lim

R→∞

∫
|x|=R

|∂rus − ikus |2 = 0.

Theorem

If <e(Z) ≥ 0 then the forward problem is well posed and the continuity
constant does not depend on Z.
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Well posedness of the forward problem
A surface equivalent formulation

Find us ∈
{

v ∈ D′(Ωext) , ϕv ∈ H1(Ωext) ∀ϕ ∈ D(Rd); v|Γ ∈ V
}

(Pvol)



∆us + k2us = 0 in Ωext,

∂us

∂ν
+ Zus = f on Γ,

(
f = −∂ui

∂ν
− Zui

)
lim

R→∞

∫
|x|=R

|∂rus − ikus |2 = 0.

SΓ : H1/2(Γ) −→ H−1/2(Γ) the exterior DtN map

f 7−→ ∂uf

∂ν
where 

∆uf + k2uf = 0 in Ωext,

uf = f on Γ,

lim
R→∞

∫
|x|=R

|∂ruf − ikuf |2 = 0.
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Well posedness of the forward problem
A Fredholm operator

(Pvol)⇐⇒ (Psurf)

{
Find us

Γ ∈ V ∩ H1/2(Γ) such that

(Z + SΓ)us
Γ = f

Remark: SΓ : H1/2(Γ)→ H−1/2(Γ) is a Fredholm operator of index 0

Theorem

If one of the following holds

1 the embedding H1/2(Γ) ⊂ V is compact,

2 the embedding V ⊂ H1/2(Γ) is compact and Z : V → V ∗ is Fredholm
of index 0,

then (Z + SΓ) : (V ∩ H1/2(Γ))→ (V ∩ H1/2(Γ))∗ is an isomorphism.

Application: Z = λ.
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Well posedness of the forward problem
A Fredholm operator

(Pvol)⇐⇒ (Psurf)

{
Find us

Γ ∈ V ∩ H1/2(Γ) such that

(Z + SΓ)us
Γ = f

Remark: SΓ : H1/2(Γ)→ H−1/2(Γ) is a Fredholm operator of index 0

Theorem

If one of the following holds

1 the embedding H1/2(Γ) ⊂ V is compact,

2 the embedding V ⊂ H1/2(Γ) is compact and Z : V → V ∗ is Fredholm
of index 0,

then (Z + SΓ) : (V ∩ H1/2(Γ))→ (V ∩ H1/2(Γ))∗ is an isomorphism.

Application: Z = divΓη∇Γ + λ with <e(η) > 0 or <e(η) < 0.
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A forward model for Maxwell’s equations
First order model for thin layers

Find (Es ,Hs) ∈ Hrot
loc(Ωext)×Hrot

loc(Ωext) such that

(PMax)



rotHs + ikEs = 0 in Ωext,

rotEs − ikHs = 0 in Ωext,

ν × Es + ZHs
T = −(ν × Ei + ZHi

T ) on Γ,

lim
R→∞

∫
∂BR

|Hs × x̂ − (x̂ × Es)× x̂ |2ds = 0

with
ZHT = rotΓ(ηrotΓHT ) + λHT

and

HT := (ν ×H)× ν
rotΓ = ν · rot

rotΓ = −ν ×∇Γ
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A forward model for Maxwell’s equations
First order model for thin layers

(PMax)⇐⇒ (Psurf)

{
Find HΓ ∈ HrotΓ

(Γ) such that

(Z + SΓ)HΓ = f

with
ZHT = rotΓ(ηrotΓHT ) + λHT

and
SΓ : H

−1/2
rotΓ

−→ H
−1/2
divΓ

is the exterior Magnetic to Electric operator.

Notation: HrotΓ
(Γ) := {v ∈ (L2(Γ))3 | v · ν = 0 and rotΓv ∈ L2(Γ)}
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A forward model for Maxwell’s equations
First order model for thin layers

(PMax)⇐⇒ (Psurf)

{
Find HΓ ∈ HrotΓ

(Γ) such that

(Z + SΓ)HΓ = f

with
ZHT = rotΓ(ηrotΓHT ) + λHT

and
SΓ : H

−1/2
rotΓ

−→ H
−1/2
divΓ

is the exterior Magnetic to Electric operator.

Notation: HrotΓ
(Γ) := {v ∈ (L2(Γ))3 | v · ν = 0 and rotΓv ∈ L2(Γ)}

Difficulty:

λHT is not a compact perturbation of the rotΓηrotΓ : HrotΓ
→ (HrotΓ

)∗

operator
introduce a Helmholtz’ decomposition on the boundary
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A forward model for Maxwell’s equations
First order model for thin layers

(PMax)⇐⇒ (Psurf)

{
Find HΓ ∈ HrotΓ

(Γ) such that

(Z + SΓ)HΓ = f

with
ZHT = rotΓ(ηrotΓHT ) + λHT

and
SΓ : H

−1/2
rotΓ

−→ H
−1/2
divΓ

is the exterior Magnetic to Electric operator.

Theorem (Well-posed)

If
<e(λ) ≥ 0 , <e(η) ≥ 0,

=m(λ) < (>)0 , =m(η) < (>)0,

then (PMax) has a unique solution.
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Outline

1 The GIBC forward problem

2 Use of qualitative methods in the scalar case
The factorization method
Application to a uniqueness proof

3 Use of optimization methods
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The inverse problem with infinitely many data

The far-field pattern
The far field u∞Z,Γ associated with us

Z,Γ is defined in dimension d by

us
Z,Γ(x) =

e ikr

r (d−1)/2

(
u∞Z,Γ(x̂) +O

(
1

r

))
r −→ +∞.

for x̂ in the unit sphere of Rd .

Strategy:
Use a sampling method: the factoriza-
tion method [Kirsch 98]

Does not need Z!

State of the art:
Neumann, Dirichlet B.C.: Kirsch
98

Impedance B.C. (Z = λ):
Grinberg & Kirsch 02
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The data:
For ui (x) = e ik θ̂·x we know

u∞obs(x̂ , θ̂)

for all x̂ , θ̂ on the unit sphere of Rd .

Objective:
Find Ω without knowing Z.
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The data:
For ui (x) = e ik θ̂·x we know

u∞obs(x̂ , θ̂)

for all x̂ , θ̂ on the unit sphere of Rd .

Objective:
Find Ω without knowing Z.



Characterization of the support of Ω
Use of the factorization theorem [Kirsch & Grinberg 2008]

1 First step: characterization of Ω
Define the solution operator for the forward problem

G : V ∗ −→ L2(Sd)

f 7−→ u∞f

Then

y ∈ Ω⇐⇒ φ∞y (x̂) ∈ R(G ) where φ∞y := e ikx̂·y


∆uf + k2uf = 0 in Ωext

∂uf

∂ν
+ Zuf = f on Γ

lim
R→∞

∫
|x|=R

∣∣∣∣∂uf

∂r
− ikuf

∣∣∣∣2 ds = 0
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2 Second step: link with the far field operator Fg :=
∫
Sd g(θ̂)u∞obs(θ̂, x̂)d θ̂

Prove that

R(G ) = R(F
1/2
# ) with F# := |<e(F )|+ |=m(F )|

by factorizing F like

F = GT ∗G∗

for some appropriate linear operator T .
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2 Second step: link with the far field operator Fg :=
∫
Sd g(θ̂)u∞obs(θ̂, x̂)d θ̂

Prove that

R(G ) = R(F
1/2
# ) with F# := |<e(F )|+ |=m(F )|

by factorizing F like

F = GT ∗G∗

for some appropriate linear operator T .

Tricky Part!!
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Results

y ∈ Ω⇐⇒ φ∞y (x̂) ∈ R(F
1/2
# )

Provided k2 is not an eigenvalue of,∆u + k2u = 0 in Ω
∂u

∂ν
+ Zu = 0 on Γ

and

The embedding H1/2(Γ) ⊂ V is compact, 3

Z = λ·
V = L2(Γ)

The embedding V ⊂ H1/2(Γ) is compact, 3

Z = divΓ(η∇Γ·) + λ·
V = H1(Γ)
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Results

y ∈ Ω⇐⇒ φ∞y (x̂) ∈ R(F
1/2
# )

Provided k2 is not an eigenvalue of,∆u + k2u = 0 in Ω
∂u

∂ν
+ Zu = 0 on Γ

and

The embedding H1/2(Γ) ⊂ V is compact, 3

The embedding V ⊂ H1/2(Γ) is compact, 3

Intermediate case: none of the compact embeddings hold. 7

This is the case when Z is the interior DtN map!

Requires subtle hypothesis on Z!
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A uniqueness result

{
Zu = divΓ(η∇Γu) + λu

V = H1(Γ)

Regularity and sign assumptions:

Γ is Lipschitz,

λ is in L∞(Γ) and =m(λ) ≥ 0

η is continuous, =m(η) ≤ 0 and <e(η) > 0 (or < 0).

Theorem (Uniqueness)

Let (λ1, η1, Γ1) and (λ2, η2, Γ2) be such that

u∞1 (x̂ , θ̂) = u∞2 (x̂ , θ̂) ∀ (x̂ , θ̂) ∈ Sd × Sd

then
λ1 = λ2, η1 = η2 and Γ1 = Γ2.

14 / 36



Proof of uniqueness

u∞1 (x̂ , θ̂) = u∞2 (x̂ , θ̂)

• Γ1 = Γ2 by using the factorization theorem.
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divΓ[(η1 − η2)∇Γϕ] + (λ1 − λ2)ϕ = 0 ∀ϕ ∈ H1(Γ)
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And with few incident waves?

For the impedance coefficients:
Bourgeois-Haddar 10, Cakoni-Kress 13



Numerical framework

Z = divΓ(η∇Γ·) with η = 1,

For N=100, the synthetic data are{
u∞
(

2iπ

N
,

2jπ

N

)}
i ,j=1,··· ,N

For each z in a given sampling grid we solve a discrete version of

F
1/2
# gz = φ∞z

with Tikhonov-Morozov regularization and plot

z 7−→ 1

‖gz‖
.
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‖gz‖
.
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Numerical reconstructions
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Outline

1 The GIBC forward problem

2 Use of qualitative methods in the scalar case

3 Use of optimization methods
The scalar case
The Maxwell case
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Solving the inverse problem with few incident waves

The use of the sampling methods is not appropriate anymore
Use non linear optimization methods!

Minimize F (λ, η, Γ) :=
1

2

I∑
j=1

‖u∞λ,η,Γ(·, θ̂j)− u∞obs(·, θ̂j)‖2
L2(Sj )

19 / 36

The data:
For ui (x) = e ik θ̂i ·x we know

u∞obs(x̂ , θ̂i )

for few θ̂j and for x̂ ∈ Sj a portion of the
unit circle.

The unknowns:

Γ and Z.

S1

θ̂1

S2

θ̂2

S3
θ̂3

Ω



Solving the inverse problem with few incident waves

Require an a priori model for Z:

Z = divΓη∇Γ + λ
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∆us + k2us = 0 in Ωext

u = us + ui (·, θ̂)
∂u

∂ν
+ divΓ(η∇Γu) + λu = 0 on Γ

lim
R→∞

∫
|x|=R

∣∣∣∣∂us

∂r
− ikus

∣∣∣∣2 ds = 0

The data:
For ui (x) = e ik θ̂i ·x we know

u∞obs(x̂ , θ̂i )

for few θ̂j and for x̂ ∈ Sj a portion of the
unit circle.

The unknowns:

Γ and λ, η.
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Ω

Minimize F (λ, η, Γ) :=
1

2

I∑
j=1

‖u∞λ,η,Γ(·, θ̂j)− u∞obs(·, θ̂j)‖2
L2(Sj )

1 Reconstruction of parameters with a known shape
Given an error on the shape, what is the error on

the reconstructed coefficients?

2 Reconstruction of the parameters and the shape
How to characterize the shape derivative?



The inverse coefficient problem on an inexact shape

Ω

Γ

Γε
ε

I The far–field data correspond to (λ, η, Γ)
and we reconstruct (λε, ηε) an approximation
of (λ, η) on

Γε := (Id + ε)(Γ).

Assume that (λε, ηε) ∈ (L∞(Γε))2 are such that

‖u∞λε,ηε,Γε − u∞λ,η,Γ‖L2(Sd ) ≤ δ,

do we have

‖λε ◦ fε − λ‖L∞(Γ) + ‖ηε ◦ fε − η‖L∞(Γ) ≤ G (δ, ε)

for some function G (δ, ε) −→
δ,ε→0

0?
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The inverse coefficient problem on an inexact shape
Result

Hypothesis: The inverse problem is stable for an exact geometry.
There exists a compact set K ⊂ (L∞(Γ))2 and a constant CK such that for

(λ, η) and (λ̃, η̃) ∈ K ,

‖λ− λ̃‖+ ‖η − η̃‖ ≤ CK‖u∞λ,η,Γ − u∞
λ̃,η̃,Γ
‖.

Allessandrini, Chaabane, Labreuche, Leblond, Rondi,

Sincich... for λ and Bourgeois-C.-Haddar for λ and η.

Theorem

For small ε and for all (λε ◦ fε, ηε ◦ fε) ∈ K that satisfy

‖u∞λε,ηε,Γε − u∞λ,η,Γ‖ ≤ δ

we have
‖λε ◦ fε − λ‖+ ‖ηε ◦ fε − η‖ ≤ CK (δ + ‖ε‖).
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Practical resolution of the inverse problem

F (λ, η, Γ) :=
1

2

I∑
j=1

‖u∞λ,η,Γ(·, θ̂j)− u∞obs(·, θ̂j)‖2
L2(Sj )

For minimizing F we use a steepest descent method:
inspired by shape optimization (ex: Allaire-Jouve...)

we need partial derivatives of the far–field with respect to λ and η
(quite standard),

we need an appropriate derivative w.r.t. the obstacle.

Difficulty: the unknown impedances are supported by Γ.
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∆us + k2us = 0 in Ωext

u = us + ui (·, θ̂)
∂u

∂ν
+ divΓ(η∇Γu) + λu = 0 on Γ

lim
R→∞

∫
|x|=R

∣∣∣∣∂us

∂r
− ikus

∣∣∣∣2 ds = 0

S1

θ̂1

S2

θ̂2

S3
θ̂3

Ω



Shape derivative

Ω

Γ

Γε
ε

λ, η and Γ are given

ε ∈ C 1,∞(Rd ,Rd) such that ‖ε‖C 1 < 1

fε := Id + ε

Γε := fε(Γ)

Definition 1: constant coefficients

The shape derivative of the scattered field is given by the Fréchet derivative
at 0 of

R0 : ε −→ us(λ, η, Γε).
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Shape derivative

Ω

Γ

Γε
ε

λ, η and Γ are given

ε ∈ C 1,∞(Rd ,Rd) such that ‖ε‖C 1 < 1

fε := Id + ε

Γε := fε(Γ)

Definition 2: non-constant coefficients with intrinsic extension

The shape derivative of the scattered field is given by the Fréchet derivative
at 0 of

R1 : ε −→ us(λε, ηε, Γε).

First choice: λε and ηε: extensions of λ and η in the ν direction

λε(x) = λ(xΓ) , ηε(x) = η(xΓ)

for x ∈ Γε and xΓ is the orthogonal projection of x on Γ.

Same expression for the derivative as in the constant case
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Shape derivative

Ω

Γ

Γε
ε

λ, η and Γ are given

ε ∈ C 1,∞(Rd ,Rd) such that ‖ε‖C 1 < 1

fε := Id + ε

Γε := fε(Γ)

Definition 3: non-constant coefficients with extension in the ε direction

The shape derivative of the scattered field is given by the Fréchet derivative
at 0 of

R2 : ε −→ us(λε, ηε, Γε).

Second choice: λε := λ ◦ f −1
ε , ηε := η ◦ f −1

ε

Different expression and one may find fε such that Γ = fε(Γ) and

R ′2(0) · ε 6= 0.

R ′2(0) does not satisfy the classical shape derivative’s properties!

23 / 36



Derivative of the scattered field with respect to the
obstacle

Let (λ, η, Γ) be given and analytic, for all ε ∈ C 1,∞ such that ‖ε‖ < 1 we
have

R ′2(0) · ε = vε(x),

where vε(x) is the solution of the scattering problem with

∂vε

∂ν
+ Zvε = Bεu on Γ

Bεu =(ε · ν)(k2 − 2Hλ)u + divΓ ((Id + 2η(R − H Id))(ε · ν)∇Γu)

+ (∇Γλ · ε)u + divΓ ((∇Γη · ε)∇Γu)

+ Z ((ε · ν)Zu) ,

with

2H := divΓν, R := ∇Γν, Z· = divΓ(η∇Γ·) + λ·,
u is the total field given by (λ, η, Γ).
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Main tools of the proof

Green’s theorems and integral representation: prove that

us
ε − us = −

∫
Γ

(Bεu)w(·, y)ds(y) + o(‖ε‖)

where for y ∈ Ωext w(·, y) = w s(·, y)+Φ(·, y) is the Green function associated
with the GIBC scattering problem

∆w(·, y) + k2w(·, y) = δy in Ωext

∂w

∂ν
+ Zw = 0 on Γ

+radiation condition.
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Domain derivative tools: Murat and Simon 73, Kirsch 93,
Hettlich 94, Potthast 94.

Green’s theorems and integral representation of the scattered field:
Kress and Päivärinta 99, Haddar and Kress 04.
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A steepest descent algorithm to solve the inverse
problem

F (λ, η, Γ) :=
1

2

I∑
j=1

‖u∞λ,η,Γ(·, θ̂j)− u∞obs(·, θ̂j)‖2
L2(Sj )

I update alternatively λ, η and Γ with a direction given by the partial
derivative of the cost function,

Numerical procedure for minimizing w.r.t. λ:

1. Take and initial guess λinit

2. Solve the forward problem for I incidents plane waves to compute uλ,η,Γ

3. Solve the forward problem with I adjoint incident fields

G i (y , θ̂j) =

∫
Sj

e−ikx̂·y (u∞λ,η,Γ − u∞obs)(x̂ , θ̂j)dx̂

4. Deduce F ′η,Γ(λ) · h =
∑I

j=1 <e
(∫

Γ
G(y , θ̂j)u(y , θ̂j)h(y)dy

)
and update λ

5. Return to 2. until convergence
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The regularization procedure

F (λ, η, Γ) =
1

2

I∑
j=1

‖u∞λ,η,Γ(·, θ̂j)− u∞obs(·, θ̂j)‖2
L2(Sj )

We regularize the gradient, NOT the cost function, using a H1(Γ) gra-
dient (inspired by the shape optimization techniques: Allaire...)

I Descent direction for λ: δλ that solves for every φ in some finite
dimensional space:

βλ

∫
Γ
∇Γ(δλ) · ∇Γφ ds +

∫
Γ
δλφ ds = −αλ F ′η,Γ(λ) · φ

where βλ is the regularization coefficient and αλ is the descent
coefficient.
I Do the same for δη and δΓ.
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Numerical reconstruction
Finite elements method and remeshing procedure

using FreeFem++

-0.4

-0.2

 0
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 0.4

-0.4 -0.2  0  0.2  0.4

wavelength

Exact geometry
Initial geometry

Reconstructed geometry

Reconstruction of the geometry with 2 incident waves and 1% noise
on the far–field, λ = ik/2 and η = 2/k being known
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Numerical reconstruction
Simultaneous reconstruction of λ, η and Γ
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8 incident waves, 5% of noise on
far–field data.
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Application to the reconstruction of a coated obstacle

30 / 36

∆uapp + k2uapp = 0

∂uapp

∂ν
+ divΓ(ε−1δ∇Γuapp) + k2µδuapp = 0

δ

∆uδ + k2uδ = 0

div(ε−1∇uδ) + k2µuδ = 0

∂uδ
∂ν

= 0

(TE mode)



Application to the reconstruction of a coated obstacle

30 / 36

Reconstruction of an obstacle using the generalized impedance boundary con-
dition model of order 1 minimizing

F (ε, δ, Γ) :=
1

2

I∑
j=1

‖u∞app(ε, δ, Γ, θ̂j)− u∞δ,obs(·, θ̂j)‖2
L2(Sj )

with µ = 0.1 known.

∆uapp + k2uapp = 0

∂uapp

∂ν
+ divΓ(ε−1δ∇Γuapp) + k2µδuapp = 0

δ

∆uδ + k2uδ = 0

div(ε−1∇uδ) + k2µuδ = 0

∂uδ
∂ν

= 0

(TE mode)



Application to the reconstruction of a coated obstacle
Numerical results

Synthetic data created with

µ = 0.1 is known,

δ = 0.04l(1− 0.4 sin(θ)) is unknown; l being the wavelength,

ε = 2.5 is unknown.

Reconstructed ε: 2.3.
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Fails with a classical impedance boundary condition model!
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Extension to the Maxwell case

ν × E + rotΓ(ηrotΓHT ) + λHT = 0 on Γ

Minimize F (λ, η, Γ) :=
1

2

I∑
j=1

∥∥∥E∞λ,η,Γ(·, θ̂j ,pj)− E∞obs(·, θ̂j ,pj)
∥∥∥2

L2
t (Sj )

32 / 36

The data:
For incident waves

Ei (z , θ̂,p) = ik[(θ̂ × p)× θ̂]e ik θ̂·z

Hi (z , θ̂,p)) = ik(θ̂ × p)e ik θ̂·z

we know
E∞obs(x̂ , θ̂j ,pj)

for few θ̂j and pj and for x̂ ∈ Sj a portion
of the unit circle.

The unknowns:

Γ, λ and η.



Shape derivative for Maxwell

Definition

The shape derivative of the scattered field is given by the Fréchet derivative
at 0 of

R : ε −→ Es(λε, ηε, Γε).

Notations:
Γε := fε(Γ) , λε := λ ◦ fε , ηε := η ◦ fε

Result:
dR(0) · ε = vs

ε

where (vs
ε,w

s
ε) is an outgoing solution to the Maxwell equations outside Ω and

ν × vs
ε + Zws

T ,ε = Bε(E,H) on Γ

Bε(E,H) :=− ik(ν · ε)HT + rotΓ[(ν · ε)(ν · E)] + λ(ν · ε) (2R − 2H) HT

− λ∇Γ[(ν · ε)(ν ·H)] + 2rotΓ[H(ν · ε)ηrotΓ(HT )]

+ (∇Γλ · ε)HT + rotΓ[(∇Γη · ε)rotΓ(HT )

+ ikZ[(ν · ε)ZHT ]

where E and H are the total fields for the reference shape Γ.
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Numerical results

λ = 0, η = −0.25i , k = 4, δ = 2%

4 incident plane waves

(a) Initial shape (b) Target
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Conclusions

I The forward problem.

3 It is well posed for Helmholtz equation for general Fredholm type
impedance operator

3 It is also well posed in the Maxwell case with more restrictive assumptions
on the impedance operator

I Qualitative methods.

3 Fast and require very few a priori assumptions

7 The reconstructions are a bit blurry

I Quantitative methods.

3 Provide accurate and robust results and allow thin coating reconstructions

7 Difficult to extend to more general operators
We only considered second order surface operators

7 Difficult to implement in 3D
Possible problems with the quality of the successive meshes
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Open questions and future work

I The forward problem in the Maxwell case.
How can we numerically solve a ∇ΓηdivΓ problem?
Implementation of boundary integral methods? (→ Pernet & al.)

I The Qualitative methods.
Extension to the case of Z : H1/2(Γ)→ H−1/2(Γ)?
Extension to the Maxwell case?
Many open questions related to the interior transmission eigenvalues

I The Quantitative methods.
Use of Newton type methods? (→ Farhat-Tezaur-Djellouli 02)
Can we consider more general operators?
Can boundary integral equation simplify the numerical resolution in 3D?

Thank You!
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Numerical reconstruction
TV regularization for piecewise constant coefficients

H1(Γ) regularization

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

-3 -2 -1  0  1  2  3

η
0

η
final

 : 1% de bruit

η
final

 : 5% de bruit

TV regularization

Reconstruction of a piecewise constant η on an ellipse

TV cost functional:

FTV(η) =
1

2
‖u∞λ,η,Γ − u∞obs‖L2(Sd ) + γ|∇Γη|L1(Γ)
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Numerical reconstruction
Simultaneous reconstruction of λ, Γ with η = 0

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

-3 -2 -1  0  1  2  3

Searched λ
Initial λ

Reconstructed λ

-0.4

-0.2

 0

 0.2

 0.4

-0.4 -0.2  0  0.2  0.4

wavelength

Exact geometry
Initial geometry

Reconstructed geometry

8 incident waves, 5% of noise on far–field data.
We iterate only on the geometry.

Bεu = (∇Γλ · ε)u + · · ·
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The interior transmission eigenvalues for coatings

δ

∆uδ + k2uδ = 0

∆uδ + k2nuδ = 0

Ωδ Γ

uδ = 0

(TM mode) Def: Interior transmission eigenvalue problem
Find (vδ,wδ) ∈ L2(Ω) × L2(Ω \ Ωδ) and k2

δ > 0
such that

∆vδ + k2
δvδ = 0 in Ω,

∆wδ + k2
δnwδ = 0 in Ω \ Ωδ

∂vδ
∂ν

= ∂wδ
∂ν

, vδ = wδ on Γ

wδ = 0 on Γδ

Prop: [Cakoni-Cossonière-Haddar 13]

If 0 < n < 1 then the interior transmission eigenvalues exist and form a discrete set
of R.

Theorem [Cakoni-C.-Haddar]

The first eigenvalue k2
δ expands as

k2
δ = λ0 + δλ1 + δ2λ2 +O(δ3).

Notation: λ0 = first Laplacien-Dirichlet eigenvalue inside Ω

λ1 =
∫

Γ

∣∣ ∂v0
∂ν

∣∣ ds where v0 is the first Dirichlet eigenvector.
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