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The Generalized Impedance Boundary
Conditions in acoustic scattering
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Context:
@ Imperfectly conducting obstacles

@ Periodic coatings (homogenized
model)

@ Thin layers
@ Thin periodic coatings
o ...

Advantages:

@ Cheaper direct computation (no
mesh refinement)



The Generalized Impedance Boundary
Conditions in acoustic scattering
Context:

o @ Imperfectly conducting obstacles
ou
= @ Periodic coatings (homogenized

AN s model)
@ Thin layers
@ Thin periodic coatings
Q ° ..

Advantages:
Au+ku=0 —

w=u +u' , @ Cheaper direct computation (no
i)l —ikut| ds=0 mesh refinement)
.

lim
R=00 Jjz|=R

@ Inverse problem less unstable

Inverse problem: recover D and Z from the scattered field.
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Outline

@ The forward and inverse problems

© Uniqueness and stability for the inverse problem
@ The case of a single incident wave, known obstacle
@ The case of infinitely many incident plane waves

© A steepest descent method to solve the inverse problem
@ Presentation of the method
o Computation of the shape derivative of the scattered field

@ Numerical experiments
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Example of generalized impedance
boundary condition

Most commonly used impedance operator:
Z =)\ a function.

Here, we consider a more general model:

Zu = divp(nVru) + Au.

( )
For example, this corresponds to the first order approximation of
the solution for thin coatings

Zu = divp(p = 6Vru) + 0k eu

where

@ ¢ and pu are the electromagnetic constants inside the
coating,

@ 0 is the width of the coating (non necessarily constant).
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Approximate model for a perfect conductor
coated with a thin dielectric layer

At least formally: |us — wy,| < CHmHL

dus ou
) m =
s 0 ey + Znt, =0

div(p ' Vus) + ek?us = 0

Aty + K upm =0

Augs + k*us =0

Exact model Approzimate model of order m

-
In dimension 2: (Aslanyireck, Haddar, Sahintirk [11] )

-
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The forward problem
Find u = u® + v such that

[us e {v eD(Q), pv e HY(Q) Vo € DRY; vyp € Hl(aD)}}

and

Au+ k2u=0 inQ::Rd\E

ou
— +di = D
P) 5 + divp(nVru) + Au ) 0 ond
. ou®
lim —tku®| ds = 0.
R—o0 |z|=R or

u exists and is unique if
» Im(A) >0, Sm(n) <0 a.e. on dD

(physical assumption)
» Re(n) >c¢ ae. ondD for ¢ > 0.
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The inverse problem

The far field map
For u/(x,0) = e define

T:(M\n,8D,0) — u™(z,0)

where 4™ associated with u® is defined in dimension d by

ezkr

00/~ 1

e

The inverse problem

~

Given N far—fields (u®°(-,6;))j=1,... ., retrieve A, n and the ge-
ometry 0D,

(uoo('v éj))jZL“' N = ()‘7 7, aD)
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Outline

@ The forward and inverse problems

© Uniqueness and stability for the inverse problem
@ The case of a single incident wave, known obstacle

© A steepest descent method to solve the inverse problem

@ Numerical experiments
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Uniqueness for A
The casen =10

9 /30

Uniqueness for A with a single incident wave (Colton & Kirsch 81)

Let 0D be a Lipschitz domain. Let )11 and A9 be two continuous func-
tions. If for some incident direction 8y we have

T()‘lv 07 aDa éo) = T(A% 05 aD) éo)

then /\1 = )\2.

Proof . X
If T(\1,0,0D,0p) = T(A\2,0,0D,00) then uy, = uy, in Q. For
u = uy, we have

%—i-)\iuzo i=1,2 0n0D
ov

(A2 —A)u=0 ondD.

No# XM onSCOD = u=0 andg—'ljzo on S.
Then u = 0 in §, contradiction with the radiation condition.



What happens if  # 07

o Let A\ and Ay be two continuous functions,
o and let 77 and 72 be two complex constants

such that

[T(Alﬂh, 8D, 0) = T(\2,n2,0D, é)-]

Denote u; the total field given by (\;, 7;), then u = u; = us
outside D and on 0D.
0
a*u+77iAru+)\iu:0 1=1,20n 0D
v

(N2 —m)Ar. + (A2 —A)]Ju=0 ondD.

‘ No conclusion! I
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What happens if n # 07

o Let A\ and Ay be two continuous functions,
o and let 77 and 72 be two complex constants

such that

[T(Alﬂh, 8D, 0) = T(\2,n2,0D, é)-]

Denote u; the total field given by (\;, 7;), then u = u; = us
outside D and on 0D.
0
a*u+77iAru+)\iu:0 1=1,20n 0D
v

(N2 —m)Ar. + (A2 —A)]Ju=0 ondD.

‘ No conclusion! I

One can actually find (A1,71) # (A2, 72) such that

T(M,m,0D,6) = T(Xs, 7, 0D, 0)
(Bourgeois & Haddar 10)
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Uniqueness and Lipschitz stability

A and n piecewise constant

@ Let (0D;);=1,...,1 be a partition of 9D,
@ let K be a compact subset of L>(9D)? such that if (A, n) € K7,

I I
M) =3 Axon, (@), n@) =Y mxon, (@)
i=1 i=1

and assumptions for the forward problem are satisfied.

Global stability for A (Sincich 07)

There exists C, > 0 such that for all (A',7) and (A\?,7) in K7,

AL = N2|| < O, IIT(AY,n,8D) — T(A\%,5,0D)||.

[Proof: Appropriate Carleman estimates
Continuity of the near field to far field map.]

11 / 30



Uniqueness and Lipschitz stability

A and n piecewise constant
@ Let (0D;);=1,...,1 be a partition of 9D,
@ let K be a compact subset of L>(9D)? such that if (A, n) € K7,

I I
M) =3 Axon, (@), n@) =Y mxon, (@)
i=1 i=1

and assumptions for the forward problem are satisfied.
o Vi=1,---,1it exists S; C 9D; such that V(\,n) € K;
(H) Arux, #0 on S;.

Global stability for 1 (Bourgeois, C. & Haddar 11)

There exists C} > 0 such that for all (A,n") and (\,7?) in K7,

”771 _ 772” < C?{,HT(/\J]la aD) — T()\,’l’]z, aD)”

[Proof: Appropriate Carleman estimates
Continuity of the near field to far field map.]
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Outline

@ The forward and inverse problems

© Uniqueness and stability for the inverse problem

@ The case of infinitely many incident plane waves

© A steepest descent method to solve the inverse problem

@ Numerical experiments
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Uniqueness of the identification
of \, n and 0D

Uniqueness

Let Dy, Dy be two C? open bounded sets and take (M\1,7;) and
()\2,7)2) € L x Wioe,

u(l)o:T()\]_,T]l,aDl) and ugo :T()\27n27aD2)

if us®(z,0) = ug®(2,0) V(&,0) € (S*1)2 then

D1 = D2 and ()\1,771) = ()\2,172).

Main tools
— The mixed reciprocity principle: for z outside Dy and Do

v (=1, 2) =u’(z, &),

leads to D, = DQ.A X
— Density of {u(-,0), 6§ € S¥1} in HY(OD) gives (A1,m) = (A2, 72).

Uniqueness still holds for a general symmetric surface operator Z.
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Proof of uniqueness

[(zh D) — u5®, (Za, D2) — u§® and uf® (%, 0) = us® (%, é)]

» Assume that D1 # Ds.
Mixed reciprocity principle: (4771;"0(—:%7,2)) = (us (z,a})) for
2z € R¥*\ Dy U Do.

(Farfﬁeld given by ®,(z) := M}

4m|xc—z|

(Scattered field given by @iki'y)
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Proof of uniqueness

[(zl,Dl) — u$®, (Za, D2) — us® and u$®(#,0) = u® (%, é)]

» Assume that D1 # Ds.
Mixed reciprocity principle: 4nv*°(—2,2) = u°(z,) for z €
R*\ D1 U D».

uf (z, o) = uh(x, o) V(x,z0) € (RY\ (D1 U Dy))?
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Proof of uniqueness

[(zl,Dl) — u$®, (Za, D2) — us® and u$®(#,0) = u® (%, é)]

» Assume that D1 # Ds.
Mixed reciprocity principle: 4nv*°(—2,2) = u°(z,) for z €
R*\ D1 U D».

uf (z, o) = uh(x, o) V(x,z0) € (RY\ (D1 U Dy))?

ous ous s
£ T (11, 20) + Zoub (21, 20) = Ak (w1, 20) + Lol (21, 20)

ov
0P,
=— <Tyn(1’1) + 7219, (901))

—
Ty —T]
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Proof of uniqueness

[(zl,Dl) — u$®, (Za, D2) — us® and u$®(#,0) = u® (%, é)]

» Assume that D1 # Ds.

ous s
— (21, 2Zn) + Z1u3(x1,Tn) — 00
ov Tp——T1

D, (21) — 00

but d,us(x1,z1) + Z1us(z1, z1) remains bounded!

(Conclusion: Dy = Dg.]
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Proof of uniqueness

[(zl,Dl) — u$®, (Za, D2) — us® and u$®(#,0) = u® (%, é)]

» Assume that D1 # Ds.

ous s
— (21, 2Zn) + Z1u3(x1,Tn) — 00
ov Tp——T1

D, (21) — 00
n

but d,us(x1,z1) + Z1us(z1, z1) remains bounded!

[Conclusion: Dy = Dg.]

> For every 0, uy(-,0) satisfies

Zlul(-, é) = Zzul(-, é)

The density of {u1(-,0), 6 € S41} in H*(8D) gives
Zio="Zop Yo H'(OD).

Test with well chosen functions to have (Ai,71) = (A2, 72).
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Outline

© A steepest descent method to solve the inverse problem
@ Presentation of the method
o Computation of the shape derivative of the scattered field
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Solving the inverse problem with a finite
number of incident waves

I
()‘ 77»(9D ZHT A nvaD 9 ) gobs('ﬂej)”%/Q(Sj)

For minimizing F':

@ we need partial derivatives of the far—field with respect to A and
7 (quite standard),

@ we need an appropriate derivative w.r.t. the obstacle.

A Difficulty: the unknown impedances are supported by 0D.
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Derivative of the cost function with
respect to the obstacle

€€ Cl’oo(]Rd,Rd) is “small”
fe=1d+e¢
0D, := f.(0D)
)\6::>\of5_1’ Ueiznofs_l

We define the derivative v. of the scatered field with respect to the
geometry at point (\,7,9D) by

us()‘s, naaaDE) — us()‘7n>8D) = Ve + O(”E”)

where € — v, is linear.
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Derivative of the cost function with
respect to the obstacle

€€ Cl’oo(]Rd,Rd) is “small”
fe=1d+e¢
0D, := f.(0D)
)\6::>\ofs_1’ Ueiznofs_l

We define the derivative v. of the scatered field with respect to the
geometry at point (\,7,9D) by

us()‘s, nrsaaDE) — us()\ﬂ%aD) = Ve + O(HEH)

where € — v, is linear.

One may find f. such that 0D = f.(0D) and

F{, (D) ¢ #0.

Q 3 FY ,(0D) does not satisfy the classical shape derivative’s
properties!
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Derivative of the scattered field with

respect to the obstacle
Let (\,n,0D) be given and analytics, for some small e € C**° define

OD. = f-(dD), Xc:=Xof-' andn.:=no fo.

Let u? [u’] be scattered field associated with (A, n-,dD:) [(\,n,0D)].

(u2(@) - w(@) = ve(@) + o(1)), )

where v () is the solution of the scattering problem with

Ove
ov

+ Zv. = Bcu on 0D

Beu =(g - v)(k* — 2H\)u + divr ((Id + 2n(R — H Id))(¢ - v)Vru)
+ (VoA -e)u+divr (Vrn - €)Vru)
+Z((e-v)Zu),

with 2H := divrv, R := Vrv and Z- = divr(nVr-) + A
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Main tools of the proof

@ Domain derivative tools: Murat and Simon [73], Kirsch [93],
Hettlich [94], Potthast [94].

@ Green’s theorems and integral representation of the scattered
field: Kress and Péivérinta [99], Haddar and Kress [04].

( . . .
Green’s theorems and integral representation: write

ue = — / (Beww(-y)ds(y) + o([<])
oD

where for y € Q w(-,y) = w*(-,y) + ®(-,y) is the Green function asso-
ciated with the GIBC scattering problem

Aw(-,y) + Kw(,y) =6, inQ
ow
v
+radiation condition.

+Zw=0 ondD
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Sketch of the proof (1/2)

Volume extension of the surface objects between 0D and 0D

[DS is outside D]

D*=D.\D

e We parametrize D* with f! := Id + te for
t e0,1],

D* >z = xo + te(xo)

Ae=Xo(fH7H me=no(fH
e for a given t, 0D, := f{(OD),

vy: outward unit normal of 9Dy,
the direction of v; depends on ¢!

0-
o Vrt s = V . 787Vt |6Dt
t
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Sketch of the proof (2/2)

Write an integral representation on 0D
Objective: write the u — u® as

us(z) —u’(z) = - | (Beww 2)ds +oflle])).

Integral representation formula for x outside D.:

ug(z) —u’(z) = / Ue {g—w + divr, (e Vr.w) + )\Ew} dse,
8D, Ve
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Sketch of the proof (2/2)

Write an integral representation on 0D
Objective: write the u — u® as

us(z) —u’(z) = - | (Beww 2)ds +oflle])).

Integral representation formula for x outside D.:

15}
u(z) —u’(x) = / n { a;ﬂ + divr, (W Vr,w) + )\sw} dse + o(Je|)),
aD. 8
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Sketch of the proof (2/2)

Write an integral representation on 0D
Objective: write the u — u® as

wl (@) — u*(z) = — / (Bewyu()ds +of el

Integral representation formula for x outside D.:

15}
u(z) —u’(x) = / n { a;ﬂ + divr, (W Vr,w) + )\sw} dse + o(Je|)),
aD. 8

Gauss divergence theorem

= / _div{uVw —n:(Vr,u - Vr,w) ve + Auw v} de 4 o(|le]])
DD

21 / 30



Sketch of the proof (2/2)

Write an integral representation on 0D
Objective: write the u — u® as

wl (@) — u*(z) = — / (Bewyu()ds +of el

Integral representation formula for x outside D.:

15}
u(z) —u’(x) = / n { a;ﬂ + divr, (W Vr,w) + )\sw} dse + o(Je|)),
aD. 8

Gauss divergence theorem

1
= / (e-v) / div (—n:Vr,u - Vr,wre + uVw + Auwry) dt ds + o(|fel])
aD 0
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Sketch of the proof (2/2)

Write an integral representation on 0D
Objective: write the u — u® as

wl (@) — u*(z) = — / (Bewyu()ds +of el

Integral representation formula for x outside D.:

S S 8 K3

ul(z) —u’(x) :/ u{ v +d1vr5(nsvraw)—&—)\sw}dsa—i—o(HsH),
dD. (31/5

Gauss divergence theorem and Taylor expansion:

= / (e-v)div(—n:Vr,u - Vr,wve + uVw + Auwry) |v=ods + o(||€]])
aD
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Sketch of the proof (2/2)

Write an integral representation on 0D
Objective: write the u — u® as

wl (@) — u*(z) = — / (Bewyu()ds +of el

Integral representation formula for x outside D.:

0
u(z) —u’(x) = / n { a;ﬂ + divr, (W Vr,w) + )\sw} dse + o(|le|]),
aD. 8

Gauss divergence theorem and Taylor expansion:

= / (e-v)div(—n:Vr,u - Vr,wve + uVw + Auwry) |v=ods + o(||€]])
aD

. O(uw) .
div (Asuwrr) [t=0 = uw (V) |t=0 - v + )\7 + Auw div(ve) |t=o

(I/ ° E)(V)\t)|t:0 V= —Vr‘)\ ° g
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Outline

@ Numerical experiments
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A steepest descent method to solve the
inverse coefficient problem

()‘ 77»8D Z ||T )\ 7778D 9 ) obs( 7éj)||%2(5'j)
] 1

N
Numerical procedure:

e update alternatively A, n and 0D with a direction given by
the partial derivative of the cost function,

@ when we update the geometry we also transport the
impedance coefficients to the new boundary.
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The regularization procedure

F(X\n,0D) ZHT A1, 0D, 0;) = ugg(-07) 1725,
] 1

We regularize the gradient, NOT the cost function, using a
H1(0D) regularization.

» Descent direction for A: d\ that solves for every ¢ in some
finite dimensional space:

B /OD Ve(8) - Vrods+ | 8hgds= —axFlop(N) - ¢

where ) is the regularization coefficient and « is the descent

coeflicient.
» Do the same for o7 and 6(0D).
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Numerical reconstruction
Finite elements method and remeshing procedure
using FreeFem++

Exact geometry ~ +
04 Initial geometry

o Reconstructed geometry

NS
=5

éx 0.2

o

AN,

SRR 0

)

t A

s AN
OO b NN 9§

o S AT TAYAYSTA -02

BT s R St
2 e e
G e

- SN RAT A

SRRSO 04

NP ST wavelength
oy
INISEATS
N 04  -02 0 02 0.4

Reconstruction of the geometry with 2 incident waves and 1%
noise on the far—field, A\ = ik/2 and n = 2/k being known
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Numerical reconstruction
Simultaneous reconstruction of A\, 0D with n =10

11

Searched A = Exact geometry
- Initial geometry ~ x
1 Reoonsrucl_ez_i )\ 04 Reconstructed geometry
09 02
08
0
07
06 02
05 04
wavelength
04
-3 2 1 0 1 2 3 0.4 0.2 0 0.2 04

8 incident waves, 5% of noise on far—field data.
We iterate only on the geometry.

Bou=(VrA-e)u+---
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Numerical reconstruction
Simultaneous reconstruction of A\, n and 0D

04

0.2

-0.2

-04

Exact geometry

Reconstructed geometry

Initial geometry — x

wavelength

-0.4

-0.2

11

09

08

0.7

0.6

05

04

Searched A ——
Initial A
Reconstructed A ——

8 incident waves, 5% of noise
on far—field data.

11 Searchedn ——

Initial n
Reconstructed n ——

09

08

0.7

06

05

04




Application to the reconstruction of a
coated obstacle

i;q% =0 %+divr(u’lévrul)+(55k2ul =0
div(p ' Vus) + ek?us = 0 o v 0
Aug + k?up =0
r I

Y
14

Aug + kus =0

FExact model Approximate model of order 1

Reconstruction of an obstacle using the generalized impedance bound-
ary condition model of order 1 minimizing

6 5 F Z ||T € 5 T, 9 - ug?)s,mince("éj)”%?(»sj)

with 4 = 0.1 known.
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Application to the reconstruction of a

coated obstacle
Numerical results
Artificial data created with

@ 1 = 0.1 is known,
@ 0 =0.04/(1 — 0.4sin(0)) is unknown; ! being the wavelength,
@ ¢ = 2.5 is unknown.

Reconstructed e: 2.3.

15

Exact geometry  +
Initial geometry  x
Reconstructed geometry

05

-05

15 wavelength
-15 -1 -05 0 05 1 15

[Fails with a classical impedance boundary condition model!)
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Conclusion

The inverse problem is ill-posed but not too much.

It is solvable using a steepest descent method with
regularization.

Possible reconstruction of coated obstacles.

Extension to the 3D Maxwell equations (ongoing work).

The case of a general symmetric operator on the boundary?
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