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The Generalized Impedance Boundary
Conditions in acoustic scattering

Context:

Imperfectly conducting obstacles

Periodic coatings (homogenized
model)

Thin layers

Thin periodic coatings

...

Advantages:

Cheaper direct computation (no
mesh refinement)

Inverse problem less unstable
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Example of generalized impedance
boundary condition

Most commonly used impedance operator:

Z = λ a function.

Here, we consider a more general model:

Zu = divΓ(η∇Γu) + λu.

For example, this corresponds to the first order approximation of
the solution for thin coatings

Zu = divΓ(µ−1δ∇Γu) + δk2εu

where
ε and µ are the electromagnetic constants inside the
coating,
δ is the width of the coating (non necessarily constant).
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Approximate model for a perfect conductor
coated with a thin dielectric layer

At least formally: ‖uδ − um‖ ≤ Cδm+1

Exact model Approximate model of order m

In dimension 2: (Aslanyüreck, Haddar, Şahintürk [11] )

Z1 =
∂

∂s
δµ−1 ∂

∂s
+ δk2ε

Z2 =
∂

∂s

(
δ − δ2c

2

)
µ−1 ∂

∂s
+
(
δ +

δ2c

2

)
k2ε.
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The forward problem

Find u = us + ui such that

us ∈
{
v ∈ D′(Ω) , ϕv ∈ H1(Ω) ∀ϕ ∈ D(Rd); v|∂D ∈ H1(∂D)

}
and

(P)



∆u+ k2u = 0 in Ω := Rd \D
∂u

∂ν
+ divΓ(η∇Γu) + λu = 0 on ∂D

lim
R→∞

∫
|x|=R

∣∣∣∣∣∂us∂r − ikus
∣∣∣∣∣
2

ds = 0.

u exists and is unique if
I =m(λ) ≥ 0, =m(η) ≤ 0 a.e. on ∂D (physical assumption)
I <e(η) ≥ c a.e. on ∂D for c > 0.
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The inverse problem

The far field map

For ui(x, θ̂) = eikθ̂·x define

T : (λ, η, ∂D, θ̂) 7→ u∞(x̂, θ̂)

where u∞ associated with us is defined in dimension d by

us(x) =
eikr

r(d−1)/2

(
u∞(x̂) +O

(
1
r

))
r −→ +∞.

The inverse problem

Given N far–fields (u∞(·, θ̂j))j=1,··· ,N , retrieve λ, η and the ge-
ometry ∂D,

(u∞(·, θ̂j))j=1,··· ,N 7→ (λ, η, ∂D).
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Uniqueness for λ
The case η = 0

Uniqueness for λ with a single incident wave (Colton & Kirsch 81)

Let ∂D be a Lipschitz domain. Let λ1 and λ2 be two continuous func-
tions. If for some incident direction θ̂0 we have

T (λ1, 0, ∂D, θ̂0) = T (λ2, 0, ∂D, θ̂0)

then λ1 = λ2.

Proof
If T (λ1, 0, ∂D, θ̂0) = T (λ2, 0, ∂D, θ̂0) then uλ1 = uλ2 in Ω. For
u = uλ1 we have

∂u

∂ν
+ λiu = 0 i = 1, 2 on ∂D

(λ2 − λ1)u = 0 on ∂D.

λ2 6= λ1 on S ⊂ ∂D =⇒ u = 0 and ∂u
∂ν = 0 on S.

Then u = 0 in Ω, contradiction with the radiation condition.
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What happens if η 6= 0?

Let λ1 and λ2 be two continuous functions,
and let η1 and η2 be two complex constants

such that

T (λ1, η1, ∂D, θ̂) = T (λ2, η2, ∂D, θ̂).

Denote ui the total field given by (λi, ηi), then u := u1 = u2

outside D and on ∂D.
∂u

∂ν
+ ηi∆Γu+ λiu = 0 i = 1, 2 on ∂D

[(η2 − η1)∆Γ . + (λ2 − λ1)]u = 0 on ∂D.

No conclusion!

One can actually find (λ1, η1) 6= (λ2, η2) such that

T (λ1, η1, ∂D, θ̂) = T (λ2, η2, ∂D, θ̂)
(Bourgeois & Haddar 10)
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Uniqueness and Lipschitz stability
λ and η piecewise constant

Let (∂Di)i=1,··· ,I be a partition of ∂D,

let KI be a compact subset of L∞(∂D)2 such that if (λ, η) ∈ KI ,

λ(x) =
I∑
i=1

λiχ ∂Di(x) , η(x) =
I∑
i=1

ηiχ ∂Di(x)

and assumptions for the forward problem are satisfied.

∀i = 1, · · · , I it exists Si ⊂ ∂Di such that ∀(λ, η) ∈ KI

(H) ∆Γuλ,η 6= 0 on Si.

Global stability for λ (Sincich 07)

There exists CλKI
> 0 such that for all (λ1, η) and (λ2, η) in KI ,

‖λ1 − λ2‖ ≤ CλKI
‖T (λ1, η, ∂D)− T (λ2, η, ∂D)‖.

[Proof: Appropriate Carleman estimates
Continuity of the near field to far field map.]
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Uniqueness of the identification
of λ, η and ∂D

Uniqueness

Let D1, D2 be two C2 open bounded sets and take (λ1, η1) and
(λ2, η2) ∈ L∞ ×W 1,∞.

u∞1 = T (λ1, η1, ∂D1) and u∞2 = T (λ2, η2, ∂D2)

if u∞1 (x̂, θ̂) = u∞2 (x̂, θ̂) ∀(x̂, θ̂) ∈ (Sd−1)2 then

D1 = D2 and (λ1, η1) = (λ2, η2).

Main tools
– The mixed reciprocity principle: for z outside D1 and D2

v∞(−x̂, z) = us(z, x̂),

leads to D1 = D2.
– Density of {u(·, θ̂) , θ̂ ∈ Sd−1} in H1(∂D) gives (λ1, η1) = (λ2, η2).

Uniqueness still holds for a general symmetric surface operator Z.
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Proof of uniqueness

(Z1, D1) −→ u∞1 , (Z2, D2) −→ u∞2 and u∞1 (x̂, θ̂) = u∞2 (x̂, θ̂)

I Assume that D1 6= D2.

Mixed reciprocity principle: 4πv∞(−x̂, z) = us(z, x̂) for

z ∈ R3 \D1 ∪D2.

Far–field given by Φz(x) := eik|x−z|

4π|x−z|

Scattered field given by eikx̂·y
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⇓

∂us2
∂ν

(x1, xn) + Z1u
s
2(x1, xn) =

∂us1
∂ν

(x1, xn) + Z1u
s
1(x1, xn)

= −
„
∂Φxn

∂ν
(x1) + Z1Φxn(x1)

«
−→∞
xn−→x1
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but ∂νu
s
2(x1, x1) + Z1u

s
2(x1, x1) remains bounded!

Conclusion: D1 = D2.

I For every θ̂, u1(·, θ̂) satisfies

Z1u1(·, θ̂) = Z2u1(·, θ̂).

The density of {u1(·, θ̂) , θ̂ ∈ Sd−1} in H1(∂D) gives

Z1ϕ = Z2ϕ ∀ϕ ∈ H1(∂D).

Test with well chosen functions to have (λ1, η1) = (λ2, η2).
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Solving the inverse problem with a finite
number of incident waves

F (λ, η, ∂D) :=
1
2

I∑
j=1

‖T (λ, η, ∂D, θ̂j)− u∞obs(·, θ̂j)‖2L2(Sj)

For minimizing F :

we need partial derivatives of the far–field with respect to λ and
η (quite standard),

we need an appropriate derivative w.r.t. the obstacle.

Difficulty: the unknown impedances are supported by ∂D.
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Derivative of the cost function with
respect to the obstacle

ε ∈ C1,∞(Rd,Rd) is “small”

fε := Id + ε

∂Dε := fε(∂D)

λε := λ ◦ f−1
ε , ηε := η ◦ f−1

ε

We define the derivative vε of the scatered field with respect to the
geometry at point (λ, η, ∂D) by

us(λε, ηε, ∂Dε)− us(λ, η, ∂D) = vε + o(||ε||)

where ε 7→ vε is linear.

One may find fε such that ∂D = fε(∂D) and

F ′λ,η(∂D) · ε 6= 0.

F ′λ,η(∂D) does not satisfy the classical shape derivative’s
properties!
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Derivative of the scattered field with
respect to the obstacle

Let (λ, η, ∂D) be given and analytics, for some small ε ∈ C1,∞ define

∂Dε = fε(∂D) , λε := λ ◦ f−1
ε and ηε := η ◦ f−1

ε .

Let usε [us] be scattered field associated with (λε, ηε, ∂Dε) [(λ, η, ∂D)].

usε(x)− us(x) = vε(x) + o(||ε||),

where vε(x) is the solution of the scattering problem with

∂vε

∂ν
+ Zvε = Bεu on ∂D

Bεu =(ε · ν)(k2 − 2Hλ)u+ divΓ ((Id+ 2η(R−H Id))(ε · ν)∇Γu)

+ (∇Γλ · ε)u+ divΓ ((∇Γη · ε)∇Γu)

+ Z ((ε · ν)Zu) ,

with 2H := divΓν, R := ∇Γν and Z· = divΓ(η∇Γ·) + λ·
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Main tools of the proof

Domain derivative tools: Murat and Simon [73], Kirsch [93],
Hettlich [94], Potthast [94].

Green’s theorems and integral representation of the scattered
field: Kress and Päivärinta [99], Haddar and Kress [04].

Green’s theorems and integral representation: write

usε − us = −
∫
∂D

(Bεu)w(·, y)ds(y) + o(‖ε‖)

where for y ∈ Ω w(·, y) = ws(·, y) + Φ(·, y) is the Green function asso-
ciated with the GIBC scattering problem

∆w(·, y) + k2w(·, y) = δy in Ω
∂w

∂ν
+ Zw = 0 on ∂D

+radiation condition.
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Sketch of the proof (1/2)
Volume extension of the surface objects between ∂D and ∂Dε

Dε is outside D

D? = Dε \D

We parametrize D? with f tε := Id+ tε for
t ∈ [0, 1],

D? 3 xt = x0 + tε(x0)

λt = λ ◦ (f tε)
−1 , ηt = η ◦ (f tε)

−1

for a given t, ∂Dt := f tε(∂D),

νt: outward unit normal of ∂Dt,
the direction of νt depends on t!

∇Γt
· :=

(
∇ · −

∂ ·
∂νt

νt

)
|∂Dt
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Sketch of the proof (2/2)
Write an integral representation on ∂D

Objective: write the usε − us as

usε(x)− us(x) = −
Z
∂D

(Bεu)w(·, x)ds+ o(‖ε‖).

Integral representation formula for x outside Dε:

usε(x)− us(x) =

Z
∂Dε

uε


∂w

∂νε
+ divΓε(ηε∇Γεw) + λεw

ff
dsε,
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A steepest descent method to solve the
inverse coefficient problem

F (λ, η, ∂D) :=
1
2

I∑
j=1

‖T (λ, η, ∂D, θ̂j)− u∞obs(·, θ̂j)‖2L2(Sj)

Numerical procedure:
update alternatively λ, η and ∂D with a direction given by
the partial derivative of the cost function,
when we update the geometry we also transport the
impedance coefficients to the new boundary.
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The regularization procedure

F (λ, η, ∂D) =
1
2

I∑
j=1

‖T (λ, η, ∂D, θ̂j)− u∞obs(·, θ̂j)‖2L2(Sj)

We regularize the gradient, NOT the cost function, using a
H1(∂D) regularization.

I Descent direction for λ: δλ that solves for every φ in some
finite dimensional space:

βλ

∫
∂D
∇Γ(δλ) · ∇Γφds+

∫
∂D

δλφ ds = −αλ F ′η,∂D(λ) · φ

where βλ is the regularization coefficient and αλ is the descent
coefficient.
I Do the same for δη and δ(∂D).
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Numerical reconstruction
Finite elements method and remeshing procedure

using FreeFem++

-0.4

-0.2

 0

 0.2

 0.4

-0.4 -0.2  0  0.2  0.4

wavelength

Exact geometry
Initial geometry

Reconstructed geometry

Reconstruction of the geometry with 2 incident waves and 1%
noise on the far–field, λ = ik/2 and η = 2/k being known

25 / 30



Numerical reconstruction
Simultaneous reconstruction of λ, ∂D with η = 0

 0.4
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 0.7
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 1

 1.1

-3 -2 -1  0  1  2  3

Searched λ
Initial λ

Reconstructed λ
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wavelength

Exact geometry
Initial geometry

Reconstructed geometry

8 incident waves, 5% of noise on far–field data.
We iterate only on the geometry.

Bεu = (∇Γλ · ε)u+ · · ·
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Numerical reconstruction
Simultaneous reconstruction of λ, η and ∂D
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Application to the reconstruction of a
coated obstacle

Exact model Approximate model of order 1

Reconstruction of an obstacle using the generalized impedance bound-
ary condition model of order 1 minimizing

F (ε, δ,Γ) :=
1
2

I∑
j=1

‖T (ε, δ,Γ, θ̂j)− u∞obs,mince(·, θ̂j)‖2L2(Sj)

with µ = 0.1 known.
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Application to the reconstruction of a
coated obstacle

Numerical results
Artificial data created with

µ = 0.1 is known,

δ = 0.04l(1− 0.4 sin(θ)) is unknown; l being the wavelength,

ε = 2.5 is unknown.

Reconstructed ε: 2.3.
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Fails with a classical impedance boundary condition model!
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Conclusion

I The inverse problem is ill-posed but not too much.
I It is solvable using a steepest descent method with

regularization.
I Possible reconstruction of coated obstacles.

I Extension to the 3D Maxwell equations (ongoing work).
I The case of a general symmetric operator on the boundary?
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