Simultaneous reconstruction of an obstacle and its Generalized Impedance Boundary Condition

Laurent Bourgeois, Nicolas Chaulet and Houssem Haddar

INRIA Saclay, France

JIP’11, Annaba
The Generalized Impedance Boundary Conditions in acoustic scattering

Context:
- Imperfectly conducting obstacles
- Periodic coatings (homogenized model)
- Thin layers
- Thin periodic coatings
- ...

Advantages:
- Cheaper direct computation (no mesh refinement)
The Generalized Impedance Boundary Conditions in acoustic scattering

Context:
- Imperfectly conducting obstacles
- Periodic coatings (homogenized model)
- Thin layers
- Thin periodic coatings
- ...

Advantages:
- Cheaper direct computation (no mesh refinement)
- Inverse problem less unstable

Inverse problem: recover D and Z from the scattered field.
Outline

1. The forward and inverse problems

2. Uniqueness and stability for the inverse problem
 - The case of a single incident wave, known obstacle
 - The case of infinitely many incident plane waves

3. A steepest descent method to solve the inverse problem
 - Presentation of the method
 - Computation of the shape derivative of the scattered field

4. Numerical experiments
Example of generalized impedance boundary condition

Most commonly used impedance operator:

\[Z = \lambda \]

a function.

Here, we consider a more general model:

\[Zu = \text{div}_\Gamma (\eta \nabla_\Gamma u) + \lambda u. \]

For example, this corresponds to the first order approximation of the solution for thin coatings

\[Zu = \text{div}_\Gamma (\mu^{-1} \delta \nabla_\Gamma u) + \delta k^2 \epsilon u \]

where

- \(\epsilon \) and \(\mu \) are the electromagnetic constants inside the coating,
- \(\delta \) is the width of the coating (non necessarily constant).
Approximate model for a perfect conductor coated with a thin dielectric layer

At least formally: \(\| u_\delta - u_m \| \leq C \delta^{m+1} \)

In dimension 2: (Aslanyüreck, Haddar, Şahintürk [11])

\[
\begin{align*}
Z_1 &= \frac{\partial}{\partial s} \delta \mu^{-1} \frac{\partial}{\partial s} + \delta k^2 \epsilon \\
Z_2 &= \frac{\partial}{\partial s} \left(\delta - \frac{\delta^2 c}{2} \right) \mu^{-1} \frac{\partial}{\partial s} + \left(\delta + \frac{\delta^2 c}{2} \right) k^2 \epsilon.
\end{align*}
\]
The forward problem

Find \(u = u^s + u^i \) such that

\[
\begin{align*}
 u^s &\in \left\{ v \in \mathcal{D}'(\Omega), \ \varphi v \in H^1(\Omega) \ \forall \varphi \in \mathcal{D}(\mathbb{R}^d); \ v|_{\partial D} \in H^1(\partial D) \right\} \\
\end{align*}
\]

and

\[
\begin{align*}
 (\mathcal{P}) \quad &\begin{cases}
 \Delta u + k^2 u = 0 \quad \text{in } \Omega := \mathbb{R}^d \setminus \overline{D} \\
 \frac{\partial u}{\partial \nu} + \text{div}_\Gamma (\eta \nabla u) + \lambda u = 0 \quad \text{on } \partial D \\
 \lim_{R \to \infty} \int_{|x| = R} \left| \frac{\partial u^s}{\partial r} - i k u^s \right|^2 \ ds = 0.
 \end{cases}
\end{align*}
\]

\(u \) exists and is unique if

- \(\Im(m(\lambda)) \geq 0, \ \Im(m(\eta)) \leq 0 \text{ a.e. on } \partial D \) (physical assumption)
- \(\Re(\eta) \geq c \text{ a.e. on } \partial D \text{ for } c > 0. \)
The inverse problem

The far field map
For \(u^i(x, \hat{\theta}) = e^{ik\hat{\theta} \cdot x} \) define
\[
T : (\lambda, \eta, \partial D, \hat{\theta}) \mapsto u^\infty(\hat{x}, \hat{\theta})
\]
where \(u^\infty \) associated with \(u^s \) is defined in dimension \(d \) by
\[
u^s(x) = \frac{e^{ikr}}{r^{(d-1)/2}} \left(u^\infty(\hat{x}) + O \left(\frac{1}{r} \right) \right) \quad r \to +\infty.
\]

Given \(N \) far–fields \((u^\infty(\cdot, \hat{\theta}_j))_{j=1,\ldots,N}\), retrieve \(\lambda, \eta \) and the geometry \(\partial D \),
\[
(u^\infty(\cdot, \hat{\theta}_j))_{j=1,\ldots,N} \mapsto (\lambda, \eta, \partial D).
\]
Outline

1. The forward and inverse problems

2. Uniqueness and stability for the inverse problem
 - The case of a single incident wave, known obstacle
 - The case of infinitely many incident plane waves

3. A steepest descent method to solve the inverse problem
 - Presentation of the method
 - Computation of the shape derivative of the scattered field

4. Numerical experiments
Uniqueness for λ

The case $\eta = 0$

Uniqueness for λ with a single incident wave (Colton & Kirsch 81)

Let ∂D be a Lipschitz domain. Let λ_1 and λ_2 be two continuous functions. If for some incident direction $\hat{\theta}_0$ we have

$$T(\lambda_1, 0, \partial D, \hat{\theta}_0) = T(\lambda_2, 0, \partial D, \hat{\theta}_0)$$

then $\lambda_1 = \lambda_2$.

Proof

If $T(\lambda_1, 0, \partial D, \hat{\theta}_0) = T(\lambda_2, 0, \partial D, \hat{\theta}_0)$ then $u_{\lambda_1} = u_{\lambda_2}$ in Ω. For $u = u_{\lambda_1}$ we have

$$\frac{\partial u}{\partial \nu} + \lambda_i u = 0 \quad i = 1, 2 \quad \text{on } \partial D$$

$$(\lambda_2 - \lambda_1)u = 0 \quad \text{on } \partial D.$$

$\lambda_2 \neq \lambda_1$ on $S \subset \partial D \implies u = 0$ and $\frac{\partial u}{\partial \nu} = 0$ on S.

Then $u = 0$ in Ω, contradiction with the radiation condition.
What happens if $\eta \neq 0$?

- Let λ_1 and λ_2 be two continuous functions,
- and let η_1 and η_2 be two complex constants
such that

$$T(\lambda_1, \eta_1, \partial D, \hat{\theta}) = T(\lambda_2, \eta_2, \partial D, \hat{\theta}).$$

Denote u_i the total field given by (λ_i, η_i), then $u := u_1 = u_2$
outside D and on ∂D.

$$\frac{\partial u}{\partial \nu} + \eta_i \Delta_{\Gamma} u + \lambda_i u = 0 \quad i = 1, 2 \text{ on } \partial D$$

$$[(\eta_2 - \eta_1) \Delta_{\Gamma} . + (\lambda_2 - \lambda_1)]u = 0 \quad \text{on } \partial D.$$
What happens if $\eta \neq 0$?

- Let λ_1 and λ_2 be two continuous functions,
- and let η_1 and η_2 be two complex constants

such that

$$T(\lambda_1, \eta_1, \partial D, \hat{\theta}) = T(\lambda_2, \eta_2, \partial D, \hat{\theta}).$$

Denote u_i the total field given by (λ_i, η_i), then $u := u_1 = u_2$ outside D and on ∂D.

$$\frac{\partial u}{\partial \nu} + \eta_i \Delta_{\Gamma} u + \lambda_i u = 0 \quad i = 1, 2 \text{ on } \partial D$$

$$[(\eta_2 - \eta_1) \Delta_{\Gamma}. + (\lambda_2 - \lambda_1)]u = 0 \quad \text{on } \partial D.$$

No conclusion!

One can actually find $(\lambda_1, \eta_1) \neq (\lambda_2, \eta_2)$ such that

$$T(\lambda_1, \eta_1, \partial D, \hat{\theta}) = T(\lambda_2, \eta_2, \partial D, \hat{\theta})$$

(Bourgeois & Haddar 10)
Uniqueness and Lipschitz stability
\(\lambda \) and \(\eta \) piecewise constant

- Let \((\partial D_i)_{i=1,\ldots,I}\) be a partition of \(\partial D \),
- let \(K_I \) be a compact subset of \(L^\infty(\partial D)^2 \) such that if \((\lambda, \eta) \in K_I\),

\[
\lambda(x) = \sum_{i=1}^{I} \lambda_i \chi_{\partial D_i}(x), \quad \eta(x) = \sum_{i=1}^{I} \eta_i \chi_{\partial D_i}(x)
\]

and assumptions for the forward problem are satisfied.

Global stability for \(\lambda \) (Sincich 07)

There exists \(C_{K_I}^\lambda > 0 \) such that for all \((\lambda^1, \eta)\) and \((\lambda^2, \eta)\) in \(K_I \),

\[
\|\lambda^1 - \lambda^2\| \leq C_{K_I}^\lambda \|T(\lambda^1, \eta, \partial D) - T(\lambda^2, \eta, \partial D)\|.
\]

[Proof: Appropriate Carleman estimates
Continuity of the near field to far field map.]
Uniqueness and Lipschitz stability

λ and η piecewise constant

- Let $(\partial D_i)_{i=1,\ldots,I}$ be a partition of ∂D,
- let K_I be a compact subset of $L^\infty(\partial D)^2$ such that if $(\lambda, \eta) \in K_I$,
 \[
 \lambda(x) = \sum_{i=1}^I \lambda_i \chi_{\partial D_i}(x), \quad \eta(x) = \sum_{i=1}^I \eta_i \chi_{\partial D_i}(x)
 \]
 and assumptions for the forward problem are satisfied.
- $\forall i = 1, \cdots, I$ it exists $S_i \subset \partial D_i$ such that $\forall (\lambda, \eta) \in K_I$
 \[
 (\mathcal{H}) \quad \Delta_\Gamma u_{\lambda, \eta} \neq 0 \quad \text{on } S_i.
 \]

Global stability for η (Bourgeois, C. & Haddar 11)

There exists $C^m_{K_I} > 0$ such that for all (λ, η^1) and (λ, η^2) in K_I,
\[
\|\eta^1 - \eta^2\| \leq C^m_{K_I} \|T(\lambda, \eta^1, \partial D) - T(\lambda, \eta^2, \partial D)\|.
\]

[Proof: Appropriate Carleman estimates
Continuity of the near field to far field map.]
Outline

1. The forward and inverse problems

2. Uniqueness and stability for the inverse problem
 - The case of a single incident wave, known obstacle
 - The case of infinitely many incident plane waves

3. A steepest descent method to solve the inverse problem
 - Presentation of the method
 - Computation of the shape derivative of the scattered field

4. Numerical experiments
Uniqueness of the identification of λ, η and ∂D

Uniqueness

Let D_1, D_2 be two C^2 open bounded sets and take (λ_1, η_1) and $(\lambda_2, \eta_2) \in L^\infty \times W^{1,\infty}$.

$$u_1^\infty = T(\lambda_1, \eta_1, \partial D_1) \text{ and } u_2^\infty = T(\lambda_2, \eta_2, \partial D_2)$$

if $u_1^\infty(\hat{x}, \hat{\theta}) = u_2^\infty(\hat{x}, \hat{\theta}) \forall (\hat{x}, \hat{\theta}) \in (S^{d-1})^2$ then

$$D_1 = D_2 \text{ and } (\lambda_1, \eta_1) = (\lambda_2, \eta_2).$$

Main tools

- The mixed reciprocity principle: for z outside D_1 and D_2

$$v^\infty(-\hat{x}, z) = u^s(z, \hat{x}),$$

leads to $D_1 = D_2$.

- Density of $\{u(\cdot, \hat{\theta}), \hat{\theta} \in S^{d-1}\}$ in $H^1(\partial D)$ gives $(\lambda_1, \eta_1) = (\lambda_2, \eta_2)$.

Uniqueness still holds for a general symmetric surface operator Z.
Proof of uniqueness

\[(Z_1, D_1) \rightarrow u_1^\infty, (Z_2, D_2) \rightarrow u_2^\infty \text{ and } u_1^\infty(\hat{x}, \hat{\theta}) = u_2^\infty(\hat{x}, \hat{\theta}) \]

Assume that \(D_1 \neq D_2 \).

Mixed reciprocity principle:

\[4\pi v^\infty(\hat{x}, z) = u^s(z, \hat{x}) \quad \text{for} \quad z \in \mathbb{R}^3 \setminus \overline{D_1 \cup D_2}. \]

Far-field given by \(\Phi_z(x) := \frac{e^{ik|x-z|}}{4\pi|x-z|} \)

Scattered field given by \(e^{ik\hat{x} \cdot y} \)
Proof of uniqueness

\[(Z_1, D_1) \rightarrow u_1^\infty, (Z_2, D_2) \rightarrow u_2^\infty \text{ and } u_1^\infty(\hat{x}, \hat{\theta}) = u_2^\infty(\hat{x}, \hat{\theta})\]

Assume that \(D_1 \neq D_2\).

Mixed reciprocity principle: \(4\pi v^\infty(-\hat{x}, z) = u^s(z, \hat{x})\) for \(z \in \mathbb{R}^3 \setminus \overline{D_1 \cup D_2}\).

\[u^s_1(x, x_0) = u^s_2(x, x_0) \quad \forall (x, x_0) \in (\mathbb{R}^N \setminus (D_1 \cup D_2))^2\]
Proof of uniqueness

\[(Z_1, D_1) \rightarrow u_1^\infty, (Z_2, D_2) \rightarrow u_2^\infty \text{ and } u_1^\infty(\hat{x}, \hat{\theta}) = u_2^\infty(\hat{x}, \hat{\theta})\]

Assume that \(D_1 \neq D_2\).

Mixed reciprocity principle: \(4\pi v^\infty(-\hat{x}, z) = u^s(z, \hat{x})\) for \(z \in \mathbb{R}^3 \setminus \overline{D_1 \cup D_2}\).

\[
\downarrow
\]

\[
\forall (x, x_0) \in (\mathbb{R}^N \setminus (D_1 \cup D_2))^2
u_1^s(x, x_0) = u_2^s(x, x_0)
\]

\[
\downarrow
\]

\[
\begin{align*}
\frac{\partial u_2^s}{\partial \nu}(x_1, x_n) + Z_1 u_2^s(x_1, x_n) &= \frac{\partial u_1^s}{\partial \nu}(x_1, x_n) + Z_1 u_1^s(x_1, x_n) \\
&= - \left(\frac{\partial \Phi_{x_n}}{\partial \nu}(x_1) + Z_1 \Phi_{x_n}(x_1) \right) \\
&\xrightarrow{x_n \rightarrow x_1} \infty
\end{align*}
\]
Proof of uniqueness

$$(Z_1, D_1) \rightarrow u_1^\infty, \ (Z_2, D_2) \rightarrow u_2^\infty \ \text{and} \ u_1^\infty(\hat{x}, \hat{\theta}) = u_2^\infty(\hat{x}, \hat{\theta})$$

- Assume that $D_1 \neq D_2$.

$$\frac{\partial u_2^s}{\partial \nu}(x_1, x_n) + Z_1 u_2^s(x_1, x_n) \xrightarrow{x_n \rightarrow x_1} \infty$$

but $\partial_\nu u_2^s(x_1, x_1) + Z_1 u_2^s(x_1, x_1)$ remains bounded!

Conclusion: $D_1 = D_2$.
Proof of uniqueness

\[(Z_1, D_1) \rightarrow u_1^\infty, (Z_2, D_2) \rightarrow u_2^\infty \text{ and } u_1^\infty(\hat{x}, \hat{\theta}) = u_2^\infty(\hat{x}, \hat{\theta})\]

- Assume that \(D_1 \neq D_2\).

\[
\frac{\partial u_2^s}{\partial \nu}(x_1, x_n) + Z_1 u_2^s(x_1, x_n) \xrightarrow{x_n \rightarrow x_1} \infty
\]

but \(\partial \nu u_2^s(x_1, x_1) + Z_1 u_2^s(x_1, x_1)\) remains bounded!

Conclusion: \(D_1 = D_2\).

- For every \(\hat{\theta}\), \(u_1(\cdot, \hat{\theta})\) satisfies

\[
Z_1 u_1(\cdot, \hat{\theta}) = Z_2 u_1(\cdot, \hat{\theta}).
\]

The density of \(\{u_1(\cdot, \hat{\theta}), \hat{\theta} \in S^{d-1}\}\) in \(H^1(\partial D)\) gives

\[
Z_1 \varphi = Z_2 \varphi \quad \forall \varphi \in H^1(\partial D).
\]

Test with well chosen functions to have \((\lambda_1, \eta_1) = (\lambda_2, \eta_2)\).
Outline

1. The forward and inverse problems

2. Uniqueness and stability for the inverse problem
 - The case of a single incident wave, known obstacle
 - The case of infinitely many incident plane waves

3. A steepest descent method to solve the inverse problem
 - Presentation of the method
 - Computation of the shape derivative of the scattered field

4. Numerical experiments
Solving the inverse problem with a finite number of incident waves

\[F(\lambda, \eta, \partial D) := \frac{1}{2} \sum_{j=1}^{I} \| T(\lambda, \eta, \partial D, \hat{\theta}_j) - u_{\text{obs}}^\infty(\cdot, \hat{\theta}_j) \|_{L^2(S_j)}^2 \]

For minimizing \(F \):

- we need partial derivatives of the far-field with respect to \(\lambda \) and \(\eta \) (quite standard),
- we need an appropriate derivative w.r.t. the obstacle.

Difficulty: the unknown impedances are supported by \(\partial D \).
Derivative of the cost function with respect to the obstacle

\(\varepsilon \in C^{1,\infty}(\mathbb{R}^d, \mathbb{R}^d) \) is “small”

\[
\begin{align*}
 f_\varepsilon & := \text{Id} + \varepsilon \\
 \partial D_\varepsilon & := f_\varepsilon(\partial D) \\
 \lambda_\varepsilon & := \lambda \circ f_\varepsilon^{-1}, \quad \eta_\varepsilon := \eta \circ f_\varepsilon^{-1}
\end{align*}
\]

We define the derivative \(v_\varepsilon \) of the scattered field with respect to the geometry at point \((\lambda, \eta, \partial D)\) by

\[
u^s(\lambda_\varepsilon, \eta_\varepsilon, \partial D_\varepsilon) - u^s(\lambda, \eta, \partial D) = v_\varepsilon + o(||\varepsilon||)
\]

where \(\varepsilon \mapsto v_\varepsilon \) is linear.
Derivative of the cost function with respect to the obstacle

\[\varepsilon \in C^{1,\infty}(\mathbb{R}^d, \mathbb{R}^d) \text{ is “small”} \]

\[f_\varepsilon := \text{Id} + \varepsilon \]

\[\partial D_\varepsilon := f_\varepsilon(\partial D) \]

\[\lambda_\varepsilon := \lambda \circ f_\varepsilon^{-1}, \quad \eta_\varepsilon := \eta \circ f_\varepsilon^{-1} \]

We define the derivative \(v_\varepsilon \) of the scattered field with respect to the geometry at point \((\lambda, \eta, \partial D)\) by

\[u^s(\lambda_\varepsilon, \eta_\varepsilon, \partial D_\varepsilon) - u^s(\lambda, \eta, \partial D) = v_\varepsilon + o(\|\varepsilon\|) \]

where \(\varepsilon \mapsto v_\varepsilon \) is linear.

One may find \(f_\varepsilon \) such that \(\partial D = f_\varepsilon(\partial D) \) and

\[F'_{\lambda,\eta}(\partial D) \cdot \varepsilon \neq 0. \]

\(F'_{\lambda,\eta}(\partial D) \) does not satisfy the classical shape derivative’s properties!
Derivative of the scattered field with respect to the obstacle

Let $(\lambda, \eta, \partial D)$ be given and analytics, for some small $\varepsilon \in C^{1,\infty}$ define

$$\partial D_\varepsilon = f_\varepsilon(\partial D), \quad \lambda_\varepsilon := \lambda \circ f_\varepsilon^{-1} \text{ and } \eta_\varepsilon := \eta \circ f_\varepsilon^{-1}.$$

Let $u^s_\varepsilon \ [u^s]$ be scattered field associated with $(\lambda_\varepsilon, \eta_\varepsilon, \partial D_\varepsilon) \ [(\lambda, \eta, \partial D)]$.

Let $u^s_\varepsilon (u^s) be scattered field associated with $(\lambda_\varepsilon, \eta_\varepsilon, \partial D_\varepsilon) \ [(\lambda, \eta, \partial D)]$.

$$u^s_\varepsilon(x) - u^s(x) = v_\varepsilon(x) + o(||\varepsilon||),$$

where $v_\varepsilon(x)$ is the solution of the scattering problem with

$$\frac{\partial v_\varepsilon}{\partial \nu} + Zv_\varepsilon = B_\varepsilon u \quad \text{on} \quad \partial D$$

$$B_\varepsilon u = (\varepsilon \cdot \nu)(k^2 - 2H\lambda)u + \text{div}_\Gamma ((Id + 2\eta(R - H Id))(\varepsilon \cdot \nu)\nabla_\Gamma u)$$
$$+ (\nabla_\Gamma \lambda \cdot \varepsilon)u + \text{div}_\Gamma ((\nabla_\Gamma \eta \cdot \varepsilon)\nabla_\Gamma u)$$
$$+ Z((\varepsilon \cdot \nu)Zu),$$

with $2H := \text{div}_\Gamma \nu$, $R := \nabla_\Gamma \nu$ and $Z \cdot = \text{div}_\Gamma (\eta \nabla_\Gamma \cdot) + \lambda$.

18 / 30
Main tools of the proof

- Domain derivative tools: Murat and Simon [73], Kirsch [93], Hettlich [94], Potthast [94].
- Green’s theorems and integral representation of the scattered field: Kress and Päivärinta [99], Haddar and Kress [04].

Green’s theorems and integral representation: write

\[u_\varepsilon^s - u^s = -\int_{\partial D} (B_\varepsilon u) w(\cdot, y) ds(y) + o(\|\varepsilon\|) \]

where for \(y \in \Omega \) \(w(\cdot, y) = w^s(\cdot, y) + \Phi(\cdot, y) \) is the Green function associated with the GIBC scattering problem

\[
\begin{cases}
\Delta w(\cdot, y) + k^2 w(\cdot, y) = \delta_y & \text{in } \Omega \\
\frac{\partial w}{\partial \nu} + Z w = 0 & \text{on } \partial D \\
\text{+radiation condition.}
\end{cases}
\]
Sketch of the proof (1/2)

Volume extension of the surface objects between ∂D and ∂D_ε

D_ε is outside D

\[D^* = D_\varepsilon \setminus \overline{D} \]

- We parametrize D^* with $f_\varepsilon^t := Id + t\varepsilon$ for $t \in [0, 1],$

\[D^* \ni x_t = x_0 + t\varepsilon(x_0) \]

- $\lambda_t = \lambda \circ (f_\varepsilon^t)^{-1}$, $\eta_t = \eta \circ (f_\varepsilon^t)^{-1}$

- for a given t, $\partial D_t := f_\varepsilon^t(\partial D)$,

- ν_t: outward unit normal of ∂D_t, the direction of ν_t depends on $t!$

- $\nabla \Gamma_t \cdot := \left(\nabla \cdot - \frac{\partial}{\partial \nu_t} \nu_t \right) |_{\partial D_t}$
Sketch of the proof (2/2)

Write an integral representation on ∂D

Objective: write the $u^s_\varepsilon - u^s$ as

$$u^s_\varepsilon(x) - u^s(x) = -\int_{\partial D} (B_\varepsilon u) w(\cdot, x) ds + o(\|\varepsilon\|).$$

Integral representation formula for x outside D_ε:

$$u^s_\varepsilon(x) - u^s(x) = \int_{\partial D_\varepsilon} u_\varepsilon \left\{ \frac{\partial w}{\partial \nu_\varepsilon} + \text{div}_\varepsilon (\eta_\varepsilon \nabla_\varepsilon w) + \lambda_\varepsilon w \right\} ds_\varepsilon,$$
Sketch of the proof (2/2)

Write an integral representation on \(\partial D\)

Objective: write the \(u^s_\varepsilon - u^s\) as

\[
u^s_\varepsilon(x) - u^s(x) = -\int_{\partial D} (B_\varepsilon u) w(\cdot, x) ds + o(\|\varepsilon\|).
\]

Integral representation formula for \(x\) outside \(D_\varepsilon\):

\[
u^s_\varepsilon(x) - u^s(x) = \int_{\partial D_\varepsilon} u \left\{ \frac{\partial w}{\partial \nu_\varepsilon} + \text{div}_{\Gamma_\varepsilon} (\eta_\varepsilon \nabla_{\Gamma_\varepsilon} w) + \lambda_\varepsilon w \right\} ds_\varepsilon + o(\|\varepsilon\|),
\]
Sketch of the proof (2/2)
Write an integral representation on ∂D

Objective: write the $u_{\varepsilon}^s - u^s$ as

$$u_{\varepsilon}^s(x) - u^s(x) = -\int_{\partial D} (B_{\varepsilon} u) w(\cdot, x) ds + o(||\varepsilon||).$$

Integral representation formula for x outside D_{ε}:

$$u_{\varepsilon}^s(x) - u^s(x) = \int_{\partial D_{\varepsilon}} u \left\{ \frac{\partial w}{\partial \nu_{\varepsilon}} + \text{div}_{\Gamma_{\varepsilon}} (\eta_{\varepsilon} \nabla_{\Gamma_{\varepsilon}} w) + \lambda_{\varepsilon} w \right\} ds_{\varepsilon} + o(||\varepsilon||),$$

Gauss divergence theorem

$$= \int_{D_{\varepsilon} \setminus \overline{D}} \text{div} \{u \nabla w - \eta_t (\nabla_{\Gamma_t} u \cdot \nabla_{\Gamma_t} w) \nu_t + \lambda_t u w \nu_t \} dx + o(||\varepsilon||)$$
Sketch of the proof (2/2)

Write an integral representation on ∂D

Objective: write the $u_\varepsilon^s - u^s$ as

$$u_\varepsilon^s(x) - u^s(x) = - \int_{\partial D} (B_\varepsilon u) w(\cdot, x) ds + o(\|\varepsilon\|).$$

Integral representation formula for x outside D_ε:

$$u_\varepsilon^s(x) - u^s(x) = \int_{\partial D_\varepsilon} u \left\{ \frac{\partial w}{\partial \nu_\varepsilon} + \text{div}_{\Gamma_\varepsilon} (\eta_\varepsilon \nabla_{\Gamma_\varepsilon} w) + \lambda_\varepsilon w \right\} ds_\varepsilon + o(\|\varepsilon\|),$$

Gauss divergence theorem

$$= \int_{\partial D} (\varepsilon \cdot \nu) \int_0^1 \text{div} \left(-\eta_t \nabla_{\Gamma_t} u \cdot \nabla_{\Gamma_t} w \nu_t + u \nabla w + \lambda_t uw \nu_t \right) dt ds + o(\|\varepsilon\|)$$
Sketch of the proof (2/2)

Write an integral representation on \(\partial D \)

Objective: write the \(u^s_\varepsilon - u^s \) as

\[
u^s_\varepsilon(x) - u^s(x) = - \int_{\partial D} (B_\varepsilon u)w(\cdot, x)ds + o(\|\varepsilon\|).
\]

Integral representation formula for \(x \) outside \(D_\varepsilon \):

\[
u^s_\varepsilon(x) - u^s(x) = \int_{\partial D_\varepsilon} u \left\{ \frac{\partial w}{\partial \nu_\varepsilon} + \text{div}_{\varepsilon} (\eta_\varepsilon \nabla_{\varepsilon} w) + \lambda_\varepsilon w \right\} ds_\varepsilon + o(\|\varepsilon\|),
\]

Gauss divergence theorem and Taylor expansion:

\[
= \int_{\partial D} (\varepsilon \cdot \nu) \text{div} (- \eta_t \nabla_{\Gamma_t} u \cdot \nabla_{\Gamma_t} \nu_t u + u\nabla w + \lambda_t u w \nu_t) \big|_{t=0} ds + o(\|\varepsilon\|)
\]
Sketch of the proof (2/2)

Write an integral representation on ∂D

Objective: write the $u^s_\varepsilon - u^s$ as

$$u^s_\varepsilon(x) - u^s(x) = - \int_{\partial D} (B_\varepsilon u)w(\cdot, x)ds + o(\|\varepsilon\|).$$

Integral representation formula for x outside D_ε:

$$u^s_\varepsilon(x) - u^s(x) = \int_{\partial D_\varepsilon} u \left\{ \frac{\partial w}{\partial \nu_\varepsilon} + \text{div}_{\varepsilon} (\eta_\varepsilon \nabla_{\varepsilon} w) + \lambda_\varepsilon w \right\} ds_\varepsilon + o(\|\varepsilon\|),$$

Gauss divergence theorem and Taylor expansion:

$$= \int_{\partial D} (\varepsilon \cdot \nu) \text{div} (-\eta_t \nabla_{\Gamma_t} u \cdot \nabla_{\Gamma_t} w\nu_t + u \nabla w + \lambda_t uw\nu_t) \big|_{t=0} ds + o(\|\varepsilon\|)$$

$$\text{div} (\lambda_t uw\nu_t) \big|_{t=0} = uw (\nabla\lambda_t) \big|_{t=0} \cdot \nu + \lambda \frac{\partial (uw)}{\partial \nu} + \lambda uw \text{div}(\nu_t) \big|_{t=0}$$

$$(\nu \cdot \varepsilon) (\nabla\lambda_t) \big|_{t=0} \cdot \nu = -\nabla_{\Gamma} \lambda \cdot \varepsilon$$
Outline

1. The forward and inverse problems

2. Uniqueness and stability for the inverse problem
 - The case of a single incident wave, known obstacle
 - The case of infinitely many incident plane waves

3. A steepest descent method to solve the inverse problem
 - Presentation of the method
 - Computation of the shape derivative of the scattered field

4. Numerical experiments
A steepest descent method to solve the inverse coefficient problem

\[F(\lambda, \eta, \partial D) := \frac{1}{2} \sum_{j=1}^{I} \| T(\lambda, \eta, \partial D, \hat{\theta}_j) - u_{\text{obs}}(\cdot, \hat{\theta}_j) \|_{L^2(S_j)}^2 \]

Numerical procedure:

- update alternatively \(\lambda, \eta \) and \(\partial D \) with a direction given by the partial derivative of the cost function,
- when we update the geometry we also transport the impedance coefficients to the new boundary.
The regularization procedure

\[F(\lambda, \eta, \partial D) = \frac{1}{2} \sum_{j=1}^{I} \| T(\lambda, \eta, \partial D, \hat{\theta}_j) - u_{\text{obs}}(\cdot, \hat{\theta}_j) \|_{L^2(S_j)}^2 \]

We regularize the gradient, NOT the cost function, using a \(H^1(\partial D) \) regularization.

- Descent direction for \(\lambda \): \(\delta \lambda \) that solves for every \(\phi \) in some finite dimensional space:

\[\beta_\lambda \int_{\partial D} \nabla \Gamma(\delta \lambda) \cdot \nabla \Gamma \phi \, ds + \int_{\partial D} \delta \lambda \phi \, ds = -\alpha_\lambda F'_{\eta, \partial D}(\lambda) \cdot \phi \]

where \(\beta_\lambda \) is the regularization coefficient and \(\alpha_\lambda \) is the descent coefficient.

- Do the same for \(\delta \eta \) and \(\delta(\partial D) \).
Numerical reconstruction

Finite elements method and remeshing procedure

using FreeFem++

Reconstruction of the geometry with 2 incident waves and 1% noise on the far-field, $\lambda = ik/2$ and $\eta = 2/k$ being known
Numerical reconstruction
Simultaneous reconstruction of λ, ∂D with $\eta = 0$

8 incident waves, 5% of noise on far-field data.
We iterate only on the geometry.

$$B_\varepsilon u = (\nabla \Gamma \lambda \cdot \varepsilon)u + \cdots$$
Numerical reconstruction

Simultaneous reconstruction of λ, η and ∂D

8 incident waves, 5% of noise on far-field data.
Application to the reconstruction of a coated obstacle

Exact model

\[
\begin{align*}
\text{div}(\mu^{-1}\nabla u_\delta) + \epsilon k^2 u_\delta &= 0 \\
\Delta u_\delta + k^2 u_\delta &= 0
\end{align*}
\]

Approximate model of order 1

\[
\begin{align*}
\frac{\partial u_1}{\partial \nu} + \text{div}_\Gamma(\mu^{-1}\delta \nabla u_1) + \delta k^2 u_1 &= 0 \\
\Delta u_1 + k^2 u_1 &= 0
\end{align*}
\]

Reconstruction of an obstacle using the generalized impedance boundary condition model of order 1 minimizing

\[
F(\epsilon, \delta, \Gamma) := \frac{1}{2} \sum_{j=1}^{I} \| T(\epsilon, \delta, \Gamma, \hat{\theta}_j) - u_{\text{obs}, \text{mince}}(\cdot, \hat{\theta}_j) \|_{L^2(S_j)}^2
\]

with \(\mu = 0.1 \) known.
Application to the reconstruction of a coated obstacle

Numerical results

Artificial data created with

- $\mu = 0.1$ is known,
- $\delta = 0.04l(1 - 0.4\sin(\theta))$ is unknown; l being the wavelength,
- $\epsilon = 2.5$ is unknown.

Reconstructed ϵ: 2.3.

Fails with a classical impedance boundary condition model!
Conclusion

- The inverse problem is ill-posed but not too much.
- It is solvable using a steepest descent method with regularization.
- Possible reconstruction of coated obstacles.

- Extension to the 3D Maxwell equations (ongoing work).
- The case of a general symmetric operator on the boundary?