1 Problem Class exercise 2, 24 Oct

A stationary, circular cylinder with boundary $x^{2}+y^{2}=a^{2}$ is put in a 2D irrotational flow field that has velocity component (u, v) such that

$$
\begin{align*}
& u-4 M x y\left(y^{2}-x^{2}\right) \rightarrow 0, \\
& v-M\left(-x^{4}+6 x^{2} y^{2}-y^{4}\right) \rightarrow 0, \tag{1}
\end{align*}
$$

as $|\boldsymbol{x}| \rightarrow \infty, M>0$, and the circulation around the cylinder is 0 .
(a) Find a streamfunction.
(b) Now fluid is blowing steadily outwards across the cylinder with speed $W+U \cos 2 \theta$ at (a, θ), where $0<V<W$. What is the streamfunction now, if the large-distance behaviour of the flow is unchanged?

Solution:

(a) At large distance,

$$
\begin{align*}
& \partial_{y} \psi^{\prime}=u=4 M x y\left(y^{2}-x^{2}\right), \\
& -\partial_{x} \psi^{\prime}=v=M\left(-x^{4}+6 x^{2} y^{2}-y^{4}\right), \tag{2}
\end{align*}
$$

therefore, by integration, we recover $\psi^{\prime}=M\left(x^{5} / 5-2 x^{3} y^{2}+x y^{4}\right)$. Now, we aim to express ψ^{\prime} in polars. The x^{5} terms motivates the inclusion of a $r^{5} \cos 5 \theta$ term. By using additional formulae, one should derive that $r^{5} \cos 5 \theta=x^{5}-10 x^{3} y^{2}+5 x y^{4}$, therefore $\psi^{\prime}=\frac{M}{5} r^{5} \cos 5 \theta$. In order to satisfy the 'no normal flow' condition on the cylinder, we need to include a $r^{-5} \cos 5 \theta$ term, $\psi=\frac{M}{5} r^{5} \cos 5 \theta+A r^{-5} \cos 5 \theta$. The streamfunction is constant on streamlines (and compatible solid bodies), i.e. $\left(\frac{M}{5} a^{5}+A a^{-5}\right) \cos 5 \theta$ is constant. As θ can take any value, $\left(\frac{M}{5} a^{5}+A a^{-5}\right)=0$, therefore $\psi=$ $\frac{M}{5} r^{5} \cos 5 \theta\left(1-\frac{a^{10}}{r^{10}}\right)$.
(b) The large-scale behaviour of the flow is unchanged, therefore $\psi^{\prime}=$ $\frac{M}{5} r^{5} \cos 5 \theta$ as in part (a). The condition on the cylinder has changed, now it is $\frac{1}{r} \partial_{\theta} \psi=u_{r}=W+V \cos 2 \theta$ on $r=a$. To satisfy this, we need to include a source term and a $\sin 2 \theta$ (as we need to take a derivative to get a cosine) term, i.e. we seek a solution in form $\psi=\frac{M}{5} r^{5} \cos 5 \theta+A r^{-5} \cos 5 \theta+$ $B r^{-2} \sin 2 \theta+C \theta$. Now, $\frac{1}{a}\left(M a^{5}+5 A a^{-5}\right) \sin 5 \theta+2 \frac{B}{a^{3}} \cos 2 \theta+\frac{C}{a}=\frac{1}{r} \partial_{\theta} \psi=$ $W+V \cos 2 \theta$. Equating terms and substituting back to the streamfunction we find $\psi=\frac{M}{5} r^{5} \cos 5 \theta\left(1-\frac{a^{10}}{r^{10}}\right)+\frac{a^{3} V}{2} r^{-2} \sin 2 \theta+a W \theta$.

