1 Problem Class, 31 Oct

1.1 Question 1

A uniform stream flow with velocity U in the x-direction flows past a cylinder of radius a at the origin. From lectures: $\psi=U r \sin \theta\left(1-\frac{a^{2}}{r^{2}}\right)$.
(a) Show that the line consisting of the x -axis for $|x|>a$ and the upper half semi-circle boundary $x^{2}+y^{2}=a^{2}, y>0$ is a solid boundary compatible with the flow.
(b) Now consider the flow restricted to the upper half-plane. Show that the greatest value of fluid speed is attained at the top of the semi-circle.
(c)Where is the maximum vertical speed attained on the cylinder? Sketch lines of constant vertical velocity downstream.

