1 Problem Class, 28 Nov

1.1 Question 1

An open, cylinder-shaped tank with cross-section area A_{1} is filled with water up to a height H_{1}. At the bottom of the tank, water is draining steadily through a horizontal, cylinder-shaped pipe with cross-section area $H_{2}^{2} \pi / 4$, where $H_{2} \ll H_{1}$
(a) At the end of the pipe, water is released freely to the atmosphere. Use Bernoulli's equation to find the velocity at which water is released here.
(b) Now an additional, μp_{a} pressure is applied at the end of the pipe to stop the drainage (i.e. $U_{2}=0$). What is the value of μ, if $H_{1}=0.5 \mathrm{~m}$? (You can use $\rho=1000 \mathrm{~kg} \mathrm{~m}^{-3}, g=9.81 \mathrm{~m} \mathrm{~s}^{-2}, p_{a}=10^{5} \mathrm{~Pa}$.)

