
Fundamental groups and Diophantine geometryMinhyong KimFebruary 28, 2008Colloquium le
ture, Leeds, January 2008To work our way towards the very 
anoni
al but rather diÆ
ult relationship between the notionsappearing in the title, it is appropriate to review brie
y the 
lassi
al problems that make up theba
kground of our study, and whose importan
e will be initially regarded as self-evident. Thus, weare given a polynomial f(x1; x2; : : : ; xn)whose 
oeÆ
ients will be assumed to be in Z for the sake of simpli
ity. The set of solutions to theequation f(x) = 0
an be 
onsidered in any number of di�erent environments su
h asZ; Z[1=62℄; Q; Z[i℄; Q[i℄; : : : ; Q[i; �℄; : : : ; R; C ; Qp ; C p ; : : :In re
ent de
ades, the designation of the equation as Diophantine has not been a referen
e to anyparti
ular property of the equation itself, but rather 
alls attention to our primary fo
us on 
ontexts
loser to the beginning of the list, although how far we might extend the s
ope is better left undeter-mined. In any 
ase, there are famous results 
orresponding to di�erent lines of demar
ation, su
h asthe one that says xn + yn = znhas only the obvious solutions in Z as long as n � 3, or wheref(x; y) = 0for a generi
 f of degree at least 4 has only �nitely many solutions in Q(i; �; e).Elementary 
oordinate geometry 
an be brought to bear on some su
h questions as a potent toolfor des
ribing solution sets, or least for generating solutions. A simple but already interesting 
ase isa quadrati
 equation in two variables, say x2 + y2 = 1:By visualizing the real solution set as a 
ir
le, we might 
ome upon the idea of 
onsidering theinterse
tions with lines that pass through the spe
i�
 point (�1; 0), where the set-up has alreadyen
ouraged us 
asually to refer to a solution using geometri
 terminology. The lines are des
ribedusing equations y = m(x + 1) for various m whereby algebrai
 substitution leads to the 
onstraintx2 + (m(x+ 1))2 = 1or (1 +m2)x2 + 2m2x+m2 � 1 = 0:A deeper 
onne
tion to algebra 
omes from the observation that one solution x = �1 is alreadyrational, so that whenever the slope m is rational, the other solution is also bound to be rational. As1



we vary m, we 
an generate thereby all the other rational solutions to the equation, for example,(�99=101; 20=101) 
orresponding to m = 10. It seems that the visually 
ompelling nature of thesolution set in a suÆ
iently big �eld provides valuable insight into �nding solutions in mu
h smaller�elds. In
identally, I'm sure you're aware also that this pro
edure leads to the famous Pythagoreantriples involved in equations like 992 + 202 = 1012:The elementary elegan
e of the method des
ribed be
omes progressively harder to retain withthe in
reasing 
omplexity of the problem, measured, for example, by the degree of the equation.Nevertheless, it is instru
tive to 
onsider one example of degree 3:x3 + y3 = 1729:One veri�es with the help of Ramanujan that (9; 10) is a solution, so the 
ase of the 
ir
le mightmotivate us to 
onsider lines through it. Unfortunately, the previous argument for the rationalityof interse
tion points fails as the asso
iated 
onstraint be
omes 
ubi
. But if we want to start outgenerating just one other solution, a more subtle idea is to 
onsider the tangent line to the real 
urveat the point (9; 10), be
ause then, the 
orresponding 
ubi
 equation will have 9 as a double root. Tospell this out, 
al
ulate the equation of the tangent line,81(x� 9) + 100(y � 10) = 0or y = (�81=100)x+ 1729=100;and substitute to obtain the equationx3 + ((�81=100)x+ 1729=100)3 = 1729:We have arranged for x = 9 to be a double root, and hen
e, the remaining root is for
ed to be rational.Even by hand, you 
an (tediously) work out the resulting rational point to be(�42465969=468559; 24580=271):Repeating the pro
edure with the points that are su

essively obtained thus a
tually provides us within�nitely many rational solutions. Here, you must pause to 
onsider the possibility that repetitionwill just move us (quasi-)periodi
ally around �nitely many points, but there is a well-known theoremof Nagell and Lutz that tells us this 
annot happen given the denominator of the solution at hand.Geometri
 te
hniques of the same general 
avor 
an be made 
onsiderably more sophisti
ated,with ni
e appli
ations to varieties of simple type as might be de�ned by equations of low degree in agreater number of variables. But in the present le
ture we wish to explain the important 
on
eptualshift that o

urred in the 1960's, whereby Diophantine problems a
quired an intrinsi
ally geometri
nature by way of two foundational ideas of Grothendie
k.The �rst one, elementary in 
omparison to the se
ond, asso
iates to the polynomial f(x) the ringA := Z[x℄=(f(x)):This leads to a natural 
orresponden
e between solutions (b1; : : : ; bn) of f(x) = 0 in a ring B, andring homomorphisms A!BThat is, an arbitrary n-tuple b = (b1; : : : ; bn) determines a ring homomorphism Z[x℄!B that sends xito bi, whi
h fa
tors through the quotient ring A exa
tly when b is a zero of f(x). The spatial intuitionis supposed to arise from the idea that a 
ommutative ring R with 1 
an be viewed as the ring offun
tions on a spa
e, its spe
trum Spe
(R);2



whose underlying set 
onsists of the prime ideals of R. This 
orresponden
e reverses arrows re
e
tingthe intuition that a map of spa
es should pull fun
tions ba
kwards by 
omposition. Thus, the solutionsin B of f(x) = 0 
ome into bije
tion with the set of mapsSpe
(B)!X := Spe
(A);
onventionally denoted by X(B):Even before 
onsidering su
h diÆ
ult maps, it is pleasant to note that an obvious mapX#Spe
(Z)
orresponds to the in
lusion Z!A = Z[x℄=(f(x))using whi
h we think of X as a �bration over Spe
(Z). Then the solutions in Z, the elements of X(Z),are pre
isely the se
tions X
Spe
(Z)�� P℄℄

of the �bration. The remarkable upshot of this formulation is that the study of solutions to equationsis subsumed into the study of maps whose very nature 
ompels us to 
onsider as the most basi
 in allof mathemati
s. This perspe
tive is of late provenan
e in the theory of Diophantine equations, butstill provides at this point its most fundamental justi�
ation.The se
ond idea involves a sophisti
ated 
onstru
tion whereby spa
es like Spe
(Q) or Spe
(Z) areendowed with very non-trivial topologies that go beyond s
heme theory (by whi
h we mean the globaltheory of su
h spe
tra). We will not review the pre
ise de�nitions in this summary, sin
e it appearsby now well-known that a Grothendie
k topology on an obje
t T allows open sets to be 
ertain mapswith range T from domains that are not ne
essarily subsets of T . On a `usual' topologi
al spa
e, one
ould make the topology �ner by allowing as open sets mapsU!Tthat fa
torize as U,!V!W,!Twhere W,!T is an open subset, V!W is a 
overing spa
e, and U,!V is an open embedding. Anopen 
overing then is a 
olle
tion fUi!Tgi2I of su
h maps with the property that the union of theimages is T . But this does not give anything essentially new. By de�nition ea
h su
h U!T is a lo
alhomeomorphism, so that 
overings by families of usual open subsets is 
o-�nal among all su
h exoti
open 
overings. That is to say, any 
overing fUi!Tgi2I in the generalized sense has a re�nementfVij ,!Tgwhere ea
h Vij ,!T is an open embedding that fa
tors through one of the Ui:Vij!Ui!T:This fa
t indu
es an equivalen
e of 
ategories between the 
ategory of usual sheaves and sheaves inthis re�ned topology. 3



However, in algebrai
 geometry, there are many maps that behave formally like lo
al homeomor-phisms without a
tually being so. These are the so-
alled �etale maps between s
hemes. A ni
e andfairly general 
lass of examples arise from mapsSpe
(B)!Spe
(A)
orresponding to maps of rings A!B where B has the formA[x℄=(f(x))for a moni
 polynomial f(x). The 
onstraint we wish to impose is that the �bers of Spe
(B) overSpe
(A), whi
h have the form Spe
(k[x℄=( �f(x)))for residue �elds k of A, should have the same number of elements, indi
ating an absen
e of rami�-
ation. For this, we need to prevent f(x) from having multiple roots in any su
h residue �eld. Thisamounts to the 
ondition that f(x) and f 0(x) should not have 
ommon roots point-wise, or that thedis
riminant of f should be a unit in A. The obvious mapSpe
(C [t℄[x℄=(x2 � t))!Spe
(C [t℄);is not �etale, the dis
riminant of x2 � t being the non-unit 4t, whileSpe
(C [t; t�1 ℄[x℄=(x2 � t))!Spe
(C [t; t�1 ℄);is �etale.Allowing �etale maps as open subsets gives a genuinely ri
her topology to a s
heme than the Zariskitopology. The 
onne
ted �etale 
overings of Spe
(Q), for example, are mapsSpe
(F )!Spe
(Q);where F is a �nite �eld extension of Q. For Spe
(Z), one 
an 
onstru
t an open 
overing using thetwo maps Spe
(Z[i℄[1=2℄)!Spe
(Z)and Spe
(Z[(1+p�7)=2℄[1=7℄)!Spe
(Z):The (
o-)homology theory asso
iated to sheaves in the �etale topology has been fabulously appliedto the arithmeti
 geometry of s
hemes in the past many de
ades, with results well-enough known notto require a separate survey. Less known perhaps, is that Grothendie
k's exoti
 topologies 
an alsolead to interesting homotopy groups, whose stru
tures are only re
ently being probed at any depth.One su
h dire
tion is the motivi
 homotopy theory of Voevodsky, about whi
h we will say nothing.The emphasis here instead is on rather re
ent developments in a somewhat older homotopy theorybelonging to the �etale fundamental group and its variations. In parti
ular, we will fo
us ex
lusivelyon the appli
ation of the theory to Diophantine problems.The beginning point is surprisingly elementary, wherefrom the theory obtains a substantial portionof its 
harm. Let therefore X be a variety de�ned over Q and G = �1(X(C ); b) the usual topologi
alfundamental group of the spa
e obtained from the 
omplex points of X . For any point x 2 X(C ), we
an also 
onsider the homotopy 
lasses of paths�1(X(C ); b; x)from b to x. Then �1(X(C ); b; x) has the natural stru
ture of a prin
ipal G-bundle, or a G-torsor,in that G naturally a
ts on �1(X(C ); b; x) via 
omposition of paths, and the 
hoi
e of any p 2�1(X(C ); b; x) indu
es a bije
tion G ' �1(X(C ); b; x)4



g 7! pgvia the a
tion. Sin
e this prin
ipal bundle lives on a topologi
al point, of 
ourse it is trivial. However,we see even here that the variation of �1(X(C ); b; x) is x is not at all trivial in general. That is to say,the triviality of the individual Px is not di�erent from the triviality of the �bers of even a 
ompli
atedve
tor bundle. To be more pre
ise on this point, 
hoose a pointed universal 
overing spa
ef : (X̂(C );~b)!(X(C ); b):Then lifting of paths determines natural bije
tions�1(X(C ); b; x) ' X̂(C )xbetween homotopy 
lasses of paths and the �bers of the universal 
overing spa
e. In fa
t, it is naturalto 
onstru
t X̂(C ) as [x�1(X(C ); b; x)topologized so that the obvious proje
tion that takes �1(X(C ); b; x) to x is a lo
al homeomorphism.In any 
ase, we see thereby that the prin
ipal bundles in question form the �bers of a mapf : (X̂(C );~b)!(X(C ); b)that 
an be highly non-trivial. In fa
t, we will see that the la
k of a 
anoni
al isomorphism G '�1(X(C ); b; x) is the essential ingredient underlying our ability to endow �1(X(C ); b; x) with a gen-uinely non-trivial stru
ture of a prin
ipal G-bundle within suitably enri
hed 
ontexts.As far as Diophantine problems are 
on
erned, we will of 
ourse be interested in the situationwhere b and x are both rational points in X(Q). As it stands, the prin
ipal bundles �1(X(C ); b; x)
annot pi
k out su
h spe
ial points as being di�erent in any way from generi
 points. There are severalways to remedy this, of whi
h the (ostensibly) easiest one to explain is the passage to the pro-�nite
ompletion. That is, de�ne G^ := lim �N�G;[G:N ℄<1G=Nand P^ := lim �N�G;[G:N ℄<1P=Nfor any prin
ipal G-bundle P . Then the basi
 and remarkable fa
t is that G^ is a sheaf of groups onthe �etale topology of Spe
(Q) while �1(X(C ); b; x)^ is a prin
ipal bundle for G^ in this topology. Thisstatement is demysti�ed just a little bit by re
alling that a sheaf on Spe
(Q) is simply a set equippedwith a 
ontinuous a
tion of � = Gal( �Q=Q). Nevertheless, it remains to see that the Galois group willindeed a
t on an obje
t that arose thus out of ordinary topology.A

ounting for the a
tion is an isomorphism�1(X(C ); b)^ ' �et1 ( �X; b)where �X = X �Spe
(Q) Spe
( �Q )is X regarded as a variety over �Q , while �et1 refers to the pro-�nite �etale fundamental group. It is thelatter obje
t on whi
h � will a
t naturally.The de�nition will be reviewed after a brief return to usual topology. For a manifold M and anelement b 2 M , the fundamental group �1(M; b) of M with base-point b 
an be de�ned in at leasttwo di�erent ways avoiding dire
t referen
e to topologi
al loops. One way is to note �rst that a loop l5



a
ts naturally on the �ber over b of any 
overing spa
e N!M of M using the monodromy of a lifting~l of l to N : lN : Nb ' NbThis bije
tion is 
ompatible with 
omposition of loops on the one hand, and with maps between
overing spa
es, on the other. That is, (ll0)N = lN Æ l0N , and if f : N!P is a map of 
overing spa
es,then f Æ lN = lP Æ fas maps from Nb to Pb. It is something of a surprise that the only way to give su
h a 
ompatible
olle
tion of automorphisms is in fa
t using an element of the fundamental group. The 
on
ise wayto state this is via the fun
tor Fb : Cov(M)!Setsthat asso
iates to ea
h 
overing N its �ber Nb over b. Then the fa
t in question is that�1(M; b) ' Aut(Fb)with the Aut understood in the sense of invertible natural transformations of a fun
tor.Now given a variety V , we 
an use this approa
h to de�ne the �etale fundamental group simply by
hanging the 
ategory of 
overings. So we let Covet(V )be the �nite �etale 
overs of V and, for any point b 2 V , 
onsider the fun
tor F etb that takes W!V tothe �ber Wb. Then �et1 (V; b) := Aut(F etb )Similarly, �et1 (V ; b; x) := Isom(F etb ; F etx )These superb de�nitions have been around at least sin
e the 1960's, but it is rather striking thatvariation of the base-point has not been really attended to until fairly re
ently. The primary impetusfor a serious reassessment appears to have 
ome from the intera
tion with the Hodge theory of thefundamental group.Nevertheless, 
onstru
tions of the same general nature have now be
ome 
ommonpla
e in math-emati
s, the best known being asso
iated to the notion of a Tannakian 
ategory, whereby the auto-morphisms of suitable fun
tors de�ned on agreeable 
ategories give rise to group s
hemes. Here wewill 
ontent ourselves with mentioning two more examples. Fix a non-ar
himedean 
ompletion Qp ofQ and 
onsider the 
ategory Lo
et(V;Qp )of lo
ally 
onstant sheaves of �nite-dimensional Qp -ve
tor spa
es on V 
onsidered in the �etale topology.There is still a �ber fun
tor F algb : Lo
et(V;Qp )!Ve
tQp ;now taking values in Qp -ve
tor spa
es, that asso
iates to ea
h sheaf its stalk at b. (In 
omparing withthe previous situation, it would be useful for the audien
e to have some intuition for the notion thata lo
ally 
onstant Qp -sheaf is a `linearized' version of a 
overing spa
e.) Now de�ne�alg;Qp1 (V; b) := Aut
(F algb );the Qp -pro-algebrai
 
ompletion of �et1 (V; b). The 
 in the supers
ript refers to the fa
t that theautomorphisms are required to be 
ompatible not just with the morphisms in the 
ategory, but alsothe tensor produ
t stru
ture. As the name suggests, it is a pro-algebrai
 group over Qp .When we repla
e all lo
al systems by unipotent ones, i.e., those that admit a �ltrationL = L0 � L1 � � � �Ln � Ln+1 = 06



su
h that ea
h quotient Li=Li+1 is isomorphi
 to a dire
t sum of the 
onstant sheaf Qp , one againgets a 
ategory Unet(V;Qp ) of the right sort to whi
h one 
an restri
t the previous �ber fun
torF ub : Unet(V;Qp )!Ve
tQp :The Qp -pro-unipotent 
ompletion of the �etale fundamental group is then de�ned as�u;Qp1 (V; b) := Aut
(F ub )In both settings, there are still torsors of paths�alg;Qp1 (V ; b; x) := Isom(F algb ; F algx )and �u;Qp1 (V ; b; x) := Isom(F ub ; F ux )It is natural to regard su
h de�nitions with a degree of suspi
ion, sin
e not having loops to vi-sualize may make them seem entirely intra
table. The situation is somewhat ameliorated throughthe intermediary of a universal obje
t, whi
h we des
ribe in detail only for the full pro-�nite �etalefundamental group. Be
ause Covet 
onsists of �nite 
overing spa
es, it may not be possible to �nda single universal obje
t inside the 
ategory. However, it is possible to 
onstru
t a pro-obje
t thatperforms the same role. This is a 
ompatible system~V = fVigi2Iof �nite �etale 
overings Vi!Vindexed by some �ltered set I , having the following universal property: If we 
hoose ~b = (bi) 2 ~Vb, thepair ( ~V ;~b) is universal among pointed pro-
overing spa
es, in that any �nite �etale pointed 
overing(Y; y)!(V; b) �ts into a unique 
ommutative diagram( ~V ;~b) - (Y; y)(V; b)?-This means that there is some index i and a 
ommutative diagram(Vi; bi) - (Y; y)(V; b)?-In this situation, on
e again we have essentially tautologi
al isomorphisms�et1 (V; b) ' ~Vband �et1 (V ; b; x) ' ~Vx;where the �bers are also proje
tive systems of points.7



When V = �X for a variety X de�ned over Q and the base-point b is in X(Q), then the entirepro-system ~�X! �X
omes from a system ~X!Xde�ned over Q and we 
an 
hoose ~b 2 ~�X as well to 
ome from a rational point ~b 2 ~X. The isomorphisms�et1 ( ~�X ; b; x) ' ~�Xxthen are 
ompatible with the a
tion of �. The sheaves on Spe
(Q) obtained thereby have also aharmonious des
ription in terms of the map 
orresponding to a rational point. The point is that themap ~X!Xis a pro-sheaf of sets in the �etale topology of X . Then given any pointx : Spe
(Q)!X;we get the sheaf x�( ~X)on Spe
(Q), whi
h is nothing but �et1 ( ~�X ; b; x).We illustrate this 
onstru
tion with the example of ( �E; 0), an ellipti
 
urve with origin over Q. LetEn!Ebe the 
overing spa
e given by E itself with the multipli
ation map[n℄ : E!E:Then the system ( ~�E; ~0) := f( �En; 0)gn - ( �E; 0)is a universal pointed 
overing spa
e. Thus, for ( �E; 0),�et1 ( �E; 0) ' T̂ (E)and an element of the fundamental group is just a 
ompatible 
olle
tion of torsion points of E. Thatis to say, the Galois a
tion on �et1 ( �E; 0) is the well-known a
tion on the Tate module of E. Similarly,�et1 ( �E; 0; x) ' ~�Ex
onsists of 
ompatible systems of division points of x.A notable fa
t that emerges from this des
ription is that if we take into a

ount the Galois a
tion,it is no longer possible to trivialize the torsor in general, even point-wise. That is, there will often beno isomorphism between �et1 ( �X; b) and �et1 ( �X ; b; x); re
e
ting the fa
t that the �etale topology has avery ri
h stru
ture even on a point. In the 
ase of (E; 0), if there were an isomorphism�et1 ( �E; 0) ' �et1 ( �E; 0; x)then there would be a Galois invariant element of�et1 ( �E; 0; x) ' ~�Ex:In parti
ular, for any n, there would be a rational point xn su
h that nxn = x, whi
h is not possiblefor x 6= 0 by a theorem of Mordell. 8



To summarize, given a variety X=Q with a �xed rational point b 2 X(Q), we are asso
iatingto ea
h other point x 2 X(Q) a prin
ipal bundle �et1 ( �X; b; x) for �et1 ( �X; b) on the �etale topology ofSpe
(Q). This information 
an be organized using a standard 
lassifying spa
e of sorts for prin
ipalbundles. That is, given a prin
ipal bundle T , one 
an 
hoose a pointt 2 Tand examine the a
tion of � on that point. For ea
h g 2 �, g(t) will be related to t by an elementlg 2 �et1 ( �X; b), that is, g(t) = tlg:The map g 7! lgobtained thereby is a 1-
o
y
le 
t : �!�et1 ( �X; b);that is, a 
ontinuous map that satis�es
t(g1g2) = 
(g1)g1(
(g2)):If we denote the set of su
h 
o
y
les by Z1(�; �et1 ( �X; b));then �et1 ( �X; b) a
ts on it a

ording to l
(g) := g(l�1)
(g)land a di�erent 
hoi
e of s 2 T will lead to a 
o
y
le 
s lying in the same orbit as 
t. Denote byH1(�; �et1 ( �X; b)) := �et1 ( �X; b)nZ1(�; �et1 ( �X; b))the orbit set, so that the torsor T determines a 
lass[T ℄ = [
t℄ 2 H1(�; �et1 ( �X; b)):This 
ohomology set in fa
t 
lassi�es su
h torsors so that we have de�ned a mapX(Q) - H1(�; �et1 ( �X; b))x - [�et1 ( �X ; b; x)℄to a 
lassifying spa
e that 
an be thought of as an �etale period map. In his famous letter to Faltings,Grothendie
k formulated the hope of studying Diophantine problems using this map. (He did notexpress matters using torsors, but rather, splittings of a 
ertain 
anoni
al sequen
e of fundamentalgroups, in order to better harmonize the dis
ussion with his general program of anabelian geometry.)Unfortunately, it seems at present that the set H1(�; �et1 ( �X; b)) has too little stru
ture to study ina 
omprehensible manner. It should be obvious, meanwhile, that an entirely analogous 
onstru
tion
an be 
arried out with �alg;Qp1 ( �X; b) or with �u;Qp1 ( �X; b). For reasons that are somewhat te
hni
alto dis
uss in a short survey, �alg;Qp1 ( �X; b) does not a�ord mu
h advantage at present over �et1 ( �X; b).The unipotent 
ompletion, on the other hand, has been exploited to a 
ertain extent in the study ofDiophantine sets. The key di�eren
e from the other 
ases has to do with the relative ease of a

essinginformation about H1(�; �u;Qp1 ( �X; b));or rather, a slight improvement of this set. Let S be the set of primes of bad redu
tion for X , anddenote by X(ZS) the set of points in the ring ZS of S-integers, where the integrality is de�ned in9



terms of a suitably good model. (Note that if X is 
ompa
t, then the integral points are the same asrational points.) The �rst point of note is that the mapX(Q)!H1(�; �u;Qp1 ( �X; b))x 7! [�u;Qp1 ( �X ; b; x)℄;when restri
ted to the integral points, fa
tors through a natural subspa
eX(ZS) - H1f (�; �u;Qp1 ( �X; b)) � H1(�; �u;Qp1 ( �X; b))
orresponding to lo
al 
onditions satis�ed by the torsors [�u;Qp1 ( �X; b; x)℄, su
h as being unrami�edaway from the primes of bad redu
tion and p, and having a `
rystalline' nature at p. This last
ondition arises from the p-adi
 Hodge theory of the non-ar
himedean varietyX �Spe
(Q) Spe
(Qp )that exerts a useful in
uen
e on �u;Qp1 ( �X; b). In fa
t, these 
onditions are meaningless forH1(�; �et1 ( �X; b))and quite diÆ
ult to analyze forH1(�; �alg;Qp1 ( �X; b)). The advantage of 
onsidering them in the unipo-tent setting is that the subspa
e H1f (�; �u;Qp1 ( �X; b)) be
omes 
anoni
ally equipped with the stru
tureof a pro-algebrai
 variety. In fa
t, for various quotients [�u;Qp1 ( �X; b)℄n of �u;Qp1 ( �X; b) modulo its de-s
ending 
entral series, the sets H1f (�; [�u;Qp1 ( �X; b)℄n)have natural stru
tures of algebrai
 varieties over Qp that �t into a tower:...... H1f (�; [�u;Qp1 ( �X; b)℄4)H1f (�; [�u;Qp1 ( �X; b)℄3)?H1f (�; [�u;Qp1 ( �X; b)℄2)?X(ZS) -
--- H1f (�; [�u;Qp1 ( �X; b)℄1)?re�ning the map at the bottom (whi
h has a 
lassi
al interpretation in Kummer theory). The dis
us-sion 
an be repeated verbatim for the setsH1f (�p; [�u;Qp1 ( �X; b)℄n)of lo
al Galois 
ohomology for the group �p := Gal( �Qp ;Qp ). This lo
al spa
e also admits a map fromX(Zp) that �ts into a 
ommutative diagramX(ZS) - X(Zp)H1f (�; [�u;Qp1 ( �X; b)℄n)? - H1f (�p; [�u;Qp1 ( �X; b)℄n)?It 
omes furthermore with an analyti
 des
riptionH1f (�p; [�u;Qp1 ( �X; b)℄n) ' [�DR1 (XQp ; b)℄n=F 010



provided by p-adi
 Hodge theory and the De Rham fundamental group �DR1 (XQp ; b) together with itsHodge �ltration F �. Thus, eventually, our diagram be
omesX(ZS) - X(Zp)H1f (�; [�u;Qp1 ( �X; b)℄n)? - [�DR1 (XQp ; b)℄n=F 0?the e�e
t of whi
h is that we have repla
ed the diÆ
ult in
lusionX(ZS),!X(Zp)with H1f (�; [�u;Qp1 ( �X; b)℄n)![�DR1 (XQp ; b)℄n=F 0;an algebrai
 map between Qp -varieties.It is reasonable to state a theorem:Theorem 0.1 Let X be a 
urve and supposedimH1f (�; [�u;Qp1 ( �X; b)℄n) < dim�DR1 (XQp ; b)n=F 0for some n. Then X(ZS) is �nite.The proof of the theorem is 
ontained in the following diagram:X(ZS) - X(Zp)H1f (�; [�u;Qp1 ( �X; b)℄n)? - [�DR1 (XQp ; b)℄n=F 0?
Qp�6=0 ?The assumption on dimensions implies that the image ofH1f (�; [�u;Qp1 ( �X; b)℄n) inside �DR1 (XQp ; b)n=F 0is not Zariski dense, and hen
e, is killed by some non-zero fun
tion �. However, when the fun
tion ispulled ba
k to X(Zp) it turns out to be a non-zero linear 
ombination of p-adi
 iterated integralsZ xb �1�2 � � ��mof di�erential forms �i on X . This des
ription is the really useful te
hni
al input from p-adi
 Hodgetheory. The point is that su
h a fun
tion 
an be expanded as a non-vanishing 
onvergent power serieson ea
h p-adi
 disk in X(Zp), and hen
e, has only �nitely many zeros. The 
ommutativity of thediagram is then enough to imply that the fun
tion vanishes on X(ZS), yielding for us its �niteness.Some amount of progress has a

rued to the program of non-abelian Diophantine geometry by wayof this theorem, su
h as new proofs of Diophantine �niteness for hyperboli
 
urves of genus zero orone. Furthermore, standard 
onje
tures from the theory of mixed motives imply that the inequality inthe hypothesis should always hold on hyperboli
 
urves, insofar one 
limbs suÆ
iently high up on thetower (n >> 0). One hopes (perhaps in vain) that the milieu of investigation is ri
h enough to in
lude11



eventually a broader range of appli
ations, su
h as a stru
tural understanding of the relationshipbetween Diophantine �niteness and hyperboli
ally, and a `non-abelian extension' of the main ideassurrounding the 
onje
ture of Bir
h and Swinnerton-Dyer.In the meanwhile, it is rather interesting to note the key role played by moduli spa
es of prin
ipalbundles on Spe
(Q) su
h as H1f (�; [�u;Qp1 ( �X; b)℄n):The situation is an appropriate non-abelian 
omplement to the 
lassi
al use of the Ja
obian of a 
urve,and the o

urren
e of related moduli spa
es in the Langlands' program. It appears to have been Andr�eWeil who �rst foresaw su
h possibilities in a remarkable paper of the 1930's, even with no knowledgeof the �etale topology. This is a point of 
onsiderable histori
al interest that will be elaborated uponin a separate le
ture.
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