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The author must confess to having contemplated for some years a diagram of the following sort.

Diophantine geometry

theory of motives anabelian geometry

To a large extent, the investigations to be brought up today arise from a curious inadequacy having to
do with the arrow on the left. On the one hand, it is widely acknowledged that the theory of motives
finds a strong source of inspiration in Diophantine geometry, inasmuch so many of the structures,
conjectures, and results therein have as model the conjecture of Birch and Swinnerton-Dyer, where
the concern is with rational points on elliptic curves that can be as simple as

2% +y® = 1729.

Even in the general form discovered by Deligne, Beilinson, Bloch and Kato, (see, for example, [17]) it is
clear that motivic L-functions are supposed, in an ideal world, to give access to invariants in arithmetic
geometry of a Diophantine nature. The difficulty arises when we focus on the very primitive concerns
of Diophantine geometry, which might broadly be characterized as the study of maps between schemes
of finite type over Z or Q. One might attempt, for example, to define the points of a motive M over
Q using a formula like

Ext'(Q(0), M)

or even

RHom(Q(0), M),

hoping it eventually to be adequate in a large number of situations. However, even in the best of all
worlds, this formula will never provide direct access to the points of a scheme, except in very special
situations like M = H;(A) with A an abelian variety. This is a critical limitation of the abelian
nature of motives, rendering it quite difficult to find direct applications to any mildly non-abelian
Diophantine problem, say that posed by a curve of genus 2. It is worth remarking that this limitation
is essentially by design, since the whole point of the motivic category is to linearize by increasing the
number of morphisms!. Of course we should pause to acknowledge the role of technology that is more
or less motivic in nature within two of the most celebrated Diophantine results of our times, namely
the theorems of Faltings and of Wiles. But there, the idea is to constrain points on a non-abelian
variety by forcing them to parametrize motives of a very special type. The method of achieving this
is highly ingenious in each case and, therefore, underscores our concern that it is rather unlikely to
be part of a general system, and certainly not of the motivic philosophy as it stands.

1Even then, we complain that there are not enough.



Much has been written about the meaning of anabelian geometry, with a general tendency to retreat
to the realm of curves as the only firm ground on which to venture real assertions or conjectures. We
as well will proceed to use X to denote a smooth projective curve of genus at least two over Q. The
basic anabelian proposal then is to replace the Ext group that appeared above by the topological
space

HY(G,n{" (X, D)),

the non-abelian continuous cohomology [35] of the absolute Galois group G = Gal(Q/Q) of Q with
coeflicients in the profinite étale fundamental group of X. The notation will suggest that a rational
basepoint b € X(Q) has been introduced. Many anabelian results do not require it [29], but the
Diophantine issues discussed today will gain in clarity by having it at the outset, even if the resulting
restriction may appear as serious to many. An immediate relation to the full set of points is established
by way of a non-abelian Albanese map

X(Q = HY(G, 78X, b));

@ = [r(X;b, 2)].

We remind ourselves that the definition of fundamental groups in the style of Grothendieck [39]
typically starts from a suitable category over X, in this case that of finite étale covers of

X=X XSpec(@) Spec(Q)

that we might denote by -
Cov(X).

The choice of any point y € X determines a fiber functor
F, : Cov(X) — Finite Sets,
using which the fundamental group is defined to be
i (X, y) = Aut(F),

in the sense of invertible natural transformations familiar from category theory?. Given two points y
and z, there is also the set of étale paths

ﬂ-ft(X;ya Z) = Isom(Fya FZ)

from y to z that the bare definitions equip with a right action of 7{!(X,y), turning it thereby into a
torsor for the fundamental group. When y and z are rational points, the naturality of the constructions
equips all objects with a compatible action of GG, appearing in the non-abelian cohomology set and
the definition of the map k™.

The context should make it clear that H'(G,n$*(X,b)) can be understood as a non-abelian Jaco-
bian in an étale profinite realization, where the analogy might be strengthened by the interpretation
of the G-action as defining a sheaf on Spec(Q) and H'(G, n§!(X, b)) as the moduli space of torsors for

2The reader unfamiliar with such notions would do well to think about the case of a functor
F :N°?—=C

whose source is the category of natural numbers with a single morphism from n to m for each pair m < n. Of course
this is just a sequence
—F(3)—>F(2)—F(1)—>F(0)
of objects in C, and an automorphism of F' is a compatible sequence (g;);en of automorphisms
gi + F(i) ~ F ().

For a general F': B—C, it is profitable to think of 3 as a complicated indexing set for things in C.



7¢t (X, b) in the étale topos of Spec(Q). It is instructive to compare this space with the moduli space
Bun,(X) of rank n vectors bundles on X for n > 2. Their study was initiated in a famous paper of
André Weil [42] whose title suggests the intention of the author to regard them also as non-abelian
Jacobians. Perhaps less well-known is the main motivation of the paper, which the introduction es-
sentially states to be the study of rational points on curves of higher genus. Weil had at that point
already expected non-abelian fundamental groups to intervene somehow in a proof of the Mordell
conjecture, except that a reasonable arithmetic theory of m; was not available at the time. In order
to make the connection to fields of definition, Weil proceeded to interpret the representations of the
fundamental group in terms of algebraic vector bundles, whose moduli would then have the same field
of definition as the curve. In this sense, the paper is very much a continuation of Weil’s thesis [41],
where an algebraic interpretation of the Jacobian is attempted with the same goal in mind, however
with only the partial success noted by Hadamard. The spaces Bun,(X) of course fared no better,
and it is perhaps sensible to ask why. One possibility was suggested by Serre [36] in his summary of
Weil’s mathematical contributions, where he calls attention to the lack of the geometric technology
requisite to a full construction of Bun,,, which was subsequently developed only in the 60’s by Mum-
ford, Narasimhan, Seshadri, and others [27, 30]. However, even with geometric invariant theory and
its relation to 7; completed in the remarkable work of Carlos Simpson [38], there has never been any
direct applications of these moduli spaces (or their cotangent bundles) to Diophantine problems. It is
for this reason that the author locates the difficulty in a far more elementary source, namely, the lack
of an Albanese map to go with Bun,,. Unless n = 1, there is no canonical relation® between Bun,, and
the points on X. It is fortunate then that the étale topology manages to provide us with two valuable
tools, namely, topological fundamental groups that come with fields of definition; and topological
classifying spaces with extremely canonical Albanese maps. We owe this to a distinguished feature of
Grothendieck’s theory: the flexible use of basepoints, which are allowed to be any geometric point at
all. The idea that Galois groups of a certain sort should be regarded as fundamental groups is likely
to be very old, as Takagi[16] refers to Hilbert’s preoccupation with Riemann surfaces as inspiration
for class field theory. Indeed, it is true that that the fundamental group of a smooth variety V will
be isomorphic to the Galois group Gal(k(V)™" /k(V)) of a maximal unramified extension k(V)"" of
its function field k(V'). However, this isomorphism will be canonical only when the basepoint is taken
to be a separable closure of k(V') that contains k(V)"":

b : Spec(k(V)*)—Spec(k(V)"")—Spec(k(V))—V.

Within the Galois group approach, there is little room for small basepoints that come through rational
points, or a study of variation. In fact, there seems to be no reasonable way to fit path spaces at all
into the field picture. This could then be described as the precise ingredient missing in the arithmetic
theory of fundamental groups at the time of Weil’'s paper. Even after the introduction of moving
basepoints, appreciation of their genuine usefulness appears to have taken some time to develop. A
rather common response is to pass quickly to invariants or situations where the basepoint can be safely
ignored. The author for example came to appreciate the basepoint as a variable only after reading
Professor Deligne’s paper written in the 80’s [7] as well as the papers of Hodge-theorists like Dick
Hain [15].
One way to visualize path spaces is to consider a universal (pro-)cover

X — X

The choice of a lifting be ):(b turns the pair into a universal pointed covering space. The uniqueness
then allows us to descend to QQ, while the universal property determines canonical isomorphisms

):(m ~ i (X;b, x),

31t is conceivable that the theory of Hecke correspondences can be employed to establish the link.



so that the Galois action can be interpreted using the action on fibers* . This is one way to see that
the map k™ will never send x # b to the trivial torsor, that is, a torsor with an element fixed by
G, since, by the Mordell-Weil theorem, nothing but the basepoint will lift rationally even up to the
maximal abelian quotient of X. A change of basepoint® then shows that the map must in fact be
injective. That is, we have arrived at the striking fact that points can really be distinguished through
the associated torsors®. In elementary topology, one encounters already the warning that such path
spaces are isomorphic, but not in a canonical fashion. The distinction may appear pedantic until one
meets such enriched situations as to endow the torsors with the extra structure necessary to make
them genuinely different.
The remarkable section conjecture of Grothendieck [14] proposes that £™* is even surjective:

X(Q) ~ HY(G,n{"(X, b)),
that is,

every torsor should be a path torsor.

The reader is urged to compare this conjecture with the assertion that the map
E(Q) ~ Hy(G,n{"(E,¢)),

from Kummer theory is supposed to be bijective for an elliptic curve (E,e). A small difference has
to do with the local ‘Selmer’ conditions on cohomology indicated by the subscript ‘f’, which the
complexity of the non-abelian fundamental group is supposed to render unnecessary. This is a subtle
point on which the experts seem not to offer a consensus. Nevertheless, the comparison should make it
clear to the newcomer that a resolution of the section conjecture is quite unlikely to be straightforward,
being, as it is, a deep non-abelian incarnation of the principle that suitable conditions on a Galois-
theoretic construction should force it to ‘come from geometry’”. And then, the role of this bijection
in the descent algorithm for elliptic curves might suggest a useful Diophantine context for the section
conjecture [22]. Yet another reason for thinking the analogy through is a hope that the few decades
worth of effort that went into the study of Selmer groups of elliptic curves might illuminate certain
aspects of the section conjecture as well, even at the level of concrete technology.

Our main concern today is with a version of these ideas where the parallel with elliptic curves
is especially compelling, in that a good deal of unity between the abelian and non-abelian realms is
substantially realized. This is when the profinite fundamental group is replaced by the motivic one
[7]: B

M(X,b).

4The difficult problem of coming to actual grips with this is that of constructing a cofinal system making up Xina
manner that makes the action maximally visible. Consider G, or an elliptic curve.
50ne needs here the elementary fact that an isomorphism of torsors

m1(X;b,2) ~ m(X;b,9)

is necessarily induced by a path F ~ Fy.

61t is however, quite interesting to work out injectivity or its failure for quotients of fundamental groups corresponding
to other natural systems, like modular towers. Alternatively, one could use the full fundamental group for a variety
where the answer is much less obvious, like a moduli space of curves.

7This notion in abelian settings coincides roughly with ‘motivic.’



The motivic fundamental group lies between the profinite 77 and homology in complexity:

#1(X,b)

although it should be acknowledged right away that it is much closer to the bottom of the hierarchy.
The precise meaning of ‘motivic’ should not worry us here more than in other semi-formal expositions
on the subject, since we will regress quickly to the rather precise use of realizations. But still, some
inspiration may be gather by the rather ghostly presence of a classifying space

Hyy (G, m" (X, b))
of motivic torsors as well that of a motivic Albanese map
M X(Q) — Hy (G (X, b))
that associates to points motivic torsors
aM(X;b,x)

of paths. The astute reader will object that we are again using the points of X to parametrize motives
as in the subterfuge of Parshin and Frey, to which we reply that the current family is entirely intrinsic
to the curve X, and requires no particular ingenuity to consider.

When it comes to precise definitions [20, 21], that we must (alas!) inflict upon the reader in a
rapid succession of mildly technical paragraphs, the most important (Tannakian) category

Un(X,Q,)

consists of locally constant unipotent Q,-sheaves on X, where a sheaf is unipotent if it can be con-
structed using successive extensions starting from the constant sheaf [Q,] . As in the profinite theory,
we have a fiber functor

F, : Un(X,Q,)— Vectg,

that associates to a sheaf V its stalk Vp, which has now acquired a linear nature. The Q,-pro-unipotent
étale fundamental group is defined to be

U:= wlu’Qp (X,b) := Aut®(Fy),

the tensor-compatible® automorphisms of the fiber functor, which the linearity equips with the added
structure of a pro-algebraic pro-unipotent group over Q,. In fact, the descending central series filtra-
tion

U=U'DU*DU°>---

yields the finite-dimensional algebraic quotients
U, =U"TNU,
at the very bottom of which is an identification

Uy = H{N(X,Qp) = Vpd =T, @ Q,

8To see the significance of this notion, one should consider the group algebra C[G] of a finite group G. On the
category Repg(C) of G-representations on complex vector spaces, we have the fiber functor that forgets the G-action.
Any unit in C[G] defines an automorphism of this functor, while the elements of G will then be picked out by the
condition of being tensor-compatible.



with the Qp-Tate module of the (abelian) Jacobian J of X. The different levels are connected by
exact sequences
0—U"™TN\U"—=U,—U,_1—0

that add the extra term U™T1\U™ at each stage, which, however, is a vector group that can be
approached with rather conventional techniques. In fact, the G-action on U lifts the well-studied one
on V =V, J, and repeated commutators come together to a quotient map

V®n s (J?%i»l\[]’n,7

placing the associated graded pieces into the category of motives generated by J. The inductive
pattern of these exact sequences is instrumental in making the unipotent completions considerably
more tractable than their profinite ancestors.

We will again denote by H' (G, U,,) continuous Galois cohomology with values in the points of U,,.
For n > 2, this is still non-abelian cohomology, and hence, lacks the structure of a group. Nevertheless,
the proximity to homology is evidenced in the presence of a remarkable subspace

H{(G,U,) C H'(G,Uy)
defined by local ‘Selmer’ conditions® that require the classes to be

(a) unramified outside T = S U {p}, where S is the set of primes of bad reduction;

(b) and crystalline at p, a condition coming from p-adic Hodge theory.

The locality of the conditions refers to their focus on the pull-back of a torsor for U to the completed
fields Spec(Qy). Forl ¢ T, (a) requires the torsor to trivialize over an unramified extension of Q;, while
condition (b) requires it to trivialize over Fontaine’s ring B, of crystalline periods [8]. One could
equivalently describe the relevant torsors as having coordinate rings that are unramified or crystalline
as representations of the local Galois groups.

Quite important to our purposes is the algebraicity of the system

oo = H} (G, Uny1)—H (G, Un)—H} (G, Up—1)— - - .

This is the Selmer variety of X. That is, each H%(G, U,) is an algebraic variety over Q, and the
transition maps are algebraic, so that

Hj(G,U) = {H}(G,Un)}

is now a moduli space very similar to the ones that come up in the study of Riemann surfaces [11],
in that it parametrizes crystalline principal bundles for U in the étale topology of Spec(Z[1/5]). By
comparison H'(G,7¢*(X,b)) has no apparent structure but that of a pro-finite space: the motivic
context has restored some geometry!? to the moduli spaces of interest. The algebraic structure is best
understood in terms of Gy = Gal(Qr/Q), where Qr is the maximal extension of Q unramified outside
T. Our moduli space H}(G, U,) sits inside H'(Gr,U,) as a subvariety defined by the additional
crystalline condition. For the latter, there are sequences

0—HY Gy, U™ N\UY) = HY(Gr, Up)—H (Grp, Un_1) 225"

H2(GT, Un-l—l\Un)

exact in a natural sense, and the algebraic structures are built up iteratively from the Q,-linear
structure on the .
HZ(GT, Un-‘rl\Un)

9Starting at this point, one should take p to be a prime of good reduction for X, even though an extension of the
theory to the general case should be straightforward.

10¢Coefficient geometry,” one might say, in contrast to Bumn,, which carries the algebraic geometry of the field of
definition.



using the fact that the boundary maps §, 1 are algebraic!. That is, H*(G7,U,) is inductively
realized as a torsor for the vector group H'(Grp, U"1\U™) lying over the kernel of 6,,_1.
It should comes as no surprise at this point that there is a map

k¥ ={r¥}: X(Q) — H}(G, U)
associating to a point x the principal U-bundle
P(z) = wqf’Qp (X;b,z) := Isom®(Fy, F,)

of tensor-compatible isomorphisms from F;, to Fj, that is, the Q,-pro-unipotent étale paths from b to
z. This map is best viewed as a tower:

HY(G,Uy)
}
HHG,Us)
}
HY(G, Uz)

}
H{(G,Ui)= H}(G, T, ®Qp).

Forn =1,
kY X(Q)—H (G, Uy) = HH G, T,J ® Q)

reduces to the map from Kummer theory. But the maps ¥ for n > 2, much weaker as they are than
the k™* discussed in the profinite context, still do not extend to cycles in any natural way, and hence,
retain the possibility of separating the structure? of X (Q) from that of Jx (Q).

Restricting U to the étale site of ,, there are local analogues

Fopn X(Qp)_’H}(Gpv Un)

p

that can be described explicitly (and rather surprisingly) using non-abelian p-adic Hodge theory. More
precisely, there is a compatible family of isomorphisms

D: H{(Gp,Uy) ~ UPR/F°
to homogeneous spaces for the De Rham fundamental group
UPE = 7PR(X @ Q,,b)
of X ® Q. Here, UPE classifies unipotent vector bundles with flat connections on X ® Qp, while
UDR /o

is a moduli space for UPP-torsor that carry compatible Hodge filtrations and Frobenius actions, the
latter being obtained from a comparison isomorphism®® with the crystalline fundamental group and
path torsors associated to a reduction modulo p. The advantage of the De Rham realization is its

11 The reader is warned that it is non-linear in general.

121t might be suggested, only half in jest, that the Jacobian, introduced by Weil to aid in the Diophantine study of a
curve, has been getting in the way ever since.

13That is to say, if X denotes a smooth and proper Zp-model of X ® Qp, the category of unipotent vector bundles
with flat connections on X ® Qp is equivalent to the category of unipotent convergent isocystals on X' ®z, Fp. This
comparison is the crucial ingredient in defining p-adic iterated integrals [10].



expression as a p-adic homogenous space whose form is far more transparent than that of Galois
cohomology. The map D (for Dieudonné, as in the theory of p-divisible groups) associates to a
crystalline principal bundle P = Spec(P) for U, the space

D(P) = Spec([P ® B.,]").
This ends up as a UPE-torsor with Frobenius action and Hodge filtration inherited from that of B.,.
The compatibility of the two constructions is expressed by a diagram

’{na
X(Q,) -+ H}G,, V)
’2@
. D
UDR/FO

whose commutativity amounts to the non-abelian comparison isomorphism [31]

PR(X ® Qp; b, ) @ Bep wlu’Qp (X;b,2) ® Ber.

The explicit nature of the map
ng/cr : X(Qp)_’UDR/Fov

is a consequence of the p-adic iterated integrals'* [10]

z
b

that appear in its coordinates. This expression endows the map with a highly transcendental nature:
for any residue disk |y[C X (Q,),

DR /120
H’gr/cr,n(]y[) - Un /F
is Zariski dense for each n, and is made up of non-zero convergent power series that are obtained

explicitly as repeated anti-derivatives starting from differential forms on X.
Finally, the local and global constructions fit into a family of commutative diagrams

X(Q) X(Qp)

loc, D
H}(G,Up) —* H}(Gp,Un) — UPT/FP
where the bottom horizontal maps are algebraic and the vertical maps transcendental. Thus, the
difficult inclusion X (Q) C X (Q,) has been replaced by the map'® log, := D oloc,, whose algebraicity
gives a glimmer of hope that the arithmetic geometry can be understood and controlled.
The following result is basic to the theory.

Theorem 1 Suppose
log,(H (G, Uy)) Cc UPR/F°

is not Zariski dense for some n. Then X (Q) is finite'®.

14Special values of such integrals have attracted attention because of the connection to values of L-functions. Here
we are interested primarily in the integrals themselves as analytic functions, and in their zeros.

15The strange notation is comes the view that D is itself a log map, according to Bloch and Kato [2].

16Professor Serre would object that the theorem is trivially true since X (Q) is finite. The author offers no defense.



The proof of this assertion in its entirety is captured by the diagram

u u
Kn Kdr/cr,n

log,,
HY(G,U,) =& UPR/Fo

3p£0

Qp

indicating the existence of a non-zero algebraic function ¢ vanishing on logp(Hjlc (G,U,)). Hence, the
function ¢ o kg, .., on X (Qp) vanishes on X (Q). But this function is a non-vanishing convergent
power series on each residue disk, which therefore can have only finitely many zeros. O.

A slightly more geometric account of the proof might point to the fact that the image of X(Q,)
in UPR/FO is a space-filling curve, with no portion contained in a proper subspace. Hence, its
intersection with any proper subvariety must be discrete. Being compact as well, it must then be
finite!”. Serge Lang once proposed a strategy for proving the Mordell conjecture by deducing it from
a purely geometric hope that the complex points on a curve of higher genus might intersect a finitely
generated subgroup of the Jacobian in finitely many points. While that idea turned out to be very
difficult to realize, here we have a non-Archimedean analogue, wtih UP%/F° playing the role of the
complex Jacobian, and the Selmer variety that of the Mordell-Weil group.

The hypothesis of the theorem on non-denseness of the global Selmer variety is expected always
to hold for n large, in that we should have [21]

dimH }(G,Uy,) << dimU} "/ F°.

(Recall that the map log,, is algebraic.) Such an inequality follows, for example, from the reasonable
folklore conjecture that
Hj(G,M) =0

for a motivic Galois representation'® M of weight > 0. This, in turn, might be deduced from the
conjecture of Fontaine and Mazur on Galois representations of geometric origin [9], or from portions
of the Bloch-Kato conjecture'® [2]. The point is that if we recognized the elements of H}(G, M)
themselves to be motivic, then the vanishing would follow from the existence of a weight filtration.
Thus instead of the implication

Non-abelian ‘finiteness of III’ (= section conjecture) = finiteness of X (Q).
expected by Grothendieck, we have

‘Higher abelian finiteness of ITI’ (that H (G, M) is generated by motives)= finiteness of
X(Q).

This is not the only place that our considerations revolve around pale shadows of the section conjecture.
One notes for example, the critical use of the dense image of &}, Jer which could itself be thought of
as an ‘approximate local section conjecture.’

17This proof, involving a straightforward interplay of denseness, non-denseness, and compactness, is a curious avatar
of some ideas of Professor Deligne relating the section conjecture to Diophantine finiteness.

181t suffices here to take M to be among the motives generated by H'(X).

19We thus have reason, in the manner of physicists, to regard Theorem 1 as good news for mixed motives, in that
highly non-trivial real phenomena are among the corollaries of their theory. A small counterpoint to the pessimistic
view of Professor Serre.



In spite of all such lucubrations (that fascinate the author and quite likely no one else), we must
now face the plain and painful fact that an unconditional proof of the hypothesis for large n (and hence,
a new proof of finiteness) can be given only in situations where the image of G inside Aut(H;(X,Z,))
is essentially abelian. That is, when

-X is an affine hyperbolic of genus zero (say P*\ {0, 1, 00}) [20];
-X = E\ {e} for an elliptic curve F with complex multiplication [23];
-(with John Coates) X is compact of genus > 2 and the Jacobian J factors into abelian

varieties with potential complex multiplication [3].

The first two cases require a rather obvious modification tailored to the study of integral points, while
the two CM cases require p to be split inside the CM fields. Given the intermediate state of the
purported application, the reason for persevering in an abstruse investigation of known results might
seem obscure indeed. We will return to this point towards the end of the lecture, side-stepping the
issue for now in favor of a brief sketch of the methodology, confining our attention to the third class
of curves.

There is a pleasant quotient?’

U—= W :=U/[[UU],IUU]|
of U that allows us to extend the key diagrams.
X(Zs) —— X(Zy)

loc,
HNG,Un) ~2% HNG,, Un) 2> UPR/F

loc, D
Hi(G,Wy) —+ H}(Gp, Wy) — WPT/FO

The structure of W turns out to be much simpler than that of U, and we obtain the following result.

Theorem 2 (with John Coates) Suppose J is isogenous to a product of abelian varieties having
potential complex multiplication. Choose the prime p to split in all the CM fields that occur. Then

dimH [ (G, W) < dimW,”"/F°
for n sufficiently large.

The non-denseness of logp(H} (G,U)) is an obvious corollary.
We give an outline of the proof assuming .J is simple. Since

dimH {(G, W,) < dimH " (Gr, W),

it suffices to estimate the dimension of cohomology with restricted ramification. Via the exact se-

quences
0—HY(Gp, W N\W™) = HY(Gr, W)= H (G, W, _1)

the estimate can be reduced to a sum of abelian ones:

dimH" (Gp, W,) <> dimH" (G, WH\WY).
i=1

20For P!\ {0, 1, 00}, such quotients came up in the process of isolating (simple-)polylogarithms [1].

10



The linear representations W1\ W? come with Euler characteristic formulas?! [28]:
dimH® (G, WTN\W) — dimH (G, WHT\W)
+dimH? (G, WHN\W?) = —dim[WHH\W?)|~
out of which the H° term always vanishes, leaving
dimHY (G, WTN\W?) = dim[WHN\W~ + dimH? (G, WHHN\WH).

The comparison with the topological fundamental group of X (C) reveals U to be the unipotent
completion of a free group on 2¢g generators modulo a single relation. This fact can applied to
construct a Hall basis for the Lie algebra of W [33], from which we get an elementary estimate

- i [ . n—2g n29—1y.
> dmli W < (29 = /2 + 06

Similarly, on the De Rham side the dimension

dimWPE/FO = W, /FO + Z dim[WW PR+ 1\ jy DR
1=3

can easily be bounded below by

(29— 2) 0+ 0 ),

Hence, since g > 2, we have
> dimWHNW T << dimW,2 R/ FO.
i=1

Therefore, it remains to show that

> dimH?(Gp, WH\WY) = O(n* ).
i=1
Standard arguments with Poitou-Tate duality?? [28] eventually reduces the problem to the study of

Homp[M(—1), > [WI\W*]
=1

where

-F contains Q(J[p]) and is a field of definition for all the complex multiplication;

-I' = Gal(F / F) for the field

Foo = F(J[p™])
generated by the p-power torsion of J;
-and

M = Gal(H/Fy)
is the Galois group of the p-Hilbert class field H of F.

21The minus sign in the superscript refers to the negative eigenspace of complex conjugation. This has roughly half
the dimension of the total space, and ends up unduly important to our estimates.
22which switches the focus from H? to H' at the cost of dealing with some insignificant local terms

11



Choosing an annihilator?
LeN =7, ~Z,[[Th,Ts,...,Tay]

for M(—1) in the Iwasawa algebra, we need to count its zeros among the characters that appear in

n

i=1
If{¢;}29, are the characters that make up H'(X,Q,), the characters in [Wit1\W|* are a subset of
Vi 5 Vjs -+ Vi

where j1 < jo > j3 > -+ > j;. After a change of variables, a lemma of Greenberg [13] allows us to
assume a form
L = ao(Tl, . ,ngfl) =+ al(Tl, ceey TQQ,l)ng +

+al_1(T1, e ,ng_l)Tzl;I + T2lg,

a polynomial in T5,. We can estimate the number of zeros by considering instead the 2g—1 polynomials
obtained by fixing the index j;, and counting their zeros among the set of 1,1, - - -9, with jo >
j3 > -+ > j;. Asiruns from 1 to n, the multi-indices in the exponents of

mi 1/1512 . wm2g

that occur are among the integer points in a simplex of side length n — 1 in a space of dimension 2g.
But then, since the coefficients a; depend only on the projection of these integer points to a simplex
of one smaller dimension, and the number of zeros lying above each such point is at most [, the total
number of zeros is O(n?971). Since M(—1) is A—finitely-generated, we deduce the bound

Homrp[M ,Z [WHFN\W*] = O(n?971)
i=1

desired. O

We have now set up the first genuine occasion to motivate our constructions. The annihilator £
is a version of an algebraic p-adic L-function controlling the situation. It is therefore of non-trivial
interest that the sparseness of its zeros is responsible for the finiteness of points. The parallel with
the case of elliptic curves [5, 18, 26, 34] might be seen clearly by comparing the implications

non-vanishing of L = control of Selmer groups = finiteness of points
familiar from the arithmetic of elliptic curves to the one given:
sparseness of L-zeros = control of Selmer varieties = finiteness of points.

As promised, the motivic fundamental group has provided a natural thread linking abelian and non-
abelian Diophantine problems.

We remark that the non-CM case could proceed along the same lines, except that the group I'" and
hence, the corresponding Iwasawa algebra is non-abelian. But the fact remains that the estimate

dimHom (M, @7, W I\W*) = O(n?971)

is sufficient for the analogue of Theorem 2, and hence, for the finiteness of points. The representation
W\ W is a subquotient of the more familiar one

(AQVP) ® (Symi72Vp)

23provided by a theorem of Greenberg [12]
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and the difference in dimensions is likely to count for very little in the coarse estimates. It might
therefore be easier to work with

Homy [M, ®7=2(A%V,) ® (Sym'V},)].

Otmar Venjakob [40] has shown that M is locally torsion, so that a generating set {mi, ma,...,mg}
for M determines for each i a non-commutative power series f; € A annihilating m;. We must then
count the non-abelian zeros** of f;, that is, the representations containing vectors annihilated by f;
among the irreducible factors of 7= 2(A%V,) ® (Sym'V},).

John Coates has stressed the role played by the ideal class group M in this picture, which is a
priori smaller than the Iwasawa module relevant to elliptic curves. The reason that ramification at p
can be ignored for now is that the local contribution at p is also of lower order as a function of n. For
the Diophantine geometry of abelian fundamental groups, however, the option of passing to large n
is absent. One is tempted to offer this as a kind of explanation for the infinitely many rational points
that can live on an elliptic curve.

Some preliminary evidence at present suggests another reason to pursue a 7; approach to finiteness
[24]. This is the possibility that the function ¢ occurring in the proof of theorem 1 can be made explicit,
leading to analytic defining equations for

X(Q) € X(Qy)-

For one thing, the map
log, : Hj(G,Uy,)—UP"/F°

occurs in the category of algebraic varieties over Q,, and is therefore amenable (in principle) to
computation [6, 32]. Whenever the map itself can be presented, the computation of the image is then
a matter of applying standard algorithms. A genuinely feasible approach, however, should be effected
by the cohomological construction of a function i as below that vanishes on global classes.

X(Qp)

D
H}'(Gv Up) —* H}(G;DvUn) - Ur?R/FO

Qp

That is, once we have ¥, we can put
¢p=1oD,
a function whose precise computation might be regarded as a ‘non-abelian explicit reciprocity law.’

The vanishing itself should be explained by a local-to-global reciprocity, as in the work of Kolyvagin,
Rubin, and Kato on the conjecture of Birch and Swinnerton-Dyer [26, 34, 18].

24 As noted by Mahesh Kakde, it would be nice to know enough to formulate this in terms of a characteristic element
f € K1(Ag~) for M, whereby the count will be of irreducible representations p : I'=N for which f(p) = 0 [4].
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These speculations are best given substance with an example, albeit in an affine setting. Let
X = E\ {e}, where E is an elliptic curve of rank 1 with III(E)[p>] = 0. The significance of the
hypotheses is that the Q, localization map is bijective on points,

locy : E(Q) ® Qp ~ Hj(Gy, Vp(E)),
and the second cohomology with restricted ramification vanishes:
Hz(GT7 V;D(E)) =0.

We will construct a diagram:

Qp.

using just the first non-abelian level Us of the unipotent fundamental group. We have introduced here

a refined Selmer variety H})Z(G, Us) consisting of classes that are actually trivial at all places | # p.

It is a relatively straightforward matter to show that the integral points land in this subspace [25].
The relevant structure now is a Heisenberg group

0-Qp(1)—=Uz—V,—0,
that we will analyze in terms of the corresponding extension of Lie algebras
0—Qp(1)— Ly—V,—0.
Conveniently, at this level, the Galois action on Ls splits?®:
Ly=V, & Qp(l)a

provided we use a tangential base-point at the missing point e. With the identification?® of U, and
Lo, non-abelian cochains can be thought of as maps

giGp—>L2

and expressed in terms of components £ = (£1,&) with respect to the decomposition. The cocycle
condition in these coordinates reads”

d& =0, dé = (-1/2)[&, &)

25This uses the multiplication by [—1], as in Mumford’s theory of theta functions.

26For unipotent groups, the power series for the log map stops after finitely many terms, defining an algebraic
isomorphism. The group then can be thought of as the Lie algebra itself with a twisted binary operation given by the
Baker-Campbell-Hausdorff formula [37].

27In his book on gerbes, Breen emphasizes the importance of a familiarity with the ‘calculus of cochains.” Indeed, the
typical number-theorist will be quite anxious about non-closed cochains like £5. Unfortunately, they are as unavoidable
as the components of connection forms in non-abelian gauge theory, which obey complicated equations even when the
connections themselves are closed in a suitable sense.
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Define
$(€) = [locy(), &1] = 2log xp U & € H?(Gp, Qp(1)) = Qp,

where
log xp : Gp—Qp
is the logarithm of the Qp-cyclotomic character and z is a global solution, to the equation

dx =log xp U&:.

The equation makes sense on G since both x, and &; have natural extensions to global classes, while
the non-trivial existence of the global solution

z: Gr—=V,

is guaranteed by the aforementioned vanishing of H2. One checks readily that (£) is indeed a
2-cocycle whose class is independent of the choice of .

Theorem 3 v vanishes on the image of
locy, H}Z(G, UQ)HH}(GP, Us).
The proof is a simple consequence of the standard reciprocity sequence
0—H*(Gr, Qp(1))— @ver H*(Gu, Qp(1))—Qp—0.

The point is that if £ is global then so is ¢(£). But this class has been constructed to vanish at all
places | # p. Hence, it must also vanish at p.

An explicit formula on the De Rham side in this case is rather easily obtained. Choose a Weierstrass
equation for F and let

a=dzx/y, [ =axdzx/y.

toga(z)i= [ v logg(e)i= [ 5,

Da(z) == /bz af,

Define

via (iterated) Coleman integration.

Corollary 4 For any two points y,z € X(Z) C X(Zy), we have

log? (y)(D2(z) — log,,(2) logs(2)) = log2 (2)(D2(y) — log, () logs ().

The proof uses an action of the multiplicative monoid @, on H }(G ,Usa) that covers the scalar multi-
plication on E(Q) ® Q,. That is,
A (51752) = ()\517 A2§2)'

Evaluating ¢ on the class

log,, (2)r3 (y) — log, (y)r3 () € H}(Gp, U\U?)

leads directly to the formula displayed. The harmonious form of the resulting constraint is perhaps
an excuse for some general optimism. Of course, as it stands, the formula is useful only if there is a
point y of infinite order already at hand. One can then look for the other integrals points in the zero
set of the function

Ds(y) — log, (y) logs(y)
log? (y)

Dy(z) — log, (2)logs(2) — ( ) log? (=)
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in the coordinate z.

The meaning of the construction given is not yet clear to the author, even as some tentative avenues
of interpretation are opening up quite recently. If the analogy with the abelian case is to be taken
seriously, ¢ should be a small fragment of non-abelian duality in Galois cohomology?®. For the abelian
quotient, one has the usual duality

H' (G, V) x H'(Gy, V(1)) —= H?*(Gp, Q,(1)) = Qp
with respect to which H}(Gp, V) and H} (Gp,V*(1)) are mutual annihilators. We take the view that
HY (G, V*(1)/H§(Gp, V(1))

is thereby a systematic source of functions on H}(GP,V), which can then be used to annihilate
global classes when the function itself comes from a suitable class? in H*(G, V*(1)). After a minimal
amount of non-commutativity has been introduced, our v is exactly such a global function on the local
cohomology H} (Gp,Usz) that ends up thereby annihilating the Selmer variety. The main difficulty is
that we know not yet a suitable space in which v lives. Allowing ourselves a further flight of fancy,
the elusive function in general might eventually be the subject of an Iwawasa theory rising out of a
landscape radically more non-abelian and non-linear than we have dared to dream of thus far [19].

It has been remarked that the title of this lecture was chosen to be maximally ambiguous. Notice,
however, that Galois theory in dimension zero, according to Galois, proposes groups as structures
encoding the Diophantine geometry of equations in one variable. The proper subject of Galois theory
in dimension one should then be a unified network of structures relevant to the Diophantine geometry
of polynomials in two variables. Included therein one may find the arithmetic fundamental groups,
motivic L-functions of weight one, and moduli spaces of torsors that have already proved their scattered
usefulness to the trade3’. The picture as a whole is blatantly far from clear, coherent, or complete at
this stage 3.
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