Galois Theory and Diophantine geometry 4

Minhyong Kim

August, 2009

Cambridge

Main objects:

- $G=\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$.
- (X, b) : Smooth projective pointed curve of genus $g \geq 2$ over \mathbb{Q} with good reduction outside S.
- $T=S \cup\{p\}$ for a prime $p \notin S$.
- $U: \mathbb{Q}_{p}$-pro-unipotent étale fundamental group of $\bar{X}=X \otimes \overline{\mathbb{Q}}$ with base-point b.
- $U^{1}=U, U^{n+1}=\left[U, U^{n}\right], U_{n}=U^{n+1} \backslash U$.
- $H_{f}^{1}(G, U):$ moduli space of crystalline principal U-bundles on $\operatorname{Spec}(\mathbb{Z}[1 / T])$.

Construction of U :
Start with $\pi=\pi_{1}^{p}(\bar{X}, b)$, the pro- p étale fundamental group of \bar{X} and consider

$$
\mathbb{Z}_{p}[[\pi]]:={\underset{H}{\overleftrightarrow{H}}}_{\lim _{p}} \mathbb{Z}_{p}[H],
$$

where H runs over the finite quotient groups. Let $I \subset \mathbb{Z}_{p}\left[\left[\pi_{1}\right]\right]$ be the augmentation ideal, and consider the pro-algebra

$$
\mathbb{Q}_{p}[[\pi]]:=\left(\left(\mathbb{Z}_{p}[[\pi]] / I^{n}\right) \otimes \mathbb{Q}_{p}\right)_{n \in \mathbb{N}}
$$

and the map of pro-algebras

$$
\Delta: \mathbb{Q}_{p}[[\pi]] \rightarrow \mathbb{Q}_{p}[[\pi]] \otimes \mathbb{Q}_{p}[[\pi]]
$$

induced by the map $g \rightarrow g \otimes g$.
Then

$$
U:=\left\{x \in \mathbb{Q}_{p}[[\pi]]^{\times}: \Delta(x)=x \otimes x\right\} .
$$

Action of G on π factors through $G_{T}=\operatorname{Gal}\left(\mathbb{Q}_{T} / \mathbb{Q}\right)$ where \mathbb{Q}_{T} is the maximal extension of \mathbb{Q} unramified outside T. Induces action of G_{T} on U and each of the U_{n}. Can consider

$$
H^{1}\left(G_{T}, U_{n}\right),
$$

the continuous cohomology of G_{T} with values in U_{n}, and

$$
H^{1}\left(G_{T}, U\right):=\lim _{\rightleftarrows} H^{1}\left(G_{T}, U_{n}\right) .
$$

Choose an embedding $\overline{\mathbb{Q}} \hookrightarrow \overline{\mathbb{Q}}_{p}$, inducing $G_{p}:=\operatorname{Gal}\left(\overline{\mathbb{Q}}_{p} / \mathbb{Q}_{p}\right) \rightarrow G_{T}$ and the localization map

$$
\operatorname{loc}_{p}: H^{1}\left(G_{T}, U\right) \rightarrow H^{1}\left(G_{p}, U\right)
$$

There is the subset

$$
H_{f}\left(G_{p}, U\right) \subset H^{1}\left(G_{p}, U\right)
$$

consisting of classes that trivialize under the map

$$
H^{1}\left(G_{p}, U\right) \rightarrow H^{1}\left(G_{p}, U\left(B_{c r}\right)\right),
$$

and

$$
H_{f}(G, U):=\operatorname{loc}_{p}^{-1}\left(H_{f}^{1}\left(G_{p}, U\right)\right) \subset H^{1}\left(G_{T}, U\right) .
$$

Path torsors:
For any other $x \in X(\mathbb{Q})$, need also the space $P(x)$ of \mathbb{Q}_{p}-unipotent étale paths from b to x.

Constructed from the torsor

$$
\pi_{1}^{p}(\bar{X} ; b, x)
$$

of pro- p étale paths by push-out:

$$
P(x):=\pi_{1}^{p}(\bar{X} ; b, x) \times_{\pi} U
$$

Equipped with a U-action

$$
P \times U \rightarrow P
$$

and a compatible action of G_{T}.
Sometimes useful to think in terms of the sheaf E on \bar{X} associated with the representation $\mathbb{Q}_{p}[[\pi]]$ of π (multiplication on the left). There is a map

$$
\Delta: E \rightarrow E \otimes E
$$

induced by the map of representations, so that we can consider the sheaf P of group-like elements in E. Then $P(x)=P_{x}$.

That is, P is actually a principal U-bundle on X

$$
\begin{gathered}
P \\
\downarrow \\
X
\end{gathered}
$$

and using a point

we can pull-back to a sheaf $P(x)=x^{*} P$ on $\operatorname{Spec}(\mathbb{Q})$.

The sheaf P extends to a $\mathbb{Z}[1 / T]$-model for X, so that the sheaf $P(x)$ extends to $\operatorname{Spec}(\mathbb{Z}[1 / T])$. They are also all crystalline at p, giving rise to a map

$$
\begin{aligned}
X(\mathbb{Q}) & \longrightarrow H_{f}^{1}(G, U) ; \\
x & \mapsto[P(x)] ;
\end{aligned}
$$

the unipotent Albanese map with target the Selmer variety of X. Fundamental diagram:

Basic fact:
If $\operatorname{loc}_{p}\left(H_{f}^{1}\left(G, U_{n}\right)\right) \subset H_{f}^{1}\left(G_{p}, U_{n}\right)$ is non-dense, then $X(\mathbb{Q})$ is finite.

Key point: There is a non-zero algebraic function ψ

vanishing on the image of loc_{p}. So its pull-back to $X\left(\mathbb{Q}_{p}\right)$ vanishes on $X(\mathbb{Q})$, but can be shown to have finitely many zeros.

At present, can show non-denseness of loc_{p} for $n \gg 0$ when the image of G in $\operatorname{Aut}\left(U_{1}\right)=\operatorname{Aut}\left(V_{p}\left(J_{X}\right)\right)$ is essentially abelian, using the sparseness of zeros of an 'algebraic p-adic L-function.'

However, this approach only shows the existence of a ψ.
Basic question remains of producing natural functions on $H_{f}^{1}\left(G_{p}, U_{n}\right)$, perhaps in a manner reminiscent of functions on moduli spaces of principal bundles in complex geometry.

Note that one can describe many 'local' functions on $H_{f}^{1}\left(G_{p}, U_{n}\right)$ obtained via

$$
H_{f}^{1}\left(G_{p}, U_{n}\right) \simeq U^{D R} / F^{0}
$$

that restrict to iterated integrals on $X\left(\mathbb{Q}_{p}\right)$. But we need to produce functions of a global nature directly on $H_{f}^{1}\left(G_{p}, U_{n}\right)$, whose explicit form can then be computed using the comparison isomorphism.

Why functions of 'a global nature'?
Consider the case of an elliptic curve (E, e), for which $U=U_{1}=V_{p}(E)$. One has local duality:

$$
<\cdot, \cdot>: H^{1}\left(G_{p}, V\right) \times H^{1}\left(G_{p}, V^{*}(1)\right) \rightarrow H^{2}\left(G_{p}, \mathbb{Q}_{p}(1)\right) \simeq \mathbb{Q}_{p}
$$

making $H^{1}\left(G_{p}, V^{*}(1)\right)$ into a source of functions on $H^{1}\left(G_{p}, V\right)$. More precisely,

$$
H^{1}\left(G_{p}, V^{*}(1)\right) / H_{f}^{1}\left(G_{p}, V^{*}(1)\right)
$$

gives functions on $H_{f}^{1}\left(G_{p}, V\right)$. Functions of a global nature come from the map

$$
p r \circ \operatorname{loc}_{p}: H^{1}\left(G_{T}, V^{*}(1)\right) \rightarrow H^{1}\left(G_{p}, V^{*}(1)\right) / H_{f}^{1}\left(G_{p}, V^{*}(1)\right)
$$

The significance of such functions is the following:
Suppose there exists $\alpha \in H^{1}\left(G_{T}, V^{*}(1)\right)$ such that $p r \circ \operatorname{loc}_{p}(\alpha) \neq 0$. Then $E(\mathbb{Q})$ is finite.

Proof: The function $<\operatorname{loc}_{p}(\alpha), \cdot>$ is not identically zero on $H_{f}^{1}\left(G_{p}, V\right)$. But for the class $k(x) \in H^{1}(G, V)$ of a point $x \in E(\mathbb{Q})$, we have

$$
\sum_{v \neq p}<\operatorname{loc}_{v}(\alpha), \operatorname{loc}_{v}(k(x))>+<\operatorname{loc}_{p}(\alpha), \operatorname{loc}_{p}(k(x))>=0
$$

All the other terms are zero, so that

$$
<\operatorname{loc}_{p}(\alpha), \operatorname{loc}_{p}(k(x))>=0
$$

That is, $<\operatorname{loc}_{p}(\alpha), \cdot>$ pulled back to $E\left(\mathbb{Q}_{p}\right)$ is a non-zero analytic function that annihilates global points.

When α is constructed naturally (and there is not much choice) the function $<\operatorname{loc}_{p}(\alpha), \cdot>$ is related to L-values, e.g.,

$$
<\operatorname{loc}_{p}(\alpha), c(z)>=L_{p}(E, 1) \int_{e}^{z} d x / y
$$

Thus, key desiderata are:
(1) Non-abelian local duality, giving a cohomological description of functions on $H_{f}^{1}\left(G_{p}, U\right)$.
(2) A non-abelian local-global duality, relating to global reciprocity.
(3) Construction of global elements in non-abelian cohomology.
(4) Local analytic computation of such functions.
(Non-abelian) Example:
Let $X=E \backslash\{e\}$, where E is an elliptic curve of rank 1 with $\amalg(E)\left[p^{\infty}\right]=0$. Hence, we get

$$
l o c_{p}: E(\mathbb{Q}) \otimes \mathbb{Q}_{p} \simeq H_{f}^{1}\left(G_{p}, V_{p}(E)\right)
$$

and

$$
H^{2}\left(G_{T}, V_{p}(E)\right)=0 .
$$

We will construct a diagram:

Here, $H_{f, \mathbb{Z}}^{1}\left(G, U_{2}\right)$ refers to the classes that are trivial at all places $l \neq p$.

The Galois action on the Lie algebra of U_{2} can be expressed as

$$
L_{2}=V \oplus \mathbb{Q}_{p}(1)
$$

if we take a tangential base-point at e. The cocycle condition for

$$
\xi: G_{p} \longrightarrow U_{2}=L_{2}
$$

can be expressed terms of components $\xi=\left(\xi_{1}, \xi_{2}\right)$ as

$$
d \xi_{1}=0, \quad d \xi_{2}=(-1 / 2)\left[\xi_{1}, \xi_{1}\right] .
$$

Define

$$
\psi(\xi):=\left[\operatorname{loc}_{p}(x), \xi_{1}\right]+\log \chi_{p} \cup\left(-2 \xi_{2}\right) \in H^{2}\left(G_{p}, \mathbb{Q}_{p}(1)\right) \simeq \mathbb{Q}_{p}
$$

where

$$
\log \chi_{p}: G_{p} \rightarrow \mathbb{Q}_{p}
$$

is the logarithm of the \mathbb{Q}_{p}-cyclotomic character and x is a global solution, that is,

$$
x: G_{T} \rightarrow V_{p},
$$

to the equation

$$
d x=\log \chi_{p} \cup \xi_{1}
$$

Theorem 1ψ vanishes on the image of

$$
l o c_{p}: H_{f, \mathbb{Z}}^{1}\left(G, U_{2}\right) \rightarrow H_{f}^{1}\left(G_{p}, U_{2}\right)
$$

Proof is a simple consequence of

$$
0 \rightarrow H^{2}\left(G_{T}, \mathbb{Q}_{p}(1)\right) \rightarrow \oplus_{v \in T} H^{2}\left(G_{v}, \mathbb{Q}_{p}(1)\right) \rightarrow \mathbb{Q}_{p} \rightarrow 0
$$

Easy to check that for the class

$$
k(x)=H_{f}^{1}\left(G_{p}, \mathbb{Q}_{p}(1)\right) \subset H_{f}^{1}\left(G_{p}, U_{2}\right)
$$

of a number $x \in \mathbb{Z}_{p}^{\times}$, we have $\psi(k(x))= \pm \log \chi_{p}(r e c(x))$, and hence, that ψ is not identically zero.

Explicit formula on De Rham side:
Choose a Weierstrass equation for E and let

$$
\alpha=d x / y, \quad \beta=x d x / y .
$$

Define

$$
\begin{gathered}
\log _{\alpha}(z):=\int_{b}^{z} \alpha, \quad \log _{\beta}(z):=\int_{b}^{z} \beta, \\
D_{2}(z):=\int_{b}^{z} \alpha \beta,
\end{gathered}
$$

via (iterated) Coleman integration.

Corollary 2 Suppose $y \in X(\mathbb{Z})$ has infinite order in $E(\mathbb{Q})$. Then for any point $z \in X\left(\mathbb{Z}_{p}\right)$, we have

$$
\begin{aligned}
\psi(z) & =\operatorname{Res}_{e}(w d x / y)^{-1}\left[D_{2}(z)-\log _{\alpha}(z) \log _{\beta}(z)\right. \\
& \left.-\left(\frac{D_{2}(y)-\log _{\alpha}(y) \log _{\beta}(y)}{\log _{\alpha}^{2}(y)}\right) \log _{\alpha}^{2}(z)\right] .
\end{aligned}
$$

where $d w=x d x / y$ locally.

An interpretation:
There is a central extension

$$
0 \rightarrow \mathbb{Q}_{p}(1) \rightarrow \mathcal{G} \rightarrow L_{2}^{*}(1) \rtimes U_{2} \rightarrow 0 .
$$

that uses the grading on L_{2}. That is, the linear map

$$
d: L_{2} \rightarrow L_{2}
$$

that multiplies by i on degree i is a derivation, or a cocycle in $H^{1}\left(L_{2}, L_{2}\right)$. This contributes to $H^{2}\left(L_{2}^{*}(1) \rtimes L_{2}, \mathbb{Q}_{p}(1)\right)$, giving rise to the extension \mathcal{G}.

The previous function then arises from the diagram

$$
H_{f, \mathbb{Z}}^{1}\left(G, L_{2}^{*}(1) \rtimes U_{1}\right) \xrightarrow{\operatorname{loc}_{p}} H^{1}\left(G_{p}, L_{2}^{*}(1) \rtimes U_{1}\right)
$$

where the upward arrow sends a class ξ_{1} to $\left(\log \chi_{p}, \xi_{1}\right)$,
and the diagram:

illustrating that the middle right square is Cartesian.

Denoting by

$$
\beta(\xi) \in H_{f}^{1}\left(G_{p}, L_{2}^{*}(1) \rtimes U_{1}\right)
$$

the class obtained from the first diagram, we get the class

$$
(\beta(\xi), \xi) \in H_{f}^{1}\left(G_{p}, L_{2}^{*}(1) \rtimes U_{2}\right) .
$$

Then

$$
\psi(\xi)=\delta(\beta(\xi), \xi) \in H^{2}\left(G_{p}, \mathbb{Q}_{p}(1)\right) .
$$

Back to a general pointed curve (X, b).
The derivation $d: L_{n} \rightarrow L_{n}$ that was used to construct the central extension will usually not exist. However, Deligne pointed out that one might try to construct an extension

$$
0 \rightarrow U \rightarrow E \rightarrow \mathbb{G}_{m} \rightarrow 0
$$

wherefrom one would obtain an extension

$$
0 \rightarrow \mathbb{Q}_{p}(1) \rightarrow \operatorname{Lie}^{*}(1) \rightarrow L^{*}(1) \rightarrow 0
$$

Then

$$
\operatorname{Lie}^{*}(1) \rtimes U
$$

would be a central extension of $L^{*}(1) \rtimes U$.

Unfortunately, this seems also difficult. However, one can embed U into $\operatorname{Aut}^{0}(U)$, the group of automorphisms of U that act trivially on U_{1}.

This group fits naturally into the exact sequence

$$
0 \rightarrow \operatorname{Aut}^{0}(U) \rightarrow \operatorname{Aut}^{c}(U) \rightarrow \mathbb{G}_{m} \rightarrow 0
$$

where $\operatorname{Aut}^{c}(U) \subset \operatorname{Aut}(U)$ consists of the automorphisms that act as a scalar on U_{1}. Denote by D and D^{c} the Lie algebras of Aut ${ }^{0}$ and Aut^{c}. Then we have the central extension

$$
0 \rightarrow \mathbb{Q}_{p}(1) \rightarrow\left(D^{c}\right)^{*}(1) \rightarrow D^{*}(1) \rightarrow 0
$$

out of which we can construct the central extension

$$
0 \rightarrow \mathbb{Q}_{p}(1) \rightarrow\left(D^{c}\right)^{*}(1) \rtimes U \rightarrow D^{*}(1) \rtimes U \rightarrow 0
$$

D consists of the derivations $\operatorname{Der}^{0}(L)$ on L that act as zero on L_{1}, and we have exact sequences

$$
0 \rightarrow D^{n} \rightarrow D \rightarrow D_{n} \rightarrow 0,
$$

where D^{n} consists of the derivation that act trivially on L_{n}. Define also $D_{n}^{i} \subset D_{n}$ with the exact sequence

$$
0 \rightarrow D_{n}^{i} \rightarrow D_{n} \rightarrow D_{i} \rightarrow 0 .
$$

Thus, for each n, we have

$$
D_{n}^{*}(1) \rightarrow\left[D_{n}^{n-1}\right]^{*}(1) \rightarrow 0 .
$$

$$
\begin{gathered}
H_{f, \mathbb{Z}}^{1}\left(G, D_{n}^{*}(1) \rtimes U_{n-1}\right) \xrightarrow{\operatorname{loc}_{p}} H^{1}\left(G_{p}, D_{n}^{*}(1) \rtimes U_{n-1}\right) \\
H_{f, \mathbb{Z}}^{1}\left(G,\left[D_{n}^{n-1}\right]^{*}(1) \times U_{n-1}\right) \xrightarrow{4} H_{f}^{1}\left(G_{p}, U_{n}\right) \\
H_{f, \mathbb{Z}}^{1}\left(G, U_{n-1}\right) \xrightarrow{l_{n}} H_{f}^{1}\left(G_{p}, U_{n-1}\right)
\end{gathered}
$$

$$
\begin{aligned}
H^{1}\left(G_{p}, U^{n+1} \backslash U^{n}\right) & =H^{1}\left(G_{p}, U^{n+1} \backslash U^{n}\right) \\
H^{1}\left(G_{p}, D_{n}^{*}(1)\right) \longrightarrow H_{f}^{1}\left(G_{p}, D_{n}^{*}(1) \rtimes U_{n}\right) & \longrightarrow H_{f}^{1}\left(G_{p}, U_{n}\right) \\
H^{1}\left(G_{p}, D_{n}^{*}(1)\right) \rightarrow H_{f}^{1}\left(G_{p}, D_{n}^{*}(1) \rtimes U_{n-1}\right) & \longrightarrow H_{f}^{1}\left(G_{p}, U_{n-1}\right) \\
\left.\right|_{\mid} \mid & \\
H^{2}\left(G_{p}, U^{n+1} \backslash U^{n}\right) & =H^{2}\left(G_{p}, U^{n+1} \backslash U^{n}\right)
\end{aligned}
$$

Assume that the map

$$
H_{f, \mathbb{Z}}^{1}\left(G, D_{n}^{*}(1) \rtimes U_{n-1}\right) \rightarrow H_{f, \mathbb{Z}}^{1}\left(G,\left[D_{n}^{n-1}\right]^{*}(1) \times U_{n-1}\right)
$$

is surjective, and

$$
\operatorname{loc}_{p}: H_{f, \mathbb{Z}}^{1}\left(G, U_{n-1}\right) \rightarrow H_{f}^{1}\left(G_{p}, U_{n-1}\right)
$$

is an isomorphism. Then for every choice of
$c \in H^{1}\left(G_{T},\left[D_{n}^{n-1}\right]^{*}(1)\right)$, we get a well-defined class

$$
\psi_{c}(\xi)=\delta(\alpha(\xi), \xi) \in H^{2}\left(G_{p}, \mathbb{Q}_{p}(1)\right)
$$

where $\alpha(\xi) \in H_{f}^{1}\left(G_{p},\left[D_{n}\right]^{*}(1) \times U_{n-1}\right)$ is obtained from the following procedure.
(1) projecting $\xi \in H_{f}^{1}\left(G_{p}, U_{n}\right)$ to $\xi_{n-1} \in H_{f}^{1}\left(G_{p}, U_{n-1}\right)$;
(2) pulling-back to $\operatorname{loc}_{p}^{-1}\left(\xi_{n-1}\right) \in H_{f, \mathbb{Z}}^{1}\left(G, U_{n-1}\right)$;
(3) mapping to

$$
\left(c, \operatorname{loc}_{p}^{-1}\left(\xi_{n-1}\right)\right) \in H_{f, \mathbb{Z}}^{1}\left(G,\left[D_{n}^{n-1}\right]^{*}(1) \times U_{n-1}\right)
$$

(4) lifting to

$$
\left(c, \widetilde{\operatorname{loc}_{p}^{-1}\left(\xi_{n-1}\right)}\right) \in H_{f, \mathbb{Z}}^{1}\left(G,\left[D_{n}\right]^{*}(1) \times U_{n-1}\right)
$$

(5) localizing to

$$
\alpha(\xi)=\operatorname{loc}_{p}\left(\left(c, \widetilde{\operatorname{loc}_{p}^{-1}\left(\xi_{n-1}\right)}\right)\right) \in H_{f, \mathbb{Z}}^{1}\left(G,\left[D_{n}\right]^{*}(1) \times U_{n-1}\right)
$$

Note that the fiber of the map

$$
H_{f, \mathbb{Z}}^{1}\left(G, D_{n}^{*}(1) \rtimes U_{n-1}\right) \longrightarrow H_{f, \mathbb{Z}}^{1}\left(G,\left[D_{n}^{n-1}\right]^{*}(1) \times U_{n-1}\right)
$$

over a point (c, u) is a torsor for $H^{1}\left(G_{T}, D_{n-1}^{*}(1)_{u}\right)$, where the subscript u refers to a twist of the Galois action by the cocycle u. This is also the fiber over u of the map

$$
H_{f, \mathbb{Z}}^{1}\left(G, D_{n-1}^{*}(1) \rtimes U_{n-1}\right) \longrightarrow H_{f, \mathbb{Z}}^{1}\left(G, U_{n-1}\right)
$$

Thus, the ambiguity in the lift from $H_{f, \mathbb{Z}}^{1}\left(G,\left[D_{n}^{n-1}\right]^{*}(1) \times U_{n-1}\right)$ to $H_{f, \mathbb{Z}}^{1}\left(G, D_{n}^{*}(1) \rtimes U_{n-1}\right)$ will be an element of

$$
H_{f, \mathbb{Z}}^{1}\left(G, D_{n-1}^{*}(1) \rtimes U_{n-1}\right)
$$

Proposition 3 Suppose $\xi=l o c_{p}\left(\xi^{g l o b}\right)$ for $\xi^{g l o b} \in H_{f, \mathbb{Z}}^{1}\left(G, U_{n}\right)$. Then $\psi_{c}(\xi)=0$.

There is a natural split inclusion

$$
L_{n}^{n-1} \hookrightarrow D_{n}^{n-1}
$$

inducing also an inclusion

$$
\left[L_{n}^{n-1}\right]^{*}(1) \hookrightarrow\left[D_{n}^{n-1}\right]^{*}(1) .
$$

So we also get an inclusion

$$
H^{1}\left(G_{T},\left[L_{n}^{n-1}\right]^{*}(1)\right) \hookrightarrow H^{1}\left(G_{T},\left[D_{n}^{n-1}\right]^{*}(1)\right) .
$$

Proposition 4 Suppose

$$
p r \circ \operatorname{loc}_{p}(c) \in H^{1}\left(G_{p},\left[L_{n}^{n-1}\right]^{*}(1)\right) / H_{f}^{1}\left(G_{p},\left[L_{n}^{n-1}\right]^{*}(1)\right)
$$

is non-zero. Then ψ_{c} is not identically zero, and $X(\mathbb{Q})$ is finite.

Thus, functions of a global nature should iteratively come from uniformly liftable elements

$$
c \in H^{1}\left(G_{T},\left[L_{n}^{n-1}\right]^{*}(1)\right)
$$

that is, elements that lie in the image of

$$
H^{1}\left(G_{T}, D_{n}^{*}(1)_{u}\right) \longrightarrow H^{1}\left(G_{T},\left[D_{n}^{n-1}\right]^{*}(1)\right)
$$

for every $u \in H_{f, \mathbb{Z}}^{1}\left(G, U_{n-1}\right)$, which furthermore have non-trivial local images.

