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Main objects:

e G = Gal(Q/Q).

e (X,b): Smooth projective pointed curve of genus g > 2 over Q
with good reduction outside S.

o T'=SU{p} for a prime p ¢ S.

o U: Qp-pro-unipotent étale fundamental group of X = X ®Q with
base-point b.

o Ul =U, UM = [U,U"], U, = U"+1\U.

o H }(G, U): moduli space of crystalline principal U-bundles on
Spec(Z[1/T]).




Construction of U:

Start with m = #¥(X, ), the pro-p étale fundamental group of X

and consider

Z,[x)) := lim Z, [H],

where H runs over the finite quotient groups. Let I C Z,[[m1]] be
the augmentation ideal, and consider the pro-algebra

Qpllm] := (Zpl[x]]/ 1) © Qp)nen

and the map of pro-algebras

A Q7] =Qpl[]] © Qpll7]]
induced by the map g—¢g ® g.

Then
U:={xecQln]]” : A(z) =z ® x}.




Action of G on 7 factors through G = Gal(Qr/Q) where Qr is
the maximal extension of Q unramified outside 7. Induces action

of G on U and each of the U,,. Can consider
Hl (GT7 Un)a

the continuous cohomology of G with values in U,,, and

Hl(GT, U) = liil’lHl(GT, Un)

Choose an embedding Q—Q@Q,, inducing G,, := Gal(Q,/Q,)—Gr

and the localization map

loc, : H'(Gr,U)—H(G,,U).




There is the subset
Hf(Gp7 U) C Hl(Gp7 U)
consisting of classes that trivialize under the map

Hl(Gpv U)_>H1(Gp: U(Ber)),

H;(G,U) :=loc, ' (H;(G,,U)) C H'(G7,U).

Path torsors:

For any other z € X (Q), need also the space P(z) of Q,-unipotent

étale paths from b to x.




Constructed from the torsor

™ (X; b, x)

of pro-p étale paths by push-out:
P(z) :=7Y(X;b,x) x, U.
Equipped with a U-action

PxU—P

and a compatible action of G .

Sometimes useful to think in terms of the sheaf E on X associated
with the representation Q,||7]] of = (multiplication on the left).

There is a map
A:F—-FE®F

induced by the map of representations, so that we can consider the
sheaf P of group-like elements in £. Then P(x) = P;.




That is, P is actually a principal U-bundle on X

and using a point

Spec(Q)
we can pull-back to a sheaf P(x) = 2* P on Spec(Q).




The sheaf P extends to a Z[1/T]-model for X, so that the sheaf
P(x) extends to Spec(Z[1/T1]). They are also all crystalline at p,

giving rise to a map

z = [P(x)];
the unipotent Albanese map with target the Selmer variety of X.

Fundamental diagram:

X(@) > X(Qp)




Basic fact:

If loc, (H{(G,Up)) C H (G, Up) is non-dense, then X (Q)

is finite.

Key point: There is a non-zero algebraic function

vanishing on the image of loc,. So its pull-back to X (Q,) vanishes

on X (Q), but can be shown to have finitely many zeros.




At present, can show non-denseness of loc, for n >> 0 when the
image of G in Aut(U;) = Aut(V,(Jx)) is essentially abelian, using
the sparseness of zeros of an ‘algebraic p-adic L-function.’

However, this approach only shows the ezristence of a .

Basic question remains of producing natural functions on
H}(Gp, U,), perhaps in a manner reminiscent of functions on

moduli spaces of principal bundles in complex geometry.

Note that one can describe many ‘local’ functions on H}(Gp, Un)

obtained via

Hi(Gp,Uy) = UPH/F°

that restrict to iterated integrals on X (Q,). But we need to
produce functions of a global nature directly on H }(Gp, U,), whose
explicit form can then be computed using the comparison

isomorphism.




Why functions of ‘a global nature’?

Consider the case of an elliptic curve (F,e), for which
U = U, =V,(F). One has local duality:

<> HY(G,, V) x HY(Gp, V*(1))—=H*(G,, Q,(1)) ~ Q,

making H'(G,,V*(1)) into a source of functions on H*(G,, V).
More precisely,

H(Gp, V™ (1))/H}(Gp, V(1))

gives functions on H }(Gp, V). Functions of a global nature come

from the map

proloc, : Hl(GT,V*(l))—>H1(Gp,V*(l))/H}(GP,V*( ).




The significance of such functions is the following:

Suppose there exists a € H' (G, V*(1)) such that
prolocy(a) # 0. Then E(Q) is finite.

Proof: The function < loc,(a),- > is not identically zero on
H}(Gp, V). But for the class k(x) € H'(G,V) of a point 2 € E(Q),

we have

Z < loc, (@), loc, (k(x)) > + < loc,(a),loc,(k(z)) >= 0.
VFED

All the other terms are zero, so that
< loc,(a),loc,(k(x)) >= 0.

That is, < loc,(«),- > pulled back to E(Q,) is a non-zero analytic

function that annihilates global points.




When « is constructed naturally (and there is not much choice) the
function < loc, (), > is related to L-values, e.g.,

< loc,(a),c(z) >= L,(E,1) /Z dz/y.

Thus, key desiderata are:

(1) Non-abelian local duality, giving a cohomological description of
functions on H}(Gp, U).

(2) A non-abelian local-global duality, relating to global reciprocity.

(3) Construction of global elements in non-abelian cohomology.

(4) Local analytic computation of such functions.




(Non-abelian) Example:

Let X = F'\ {e}, where E is an elliptic curve of rank 1 with
[II(F)[p>] = 0. Hence, we get

loc, : E(Q) ® Q) ~ H}(Gpa Vi (E))

H*(Gr,V,(E)) = 0.




We will construct a diagram:

X(Z)

Here, H },Z(G, Us) refers to the classes that are trivial at all places
[ # p.




The Galois action on the Lie algebra of Us; can be expressed as

Lo =V @& Qp(1)

if we take a tangential base-point at e. The cocycle condition for
f . Gp — U2 — L2
can be expressed terms of components £ = (£1,&2) as

dgl — 07 d€2 — (_1/2)[51761]




Define

¥(€) := locy (), &1] 4 log xp U (—262) € H*(Gp, Qp(1)) = Qy,

where
log xp : Gp—Qy
is the logarithm of the Q,-cyclotomic character and z is a global
solution, that is,
r: Gp—Vp,
to the equation

dz = log xp, U&;:.




Theorem 1 v vanishes on the image of

locy, : H}’Z(G, UQ)—>H}(Gp, Us).

Proof is a simple consequence of

O_>H2(GT> Qp(1))— Buver HQ(va Qp(1))—Qp—0.

Easy to check that for the class

k(z) = H}(GPva(l)) - H}(Gpv Us)

of a number x € Z;, we have ¥ (k(x)) = & log x,(rec(r)), and
hence, that v is not identically zero.




Explicit formula on De Rham side:

Choose a Weierstrass equation for £ and let

a=dx/y, [ =xdx/y.

log, (=) = /b “a, logy(e) = /b 5,
Ds(z) := /bz a3,

via (iterated) Coleman integration.




Corollary 2 Suppose y € X(Z) has infinite order in E(Q). Then
for any point z € X (Z,), we have

Y(2) = Rese(wdz/y) ™" [Da(z) —

Da(y) — log, (y) logs(y)
log? (y)

—(

where dw = xdx [y locally.




An interpretation:

There is a central extension

0—Q,(1)—=G—L5(1) x Us—0.

that uses the grading on L,. That is, the linear map
d : L2—>L2

that multiplies by ¢ on degree 7 is a derivation, or a cocycle in
H'(Ls, Ly). This contributes to H*(L5(1) x La, Q,(1)), giving rise

to the extension §.




The previous function then arises from the diagram

loc,
H},Z(G7 L;(l) X Ul) — Hl(Gp,Ls(l) X Ul)

Y

H}’Z(Ga Ul) > H}(Ganl)

where the upward arrow sends a class &; to (log Xp> £1),




and the diagram:

HQ(GanS\Uz) — H2(Gan3\U2)
illustrating that the middle right square is Cartesian.




Denoting by
B(&) € Hy(Gyp, L5(1) x Uy)

the class obtained from the first diagram, we get the class

(6(8),€) € Hy(Gp, L3(1) x Uy).

Y(€) = 3(B(€),€) € H*(Gp, Qy(1)).




Back to a general pointed curve (X, b).

The derivation d : L,,— L, that was used to construct the central
extension will usually not exist. However, Deligne pointed out that

one might try to construct an extension

0—U—FE—G,,—0,

wherefrom one would obtain an extension

0—Q,(1)—LieE*(1)—L*(1)—0.

Then
LieE*(1) x U

would be a central extension of L*(1) x U.




Unfortunately, this seems also difficult. However, one can embed U

into Aut’(U), the group of automorphisms of U that act trivially

on Uj.

This group fits naturally into the exact sequence
0—Aut’ (U)—Aut®(U)—G,,—0

where Aut®(U) C Aut(U) consists of the automorphisms that act
as a scalar on U;. Denote by D and D¢ the Lie algebras of Aut’
and Aut®. Then we have the central extension

0—Qp(1)—(D°)"*(1)—D*(1)—0,
out of which we can construct the central extension

0—Q,(1)—(D%)*(1) x U—D*(1) x U—0.




D consists of the derivations Der’(L) on L that act as zero on L,

and we have exact sequences

0—D"—D—D,,—0,

where D™ consists of the derivation that act trivially on L,,. Define

also D! C D,, with the exact sequence
0— D! —D,,— D;—0.
Thus, for each n, we have

DE(1)— (D2 (1)—0.







A Y

HY(G,, U™\U") = H2(G,, U™'\U™)




Assume that the map

H}5(G, D (1) % Un_1)—H} 5(G, D21 (1) X Upia)

is surjective, and
locy : Hs 7(G,Up—1)—H$(Gp, Up_1)

is an isomorphism. Then for every choice of
ce€ HYGr, DI 1*(1)), we get a well-defined class

Ye(€) = 0(a(§),€) € H*(Gp, Qy(1))
where a(§) € H;(Gp, [Dy]*(1) x Uy,—1) is obtained from the

following procedure.




(1) projecting & € Hl(Gp, Un,) to &1 € Hl(Gp7 Up-1);
(2) pulling-back to loc, L) € HfZ(G Un_1);
(3) mapping to

(¢;loc, ' (€n—1)) € Hy7(G, DR~ H* (1) x Up1);

(4) lifting to

/—-\/

(¢,Joc,  (€n—1)) € Hjz(G, [Dy]*(1) X Up—1);

(5) localizing to

—_— N —

o(£) = locy (¢, 10¢, (€n-1))) € H} (G, D] (1) x Up_).




Note that the fiber of the map
H} (G D5 (1) % Uny) —= H}5(GL (D3 (1) x Uyo)

over a point (c,u) is a torsor for H'(Gr, D*_,(1),), where the

subscript u refers to a twist of the Galois action by the cocycle w.
This is also the fiber over u of the map

H}’Z(G, D’ (1) X Un—l) — H},Z(G, Un—l)-

n—1

Thus, the ambiguity in the lift from H},Z(G, [DP=1*(1) x U, 1) to
H}’Z(G, D} (1) x U,_1) will be an element of

H} 7(G, D}y _1(1) % Up—y).

n—1




Proposition 3 Suppose & = loc,(£91°%) for £9°0 ¢ H}’Z(G, Uy).
Then y.(&) = 0.

There is a natural split inclusion
Ly t—prt
inducing also an inclusion
Ly T (D)= [Dr T (1),
So we also get an inclusion
HY(Gr, [Ly ] (D)—H (G, [Dy7]"(1)).

Proposition 4 Suppose

prolocy(c) € H'(Gy, L) (1))/HHG, [L2]*(1))

is non-zero. Then . is not identically zero, and X (Q) s finite.




Thus, functions of a global nature should iteratively come from

uniformly liftable elements
c € H'(Gr,[Ly,7']"(1)),
that is, elements that lie in the image of

H'(Gr,D;(1),) — H'(Gr, [Dy 71" (1))

for every u € H },Z(G, Un—1), which furthermore have non-trivial

local images.




