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Main objects:

• G = Gal(Q̄/Q).

• (X, b): Smooth projective pointed curve of genus g ≥ 2 over Q

with good reduction outside S.

• T = S ∪ {p} for a prime p /∈ S.

• U : Qp-pro-unipotent étale fundamental group of X̄ = X ⊗ Q̄ with

base-point b.

• U1 = U , Un+1 = [U,Un], Un = Un+1\U .

• H1
f (G,U): moduli space of crystalline principal U -bundles on

Spec(Z[1/T ]).
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Construction of U :

Start with π = πp1(X̄, b), the pro-p étale fundamental group of X̄

and consider

Zp[[π]] := lim
←−
H

Zp[H],

where H runs over the finite quotient groups. Let I ⊂ Zp[[π1]] be

the augmentation ideal, and consider the pro-algebra

Qp[[π]] := ((Zp[[π]]/In)⊗Qp)n∈N

and the map of pro-algebras

∆ : Qp[[π]]→Qp[[π]]⊗Qp[[π]]

induced by the map g→g ⊗ g.

Then

U := {x ∈ Qp[[π]]× : ∆(x) = x⊗ x}.
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Action of G on π factors through GT = Gal(QT /Q) where QT is

the maximal extension of Q unramified outside T . Induces action

of GT on U and each of the Un. Can consider

H1(GT , Un),

the continuous cohomology of GT with values in Un, and

H1(GT , U) := lim
←−

H1(GT , Un).

Choose an embedding Q̄→֒Q̄p, inducing Gp := Gal(Q̄p/Qp)→GT

and the localization map

locp : H1(GT , U)→H1(Gp, U).
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There is the subset

Hf (Gp, U) ⊂ H1(Gp, U)

consisting of classes that trivialize under the map

H1(Gp, U)→H1(Gp, U(Bcr)),

and

Hf (G,U) := loc−1

p (H1
f (Gp, U)) ⊂ H1(GT , U).

Path torsors:

For any other x ∈ X(Q), need also the space P (x) of Qp-unipotent

étale paths from b to x.
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Constructed from the torsor

πp1(X̄; b, x)

of pro-p étale paths by push-out:

P (x) := πp1(X̄; b, x)×π U.

Equipped with a U -action

P × U→P

and a compatible action of GT .

Sometimes useful to think in terms of the sheaf E on X̄ associated

with the representation Qp[[π]] of π (multiplication on the left).

There is a map

∆ : E→E ⊗E

induced by the map of representations, so that we can consider the

sheaf P of group-like elements in E. Then P (x) = Px.
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That is, P is actually a principal U -bundle on X

P

↓

X

and using a point
X

Spec(Q)
��

x

]]

we can pull-back to a sheaf P (x) = x∗P on Spec(Q).
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The sheaf P extends to a Z[1/T ]-model for X , so that the sheaf

P (x) extends to Spec(Z[1/T ]). They are also all crystalline at p,

giving rise to a map

X(Q) - H1
f (G,U);

x 7→ [P (x)];

the unipotent Albanese map with target the Selmer variety of X .

Fundamental diagram:

X(Q) - X(Qp)

H1
f (G,Un)

?
locp- H1

f (Gp, Un)
?
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Basic fact:

If locp(H
1
f (G,Un)) ⊂ H

1
f (Gp, Un) is non-dense, then X(Q)

is finite.

Key point: There is a non-zero algebraic function ψ

X(Q) → X(Qp)

↓ ↓

H1
f (G,Un) → H1

f (Gp, Un)

↓ψ

Qp

vanishing on the image of locp. So its pull-back to X(Qp) vanishes

on X(Q), but can be shown to have finitely many zeros.
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At present, can show non-denseness of locp for n >> 0 when the

image of G in Aut(U1) = Aut(Vp(JX)) is essentially abelian, using

the sparseness of zeros of an ‘algebraic p-adic L-function.’

However, this approach only shows the existence of a ψ.

Basic question remains of producing natural functions on

H1
f (Gp, Un), perhaps in a manner reminiscent of functions on

moduli spaces of principal bundles in complex geometry.

Note that one can describe many ‘local’ functions on H1
f (Gp, Un)

obtained via

H1
f (Gp, Un) ≃ U

DR/F 0

that restrict to iterated integrals on X(Qp). But we need to

produce functions of a global nature directly on H1
f (Gp, Un), whose

explicit form can then be computed using the comparison

isomorphism.
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Why functions of ‘a global nature’?

Consider the case of an elliptic curve (E, e), for which

U = U1 = Vp(E). One has local duality:

< ·, · >: H1(Gp, V )×H1(Gp, V
∗(1))→H2(Gp,Qp(1)) ≃ Qp

making H1(Gp, V
∗(1)) into a source of functions on H1(Gp, V ).

More precisely,

H1(Gp, V
∗(1))/H1

f (Gp, V
∗(1))

gives functions on H1
f (Gp, V ). Functions of a global nature come

from the map

pr ◦ locp : H1(GT , V
∗(1))→H1(Gp, V

∗(1))/H1
f (Gp, V

∗(1)).
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The significance of such functions is the following:

Suppose there exists α ∈ H1(GT , V
∗(1)) such that

pr ◦ locp(α) 6= 0. Then E(Q) is finite.

Proof: The function < locp(α), · > is not identically zero on

H1
f (Gp, V ). But for the class k(x) ∈ H1(G, V ) of a point x ∈ E(Q),

we have
∑
v 6=p

< locv(α), locv(k(x)) > + < locp(α), locp(k(x)) >= 0.

All the other terms are zero, so that

< locp(α), locp(k(x)) >= 0.

That is, < locp(α), · > pulled back to E(Qp) is a non-zero analytic

function that annihilates global points.
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When α is constructed naturally (and there is not much choice) the

function < locp(α), · > is related to L-values, e.g.,

< locp(α), c(z) >= Lp(E, 1)

∫ z

e

dx/y.

Thus, key desiderata are:

(1) Non-abelian local duality, giving a cohomological description of

functions on H1
f (Gp, U).

(2) A non-abelian local-global duality, relating to global reciprocity.

(3) Construction of global elements in non-abelian cohomology.

(4) Local analytic computation of such functions.
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(Non-abelian) Example:

Let X = E \ {e}, where E is an elliptic curve of rank 1 with

X(E)[p∞] = 0. Hence, we get

locp : E(Q)⊗Qp ≃ H
1
f (Gp, Vp(E))

and

H2(GT , Vp(E)) = 0.
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We will construct a diagram:

X(Z) - X(Zp)

H1
f,Z(G,U2)

?
locp- H1

f (Gp, U2)
?

D- UDR2 /F 0

-

Qp.

ψ

?�

φ

Here, H1
f,Z(G,U2) refers to the classes that are trivial at all places

l 6= p.
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The Galois action on the Lie algebra of U2 can be expressed as

L2 = V ⊕Qp(1)

if we take a tangential base-point at e. The cocycle condition for

ξ : Gp - U2 = L2

can be expressed terms of components ξ = (ξ1, ξ2) as

dξ1 = 0, dξ2 = (−1/2)[ξ1, ξ1].
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Define

ψ(ξ) := [locp(x), ξ1] + logχp ∪ (−2ξ2) ∈ H
2(Gp,Qp(1)) ≃ Qp,

where

logχp : Gp→Qp

is the logarithm of the Qp-cyclotomic character and x is a global

solution, that is,

x : GT→Vp,

to the equation

dx = logχp ∪ ξ1.
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Theorem 1 ψ vanishes on the image of

locp : H1
f,Z(G,U2)→H

1
f (Gp, U2).

Proof is a simple consequence of

0→H2(GT ,Qp(1))→⊕v∈T H
2(Gv,Qp(1))→Qp→0.

Easy to check that for the class

k(x) = H1
f (Gp,Qp(1)) ⊂ H

1
f (Gp, U2)

of a number x ∈ Z×
p , we have ψ(k(x)) = ± logχp(rec(x)), and

hence, that ψ is not identically zero.
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Explicit formula on De Rham side:

Choose a Weierstrass equation for E and let

α = dx/y, β = xdx/y.

Define

logα(z) :=

∫ z

b

α, logβ(z) :=

∫ z

b

β,

D2(z) :=

∫ z

b

αβ,

via (iterated) Coleman integration.
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Corollary 2 Suppose y ∈ X(Z) has infinite order in E(Q). Then

for any point z ∈ X(Zp), we have

ψ(z) = Rese(wdx/y)
−1[D2(z)− logα(z) logβ(z)

−(
D2(y)− logα(y) logβ(y)

log2

α(y)
) log2

α(z)].

where dw = xdx/y locally.
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An interpretation:

There is a central extension

0→Qp(1)→G→L
∗
2(1) ⋊ U2→0.

that uses the grading on L2. That is, the linear map

d : L2→L2

that multiplies by i on degree i is a derivation, or a cocycle in

H1(L2, L2). This contributes to H2(L∗
2(1) ⋊ L2,Qp(1)), giving rise

to the extension G.
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The previous function then arises from the diagram

H1
f,Z(G,L∗

2(1) ⋊ U1)
locp- H1(Gp, L

∗
2(1) ⋊ U1)

H1
f,Z(G,Qp × U1)

?
H1
f (Gp, U2)

H1
f,Z(G,U1)

6

- H1
f (Gp, U1)

?

where the upward arrow sends a class ξ1 to (logχp, ξ1),
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and the diagram:

H1(Gp, U
3\U2) = H1(Gp, U

3\U2)

H1(Gp, L
∗
2(1)) - H1

f (Gp, L
∗
2(1) ⋊ U2)
?

- H1
f (Gp, U2)

?

H1(Gp, L
∗
2(1))

?
- H1

f (Gp, L
∗
2(1) ⋊ U1)
?

- H1
f (Gp, U1)

?

H2(Gp, U
3\U2)

?
= H2(Gp, U

3\U2)
?

illustrating that the middle right square is Cartesian.
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Denoting by

β(ξ) ∈ H1
f (Gp, L

∗
2(1) ⋊ U1)

the class obtained from the first diagram, we get the class

(β(ξ), ξ) ∈ H1
f (Gp, L

∗
2(1) ⋊ U2).

Then

ψ(ξ) = δ(β(ξ), ξ) ∈ H2(Gp,Qp(1)).
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Back to a general pointed curve (X, b).

The derivation d : Ln→Ln that was used to construct the central

extension will usually not exist. However, Deligne pointed out that

one might try to construct an extension

0→U→E→Gm→0,

wherefrom one would obtain an extension

0→Qp(1)→LieE
∗(1)→L∗(1)→0.

Then

LieE∗(1) ⋊ U

would be a central extension of L∗(1) ⋊ U .
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Unfortunately, this seems also difficult. However, one can embed U

into Aut0(U), the group of automorphisms of U that act trivially

on U1.

This group fits naturally into the exact sequence

0→Aut0(U)→Autc(U)→Gm→0

where Autc(U) ⊂ Aut(U) consists of the automorphisms that act

as a scalar on U1. Denote by D and Dc the Lie algebras of Aut0

and Autc. Then we have the central extension

0→Qp(1)→(Dc)∗(1)→D∗(1)→0,

out of which we can construct the central extension

0→Qp(1)→(Dc)∗(1) ⋊ U→D∗(1) ⋊ U→0.
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D consists of the derivations Der0(L) on L that act as zero on L1,

and we have exact sequences

0→Dn→D→Dn→0,

where Dn consists of the derivation that act trivially on Ln. Define

also Di
n ⊂ Dn with the exact sequence

0→Di
n→Dn→Di→0.

Thus, for each n, we have

D∗
n(1)→[Dn−1

n ]∗(1)→0.
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H1
f,Z(G,D∗

n(1) ⋊ Un−1)
locp- H1(Gp, D

∗
n(1) ⋊ Un−1)

H1
f,Z(G, [Dn−1

n ]∗(1)× Un−1)
?

H1
f (Gp, Un)

H1
f,Z(G,Un−1)

6

locp - H1
f (Gp, Un−1)

?
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H1(Gp, U
n+1\Un) = H1(Gp, U

n+1\Un)

H1(Gp, D
∗
n(1)) - H1

f (Gp, D
∗
n(1) ⋊ Un)
?

- H1
f (Gp, Un)

?

H1(Gp, D
∗
n(1))

?
- H1

f (Gp, D
∗
n(1) ⋊ Un−1)

?
- H1

f (Gp, Un−1)
?

H2(Gp, U
n+1\Un)
?

= H2(Gp, U
n+1\Un)
?
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Assume that the map

H1
f,Z(G,D∗

n(1) ⋊ Un−1)→H
1
f,Z(G, [Dn−1

n ]∗(1)× Un−1)

is surjective, and

locp : H1
f,Z(G,Un−1)→H

1
f (Gp, Un−1)

is an isomorphism. Then for every choice of

c ∈ H1(GT , [D
n−1
n ]∗(1)), we get a well-defined class

ψc(ξ) = δ(α(ξ), ξ) ∈ H2(Gp,Qp(1))

where α(ξ) ∈ H1
f (Gp, [Dn]

∗(1)× Un−1) is obtained from the

following procedure.
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(1) projecting ξ ∈ H1
f (Gp, Un) to ξn−1 ∈ H

1
f (Gp, Un−1);

(2) pulling-back to loc−1

p (ξn−1) ∈ H
1
f,Z(G,Un−1);

(3) mapping to

(c, loc−1

p (ξn−1)) ∈ H
1
f,Z(G, [Dn−1

n ]∗(1)× Un−1);

(4) lifting to

˜(c, loc−1

p (ξn−1)) ∈ H
1
f,Z(G, [Dn]

∗(1)× Un−1);

(5) localizing to

α(ξ) = locp(
˜(c, loc−1

p (ξn−1))) ∈ H
1
f,Z(G, [Dn]

∗(1)× Un−1).
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Note that the fiber of the map

H1
f,Z(G,D∗

n(1) ⋊ Un−1) - H1
f,Z(G, [Dn−1

n ]∗(1)× Un−1)

over a point (c, u) is a torsor for H1(GT , D
∗
n−1(1)u), where the

subscript u refers to a twist of the Galois action by the cocycle u.

This is also the fiber over u of the map

H1
f,Z(G,D∗

n−1(1) ⋊ Un−1) - H1
f,Z(G,Un−1).

Thus, the ambiguity in the lift from H1
f,Z(G, [Dn−1

n ]∗(1)× Un−1) to

H1
f,Z(G,D∗

n(1) ⋊ Un−1) will be an element of

H1
f,Z(G,D∗

n−1(1) ⋊ Un−1).
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Proposition 3 Suppose ξ = locp(ξ
glob) for ξglob ∈ H1

f,Z(G,Un).

Then ψc(ξ) = 0.

There is a natural split inclusion

Ln−1
n →֒Dn−1

n

inducing also an inclusion

[Ln−1
n ]∗(1)→֒[Dn−1

n ]∗(1).

So we also get an inclusion

H1(GT , [L
n−1
n ]∗(1))→֒H1(GT , [D

n−1
n ]∗(1)).

Proposition 4 Suppose

pr ◦ locp(c) ∈ H
1(Gp, [L

n−1
n ]∗(1))/H1

f (Gp, [L
n−1
n ]∗(1))

is non-zero. Then ψc is not identically zero, and X(Q) is finite.
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Thus, functions of a global nature should iteratively come from

uniformly liftable elements

c ∈ H1(GT , [L
n−1
n ]∗(1)),

that is, elements that lie in the image of

H1(GT , D
∗
n(1)u) - H1(GT , [D

n−1
n ]∗(1))

for every u ∈ H1
f,Z(G,Un−1), which furthermore have non-trivial

local images.

34


