CHAPTER 3

Modules

3.1. Some generalities about modules

The concept of module generalizes the idea of both vector spaces and ideals. The essential idea is simple: a module is like a vector space where we replace the base field by an arbitrary ring.

3.1.1. Basic definitions.

Definition 3.1.1. Let \(R \) be a ring (commutative, with unity). An \(R \)-module is an abelian group \((M, +)\) together with an action of \(R \), i.e. a map

\[
R \times M \rightarrow M \\
(r, m) \mapsto r \ast m := rm \in M
\]

satisfying the following conditions:

M1 **Distributivity:** \(r(m + n) = rm + rn \) for all \(r, m, n \in M \).
M2 **Distributivity:** \((r + s)m = rm + sm \) for all \(r, s \in R, m \in M \).
M3 **Pseudoassociativity:** \((rs)m = r(sm) \) for all \(r, s \in R, m \in M \).
M4 **Modularity:** For all \(m \in M \) one has \(1m = m \).

If this is the case, we will also say that \(M \) is a module over \(R \). When we want to emphasize the \(R \)-module structure of \(M \), we will write it as \(R M \).

Examples 3.1.2.

1. Let \(\mathbb{F} \) be a field, then an \(\mathbb{F} \)-module is precisely a vector space over \(\mathbb{F} \).
2. Let \((M, +)\) be an abelian group. Define the map

\[
Z \times M \rightarrow M \\
(r, m) \mapsto rm := \begin{cases}
 m + m + \cdots + m & \text{if } r > 0, \\
 (-m) + (-m) + \cdots + (-m) & \text{if } r < 0, \\
 0 & \text{if } r = 0.
\end{cases}
\]

From the group axioms it can be easily deduced that the previous map defines a \(\mathbb{Z} \)-action on \(M \). In other words, every abelian group is a \(\mathbb{Z} \)-module. The converse is also true, if \((M, +)\) is a \(\mathbb{Z} \)-module the for any \(r > 0 \) in \(\mathbb{Z} \) one has \(r = 1 + 1 + \cdots + 1 \), and thus

\[
rm = (1 + \cdots + 1)m = 1m + (r) + 1m = m + (r) + m,
\]

and for \(r < 0 \) one has \(r = (-1)+ \) thus \(\mathbb{Z} \)-modules are precisely abelian groups.
3. Let \(R \) be a ring. Define an action of \(R \) on \((R, +)\) by \(r \ast s := rs \). By the ring laws this action makes \(R \) into an \(R \)-module. This action is called the \(\text{left regular action} \) of \(R \) on itself. When we want to refer to \(R \) as a module over itself rather than as a ring we will write it as \(R R \).
(4) Let R, S be rings, $\varphi : R \to S$ a ring homomorphism, S is a S–module. Consider the map

$$R \times M \longrightarrow M$$

$$(r, m) \mapsto r \cdot m := \varphi(r)m.$$

The ring morphism axioms, together with the fact that M is an S–module, ensure that this action provides an R–module structure on M. This is called the R–module structure induced by φ.

In particular, if $R \leq S$ a subring, then every S–module is automatically an R–module with the action given by restriction of scalars.

(5) Let V be a vector space over a field F, and $\alpha : V \to V$ a linear map. Define the map

$$F[x] \times V \longrightarrow V$$

$$(x, v) \mapsto x \cdot v := \alpha(v)$$

extending to $x^n \cdot v := \alpha^n(v) = \alpha((\alpha)^n(v))$ and $(\sum a_i x^i) \cdot v := \sum a_i \alpha^i(v)$. It is an easy exercise to check that under this action V becomes an $F[x]$–module.

Conversely, if V is a module over the polynomial ring $F[x]$, since $F \leq F[x]$, by the previous example V is automatically an F–module, thus a vector space over F. Now, define $\alpha : V \to V$ by $\alpha(v) := x \cdot v$. By the module axioms, α is an F–linear map, and thus there is a one to one correspondence between $F[x]$–modules and vector spaces V over F endowed with a linear map $\alpha : V \to V$.

(6) Let R be any commutative ring. The set $M_n(R)$ of all $n \times n$ matrices with coefficients in R is an R–module under the action $r \cdot (a_{ij}) := (ra_{ij})$.

Remark. This is a particular case of example 4, with $M = S = M_n(R)$ and $\varphi : R \to S$ given by $\alpha(r) := r \cdot \text{Id}$.

Definition 3.1.3. Let rM be an R–module. A subset $p \subseteq M$ is said to be a **submodule** of M if:

1. P is a subgroup of $(M, +)$, i.e. $P \neq \emptyset$, for all $a, b \in P$ one has $a + b$ in P and $-a \in P$.
2. For all $r \in R$, and for all $m \in P$ one has $rm \in P$.

If P is a submodule of M we will denote that by $P \leq M$. In this case, P is also an R–module in its own right.

Remark 3.1.4. P is a submodule of M if and only if for all $m, n \in P$ and for all $r, s \in R$ one has $rm + sn \in P$. The proof is left as an exercise.

Examples 3.1.5.

1. If V is a vector space over a field F, then submodules are precisely vector subspaces.
2. If $\mathbb{Z}M$ is an abelian group (i.e. a \mathbb{Z}–module), then the submodules of M are its subgroups.
3. If rR is a ring considered as a module over itself, then the submodules of R are the ideals of R.
4. Let V be a module over the polynomial ring $F[x]$, i.e. V a vector space endowed with a linear map $\alpha : V \to V$. Assume that $P \leq V$ is a submodule of V. Then, as $F \subseteq F[x]$, for all $\lambda \in F$ and for all $v \in P$ one has $\lambda v \in P$, thus P is a subspace of V. Also, for all $v \in P$ one must have $xv \in P$, but $xv = \alpha(p)$, thus P must satisfy $\alpha(P) \subseteq P$. In other words, P must be an α–invariant subspace of V. Conversely, if P is an α–invariant subspace of V is is easy to see that P is a submodule of V.
3.1. SOME GENERALITIES ABOUT MODULES

(5) For any \(R \)-module \(_RM \) there are two distinguished submodules: the trivial submodule \(0 := \{0\} \leq M \) and the total submodule \(M \leq M \).

Proposition 3.1.6. If \(_RM \) is an \(R \)-module, and \(A, B \leq M \) are submodules of \(M \), then the intersection \(A \cap B \) is also a submodule of \(M \). Moreover, \(A \cap B \) is the largest (with respect to inclusion) submodule of \(M \) contained in both \(A \) and \(B \). More generally, for any family \(\{P_\alpha\} \) of submodules of \(M \) the intersection \(\bigcap P_\alpha \) is also a submodule of \(M \).

Proof. The proof is left as an exercise. \(\square \)

Proposition 3.1.7. Let \(_RM \) be an \(R \)-module, \(A, B \leq M \) submodules. Define the sum of \(A \) and \(B \) as
\[
A + B := \{a + b \mid a \in A, b \in B\}.
\]
Then, \(A + B \) is a submodule of \(M \). Moreover, it is the smallest submodule of \(M \) containing both \(A \) and \(B \). More generally, for any finite collection \(A_1, \ldots, A_n \leq M \) of submodules of \(M \) their sum
\[
\sum_{i=1}^{n} A_i = A_1 + \cdots + A_n = \{a_1 + \cdots + a_n \mid a_i \in A_i\} \leq M
\]
is a submodule of \(M \).

Proof. The proof is left as an exercise. \(\square \)

The inclusions of submodules given by the last two propositions can be encoded in the following diagram:

\[
\begin{array}{ccc}
A + B & \rightarrow & M \\
\downarrow & & \downarrow \\
A \cap B & \rightarrow & A \\
\downarrow & & \downarrow \\
& & B
\end{array}
\]

3.1.2. Cyclic modules and finitely generated modules.

Definition 3.1.8. Let \(_RM \) be an \(R \)-module, \(x \in M \). Define \(Rx := \{rx \mid r \in R\} \). It is easy to check that \(Rx \leq M \) is a submodule. The submodule \(Rx \) is called the cyclic submodule of \(M \) generated by \(x \).

Remark 3.1.9. \(Rx \) is the smallest submodule of \(M \) containing \(x \).

Definition 3.1.10. If \(_RM \) is an \(R \)-module, and there exist some \(x \in M \) such that \(M = Rx \), we say that \(M \) is a cyclic module.

Definition 3.1.11. Let \(_RM \) be an \(R \)-module, and let \(x_1, \ldots, x_n \in M \); the set \(Rx_1 + \cdots + Rx_n \leq M \) is the smallest submodule of \(M \) containing all the \(x_i \). This submodule is called the submodule generated by \(x_1, \ldots, x_n \). If \(M = Rx_1 + \cdots + Rx_n \) we say that \(M \) is finitely generated.

Definition 3.1.12. Let \(P \leq M \) be a submodule of the \(R \)-module \(_RM \). Consider the abelian group
\[
\frac{M}{P} = \{\overline{m} = m + P \mid m \in M\},
\]
where addition is defined in the usual way as \(\overline{m} + \overline{n} := m + n \). For each \(r \in R \) and each \(\overline{m} \in M/P \), define \(r\overline{m} := \overline{rm} \). This operation yields a well defined action of \(R \) on \(M/P \), thus making \(M/P \) into an \(R \)-module. This module is called the quotient of \(M \) by \(P \).
Remark 3.1.13. For the previous definition to make sense, one needs to check that the action of R on M/P is well defined. This is the case as $\overline{m} = \overline{n}$ if and only if $m - n \in P$, and thus for all $r \in R$ one has $r(m - n) \in P$, yielding $\overline{rm} = \overline{rn}$.

Examples 3.1.14.

1. For each R–module rM, the submodule $0 = R0$ is a cyclic submodule.
2. If V is a vector space over F, $0 \neq x \in V$, then the cyclic submodule Fx is the 1–dimensional subspace of V generated by x.
3. Let M be a \mathbb{Z}–module (i.e. an abelian group), $x \in M$, then $\mathbb{Z}x$ is the cyclic subgroup of M generated by x.
4. Let $x \in rR$, then the cyclic submodule Rx is precisely the principal ideal (x) generated by x. In particular $rR = R1$ is a cyclic R–module.
5. The quotient of any R–module rM by the trivial submodule 0 is $M/0 = M$.
6. The quotient of any R–module rM by the total submodule M is $M/M = 0$.
7. The quotient of the \mathbb{Z}–module $\mathbb{Z}n = \langle n \rangle$ is the cyclic group of order n, $\mathbb{Z}n = \mathbb{Z}/(n)$.

Proposition 3.1.15. Let rM be an R–module. If $P \leq M$ is a submodule and $\{x_1, \ldots, x_n\} \subseteq M$ generate M, then $\{\overline{x_1}, \ldots, \overline{x_n}\} \subseteq M/P$ generate the quotient module M/P.

Proof. Since x_1, \ldots, x_n generate M, for each $m \in M$ there exist $r_1, \ldots, r_n \in R$ such that $m = \sum r_ix_i$, and hence

$$m = \sum r_ix_i = \sum r_i\overline{x_i},$$

therefore $\{\overline{x_1}, \ldots, \overline{x_n}\}$ generate M/P. \hfill \square

Corollary 3.1.16. If M is a cyclic R–module, then for any submodule $P \leq M$ the quotient M/P is also cyclic.

Proof. By the previous proposition, if $M = Rx$ then $M/P = R\overline{x}$. \hfill \square

Remark 3.1.17. Unlike it happens for groups, a submodule of a cyclic module doesn’t need to be cyclic. For instance, one can take the R–module $rR = R1$. Its submodules are the ideals of R, and in general ideals do not have to be principal, as long as we take R to be a ring which is not a principal ideal domain.

Example 3.1.18. Let us consider the R–module $rR = R1$, which is a cyclic module, and let $I \subseteq R$ be an ideal of R, i.e. a submodule of rR, then the quotient R/I is also a cyclic R–module. Indeed, it is generated by $1 + I$.

3.1.3. Module homomorphisms.

Definition 3.1.19. Let R be a ring, rM and rN two R–modules; a map $\alpha : M \to N$ is said to be an R–module homomorphism (also called R–homomorphism or R–linear map) if it satisfies the following conditions:

1. α is an additive group homomorphism, i.e. $\alpha(0) = 0$ and $\alpha(m_1 + m_2) = \alpha(m_1) + \alpha(m_2)$ for all $m_1, m_2 \in M$.
2. For all $r \in R$ and all $m \in M$ one has $\alpha(rm) = r\alpha(m)$

Examples 3.1.20.

1. For any two R–modules M and N, there is always a trivial module homomorphism from M to N, the zero homomorphism, defined by $0(m) = 0_N$ for all $m \in M$. This homomorphism is simply denoted by 0.
2. For any module M, the identity map $1 : M \to M$ is a module homomorphism. Similarly, if $P \leq M$ is a submodule, the inclusion map $1 : P \to M$ is also a module homomorphism.
3.1. SOME GENERALITIES ABOUT MODULES

(3) If \(V, W\) are vector spaces over a field \(\mathbb{F}\), a map \(\alpha : V \to W\) is an \(\mathbb{F}\)-module homomorphism if and only if it is a linear map.

(4) If \(M, N\) are \(\mathbb{Z}\)-modules, i.e. abelian groups, a map \(\alpha : M \to N\) is a module homomorphism if and only if it is a group homomorphism.

Definition 3.1.21. Let \(R\) be a ring, and let \(R M\) and \(R N\) be \(R\)-modules. We will denote by \(\text{Hom}_R(M, N)\) the set of all \(R\)-module homomorphisms from \(M\) to \(N\), i.e.

\[
\text{Hom}_R(M, N) = \{ \alpha : M \to N \mid \alpha \text{ is a module homomorphism} \}.
\]

If \(\alpha \in \text{Hom}_R(M, N)\), it is easy to see that \(-\alpha \in \text{Hom}_R(M, N)\), and that for any \(r \in R\) the map \(r\alpha\) defined by \((r\alpha)(m) = r\alpha(m)\) is also a module homomorphism. Similarly it is immediate to prove that for any two module homomorphisms \(\alpha, \beta \in \text{Hom}_R(M, N)\) the sum map \(\alpha + \beta\) is also a module homomorphism. As a consequence, we obtain that the set \(\text{Hom}_R(M, N)\) is also an \(R\)-module.

Proposition 3.1.22. Let \(M, N\) and \(P\) be \(R\)-modules, \(\alpha \in \text{Hom}_R(M, N)\) and \(\beta \in \text{Hom}_R(N, P)\), then \(\beta \alpha := \beta \circ \alpha \in \text{Hom}_R(M, P)\).

Proof. The proof is completely straightforward, and thus left as an exercise. \(\square\)

Definition 3.1.23. Let \(\alpha \in \text{Hom}_R(M, N)\). If \(\alpha\) is injective, we say that it is a **monomorphism**, if \(\alpha\) is surjective it is called an **epimorphism**, and if \(\alpha\) is bijective it is called an **isomorphism**. If there exists an isomorphism \(\alpha : M \to N\), we will say that \(M\) and \(N\) are **isomorphic**, and write \(M \cong N\).

Definition 3.1.24. Let \(R\) be a ring, \(M\) and \(N\) two \(R\)-modules, \(\alpha \in \text{Hom}_R(M, N)\) a module homomorphism. The **image** of \(\alpha\) is defined as

\[
\text{Im}(\alpha) := \{ \alpha(m) \mid m \in M \} = \alpha(M),
\]

the **kernel** of \(\alpha\) is defined as

\[
\text{Ker}(\alpha) := \{ m \in M \mid \alpha(m) = 0 \} = \alpha^{-1}(\{0\}).
\]

Examples 3.1.25.

(1) Let \(R M\) be an \(R\)-module, \(P \leq M\) a submodule, and consider the canonical projection \(\Pi_P : M \to M/P\) defined by \(\pi_P(m) = \pi m = m + P\). The map \(\pi_P\) is a module homomorphism and we have \(\text{Ker} \pi_P = P\) and \(\text{Im} \pi_P = M/P\), i.e. \(\pi_P\) is an epimorphism.

(2) The zero map \(0 : M \to N\), defined as \(0(m) = 0_N\) for all \(m \in M\), is a module homomorphism. One has \(\text{Ker} 0 = M\), \(\text{Im} 0 = 0\).

(3) \(\alpha : M \to N\) is a monomorphism if and only if \(\text{Ker} \alpha = 0\)

Proof. One has \(\alpha(m) = \alpha(n)\) if and only if \(0 = \alpha(m) - \alpha(n) = \alpha(m - n)\), i.e. if and only if \(m - n \in \text{Ker} \alpha\). Thus if \(\text{Ker} \alpha = 0\) we have \(\alpha(m) = \alpha(n)\) if and only if \(m = n\), i.e. \(\alpha\) is injective. Conversely, if \(\alpha\) is injective, then if \(0 = \alpha(m)\) we have \(\alpha(m) = \alpha(0)\) and by injectivity we get \(m = 0\), and hence \(\text{Ker} \alpha = 0\). \(\square\)

(4) A module homomorphism \(\alpha : M \to N\) is an isomorphism if and only if \(\text{Ker} \alpha = 0\) and \(\text{Im} \alpha = N\).

Lemma 3.1.26. Let \(M, N\) be \(R\)-modules, \(\alpha \in \text{Hom}_R(M, N)\), then we have:

(1) \(\text{Ker}(\alpha) \leq M\) is a submodule of \(M\).

(2) \(\text{Im} \alpha \leq N\) is a submodule of \(N\).

Proof.
(1) Let \(m_1, m_2 \in \ker \alpha, r_1, r_2 \in R \), then, using the fact that \(\alpha \) is a homomorphism, we have
\[
\alpha(r_1 m_1 + r_2 m_2) = r_1 \alpha(m_1) + r_2 \alpha(m_2) = r_1 0 + r_2 0 = 0,
\]
thus \(r_1 m_1 + r_2 m_2 \in \ker \alpha \), and hence \(\ker \alpha \) is a submodule of \(M \).

(2) Let \(r_1, r_2 \in R \), and let \(n_1, n_2 \in \im \alpha \), then \(n_1 = \alpha(m_1) \) and \(n_2 = \alpha(m_2) \) for some \(m_1, m_2 \in M \). Thus, we have
\[
r_1 n_1 + r_2 n_2 = r_1 \alpha(m_1) + r_2 \alpha(m_2) = \alpha(r_1 m_1 + r_2 m_2),
\]
thus \(r_1 n_1 + r_2 n_2 \in \im \alpha \) and thus \(\im \alpha \) is a submodule of \(N \).

\[\square\]

Theorem 3.1.27 (First Isomorphism Theorem for Modules). Let \(M, N \) be \(R \)-modules, and \(\alpha \in \text{Hom}_R(M, N) \) a module homomorphism, then
\[
\frac{M}{\ker \alpha} \cong \im \alpha.
\]

Proof. The isomorphism is given by \(m + \ker \alpha \mapsto \alpha(m) \). The proof is almost identical, *mutatis mutandi*, to the one made for ring homomorphisms or for group homomorphisms.

\[\square\]

Examples 3.1.28.

(1) \(0 : M \to M \) the zero homomorphism, \(\ker 0 = M, \im 0 = 0 \), so the first isomorphism theorem tells us that \(M/M \cong 0 \).

(2) \(\text{id} : M \to M \), the identity map, \(\ker \text{id} = 0, \im \text{id} = M \), thus \(M/0 \cong M \).

(3) Let \(R \)-module, \(P \leq M \) a submodule, \(\pi_P : M \to M/P \) the canonical projection, so \(\ker \pi_P = P, \im \pi_P = M/P \), and the first isomorphism theorem tells us that \(M/P \cong M/P \).

Theorem 3.1.29 (Classification of cyclic modules). Let \(R \)-module, then \(M \) is cyclic if and only if \(M \cong R/I \) for some ideal \(I \leq R \). Moreover, the ideal \(I \) is unique.

Remark. This result only holds for commutative rings.

Proof.

\[\square\]

The module \(R = R1 \) is cyclic, so for any ideal \(I \leq R \) the quotient \(R/I \) is also cyclic (cf. corollary 3.1.16).

Let \(M \) be a cyclic \(R \)-module, then there is some \(x \in M \) such that \(M = Rx \). Define \(\alpha : R \to Rx = M \) by \(\alpha(r) := rx \). For any \(a, b \in R, r, s \in R \) we have
\[
\alpha(ra + sb) = (ra + sb)x = rax + sbx = r(ax) + s(bx) = r\alpha(a) + s\alpha(b),
\]
thus \(\alpha \in \text{Hom}_R(R, Rx) \) is a module homomorphism. As \(M \) is cyclic, we get \(\im \alpha = M \), i.e. \(\alpha \) is surjective. By the first isomorphism theorem for modules, we get \(M \cong R/\ker \alpha \), where \(\ker \alpha \leq R \) is a submodule of \(R \). But we know that submodules of \(R \) are precisely ideals, thus \(\ker \alpha = I \leq R \), and thus \(M \cong R/I \).

It remains to prove the uniqueness of the ideal \(I \). Suppose \(M \cong R/I \cong R/J \) for two ideals \(I, J \leq R \). Then there is some \(R \)-module isomorphism \(\beta : R/I \cong R/J \) (note that \(\beta \) does not need to be a ring homomorphism). As \(\beta \) is surjective, there must exist some \(\tau = r + I \) such that \(\beta(\tau + I) = 1 + J \in R/J \). For any \(i \in I \), on \(\tau = ir = i\tau \in I \), as \(i \tau \in I \), thus
\[
0 + J = \overline{0} = \beta(0 + I) = \beta(i\tau) = i\beta(\tau) = i(1 + J) = i + J,
\]
and hence \(i \in J \), so we obtain \(I \subseteq J \). Doing the same reasoning with the inverse isomorphism \(\beta^{-1} : R/J \to R/I \) one gets \(J \subseteq I \), and therefore \(I = J \).

\[\square\]
3.1. SOME GENERALITIES ABOUT MODULES

DEFINITION 3.1.30. Let \(R \) be an \(R \)-module, \(X \subseteq M \) a nonempty subset of \(M \). The annihilator of \(X \) is defined by
\[
\text{ann}(X) := \{ r \in R \mid rx = 0 \ \forall x \in X \}.
\]

PROPOSITION 3.1.31. For \(R \) \(R \)-module and \(X \subseteq M \), the annihilator \(\text{ann}(X) \) is an ideal of \(R \).

PROOF. Proof is straightforward and left as an exercise. \(\square \)

REMARK 3.1.32. If \(Rx \subseteq M \) is a cyclic submodule of an \(R \)-module \(M \), and we define the map \(\alpha : R \to Rx \) by \(\alpha(r) := rx \), as in the proof of the previous theorem, then \(\text{Ker} \alpha \) is precisely the annihilator \(\text{ann}(x) \). In other words, we have
\[Rx \cong \frac{R}{\text{ann}(x)}. \]

PROPOSITION 3.1.33. For any subset \(X \subseteq M \), one has \(\text{ann}(X) = \bigcap_{x \in X} \text{ann}(x) \).

PROOF. Exercise. \(\square \)

EXAMPLES 3.1.34.

(1) Let \((M, +)\) be an abelian group, \(0 \neq x \in M \) an element of order \(n \), i.e., \(n \) is the smallest positive integer such that \(nx = 0 \). Then \(\text{ann}(x) = \langle n \rangle \leq \mathbb{Z} \), and \(\mathbb{Z}x = \mathbb{Z}/\langle n \rangle = \mathbb{Z}/n \).

(2) Let \(\mathbb{Z}M \) be a module over a field \(F \) (i.e. \(M \) is a vector space over \(F \)), and let \(0 \neq x \in M \) be a nonzero vector. Suppose that there is some scalar \(\lambda \in F \) such that \(\lambda \in \text{ann}(x) \), i.e., \(\lambda x = 0 \). As \(x \) is a nonzero vector, the set \(\{ x \} \) is linearly independent, so if \(\lambda x = 0 \) it must be \(\lambda = 0 \), hence \(\text{ann}(x) = 0 \), and \(\mathbb{Z}x \cong F/0 \cong F \) as a vector space.

(3) Let \(R \) be an \(R \)-module, \(0 \neq x \in R \), then \(\text{ann}(x) = 0 \) (prove it as an exercise!), and hence \(\langle x \rangle = Rx \cong R/0 \cong R \) as \(R \)-modules.

THEOREM 3.1.35 (Second Isomorphism Theorem for modules). Let \(R \) be an \(R \)-module, \(A, B \subseteq M \) submodules, then
\[
\frac{A + B}{A} \cong \frac{B}{A \cap B}.
\]

PROOF. The proof is similar to the one for rings. \(\square \)

THEOREM 3.1.36 (Third Isomorphism Theorem for modules). Let \(R \) be an \(R \)-module, \(P \subseteq M \) a submodule. There is a bijection between the set \(\{ Q \subseteq M \mid P \subseteq Q \} \) of submodules of \(M \) containing \(P \), and the set of submodules of \(M/P \), given by \(Q \mapsto Q/P \). Moreover, one has
\[
\frac{M/P}{Q/P} \cong M/Q.
\]

3.1.4. Direct sum of modules. We have already classified cyclic modules, which will be our basic “building blocks”. Now, we shall study the construction that will allow us to glue these building block together.

DEFINITION 3.1.37. Let \(M_1, \ldots, M_n \) be \(R \)-modules. Let \(M \) be the set
\[
M := \{(m_1, \ldots, m_n) \mid m_i \in M_i \}
\]
of ordered \(n \)-tuples in \(M_1 \times \cdots \times M_n \). In the set \(M \), define
\[
(m_1, \ldots, m_n) + (m'_1, \ldots, m'_n) := (m_1 + m'_1, \ldots, m_n + m'_n),
\]
\[
0 = (0_{M_1}, \ldots, 0_{M_n}),
\]
\[
-(m_1, \ldots, m_n) := (-m_1, \ldots, -m_n),
\]
\[
r(m_1, \ldots, m_n) := (rm_1, \ldots, rm_n).
\]

Endowed with these operations, \(M \) becomes an \(R \)-module, called the **external direct sum** of the modules \(M_i \). We will represent this as

\[
M = M_1 \oplus \cdots \oplus M_n = \bigoplus_{i=1}^{n} M_i.
\]

Given an external direct sum \(M = \bigoplus M_i \), we will denote by

\[
M'_i := \{(0, \ldots, m_i, 0, \ldots, 0) \mid m_i \in M_i\},
\]

where the only possibly nonzero coordinate is in position \(i \). Obviously \(M'_i \) is a submodule of \(M \), and the maps \(m_i \mapsto (0, \ldots, m_i, 0, \ldots, 0) \) provide a module isomorphism \(M_i \cong M'_i \). Henceforth, we can identify the modules \(M_i \) with the \(M'_i \) and thus think of \(M_i \) as submodules of \(M \).

Question: Given an \(R \)-module \(R M \) and submodules \(M_i \leq M \), when can we ensure that \(M \cong M_1 \oplus \cdots \oplus M_n \)? What properties must the submodules \(M_i \) satisfy?

If it is the case that we can rewrite a module \(M \) as a direct sum of certain submodules \(M_i \leq M \), we say that \(M \) is an **internal direct sum** of the \(M_i \)'s.

Firstly, let \(m \in M = \bigoplus M_i \), then

\[
m = (m_1, \ldots, m_n) = (m_1, 0, \ldots, 0) + \cdots + (0, \ldots, 0, m_n),
\]

and hence we get \(M = M_1 + \cdots + M_n = \sum M_i \). Secondly, if \(m_i \in M_i \) then \(m_i = (0, \ldots, 0, m_i, 0, \ldots, 0) \), and \(m_1 + \cdots + m_n = 0 \) if and only if \((m_1, \ldots, m_n) = (0, \ldots, 0) \), i.e by if and only if \(m_i = 0 \) for all \(i \).

This condition leads us to the following notion:

DEFINITION 3.1.38. Let \(R M \) be an \(R \)-module, \(M_1, \ldots, M_n \leq M \) submodules of \(M \). We say that \(\{M_i\}_{i=1}^{n} \) is an **independent set of submodules** if whenever \(m_1 + \cdots + m_n = 0 \) for some \(m_i \in M_i \), then one must have \(m_i = 0 \) for all \(i = 1, \ldots, n \).

REMARK 3.1.39. From what we have stated above, if \(M = \bigoplus M_i \), then \(\{M_i\} \) is always an independent set of submodules. This also means that “being independent” is not an intrinsic property of the submodules, but rather the way they are included inside \(M \).

PROPOSITION 3.1.40. Let \(R M \) be an \(R \)-module, \(M_i \leq M \) for \(i = 1, \ldots, n \) submodules. The following are equivalent:

1. \(\{M_1, \ldots, M_n\} \) is an independent set of modules.
2. Any \(m \in M_1 + \cdots + M_n \) can be written as \(m = m_1 + \cdots + m_n \) for unique \(m_i \in M_i \).
3. For each \(i = 1, \ldots, n \) one has \(M_i \cap \widehat{M_i} = 0 \), where \(\widehat{M_i} = \sum i \neq j M_j \).

PROOF.

1. \(\Rightarrow \) 2 If \(m = m_1 + \cdots + m_n = m'_1 + \cdots + m'_n \), then \(0 = (m_1 - m'_1) + \cdots + (m_n - m'_n) \), where \(m_i - m'_i \in M_i \), thus \(m_i - m'_i = 0 \) and thus \(m_i = m'_i \) for all \(i = 1, \ldots, n \), i.e. the \(m_i \) are unique.

2. \(\Rightarrow \) 3 Let \(m \in M_i \cap \widehat{M_i} \), then \(m = m_1 + \cdots + m_i - 1 + m_{i+1} + \cdots + m_n \), thus \(m_1 + \cdots + m_i - 1 - m_i + m_{i+1} + \cdots + m_n = 0 \), and hence \(m_1 = \cdots = m_n = 0 \), implying \(m = 0 \).

3. \(\Rightarrow \) 1

EXAMPLE 3.1.41. Let \(R M \) be an \(R \)-module, \(A, B \leq M \) submodules, then \(\{A, B\} \) is an independent set of modules if and only if \(A \cap B = 0 \).

PROPOSITION 3.1.42. Let \(R M \) be an \(R \)-module, \(M_1, \ldots, M_n \leq M \) submodule. The following are equivalent:

1. \(M = \bigoplus_{i=1}^{n} M_i \).
2. \(M = \sum_{i=1}^{n} M_i \) and \(\{M_i\} \) is an independent set of modules.
PROOF.
1 ⇒ 2: Already shown above.
1 ⇒ 1: Define α : M → \bigoplus_i M_i by m ↦ (m_1, \ldots, m_n), where m_1, \ldots, m_n are the unique elements with m_i ∈ M_i such that \(m = m_1 + \cdots + m_n\). Clearly, α is a surjective module homomorphism. Let \(m \in \ker \alpha\), then \(\alpha(m) = 0 = (0, \ldots, 0)\) and thus \(m = 0 + 0 + \cdots + 0 = 0\), hence α is injective and therefore an isomorphism.

Example 3.1.43. Let \(R \mathcal{M}\) be an \(R\)-module, \(A, B\) submodules, then \(M = A \oplus B\) if and only if \(M = A + B\) and \(A \cap B = 0\). In this case, \(A, B\) are called direct summands of \(M\) and \(B\) is called a complement of \(B\) in \(M\).

Remark 3.1.44. If \(M = A \oplus B\), then using the second isomorphism theorem we have

\[
\frac{M}{A} = \frac{A \oplus B}{A} = \frac{A + B}{A} \cong \frac{B}{A \cap B} \cong \frac{B}{0} \cong B.
\]

Similarly, we obtain \((A \oplus B)/B \cong A\).

Definition 3.1.45. If \(M_1 = M_2 = \cdots = M_n = M\), we will represent the external direct sum \(M_1 \oplus \cdots \oplus M_n = M \oplus \cdots \oplus M\) simply by \(M^n\).

3.1.5. Free modules.

Definition 3.1.46. Let \(R\) be a ring. A module of the form \(R^n = R \oplus \cdots \oplus R\) is called a free module over \(R\).

Definition 3.1.47. Let \(\{e_1, \ldots, e_n\} \subseteq M\) be a subset of an \(R\)-module \(M\). We say that the set \(\{e_1, \ldots, e_n\}\) is a basis for \(M\) if for all \(m \in M\) there exist unique \(r_i \in R\) such that \(m = r_1 e_1 + \cdots + r_n e_n\).

Proposition 3.1.48. Let \(R \mathcal{M}\) be an \(R\)-module, the following are equivalent:

1. \(M\) is a free module.
2. \(M\) has a basis.

Proof.
1 ⇒ 2: Suppose \(M = R^n\) is a free module, let \(e_i = (0, \ldots, 0, 1, 0, \ldots, 0)\), where the 1 is in the \(i\)-th position. If \(m \in M = R^n\), then \(m = (r_1, \ldots, r_n)\) with \(r_i \in R\), and hence \(m = r_1 e_1 + \cdots + r_n e_n\) for unique \(r_i \in R\).

2 ⇒ 1: Let \(\{e_1, \ldots, e_n\}\) be a basis of \(M\), then for each \(m \in M\) there exist unique \(r_i \in R\) such that \(m = r_1 e_1 + \cdots + r_n e_n\). Define the map \(\alpha : M \rightarrow R^n\) by \(\alpha(m) := (r_1, \ldots, r_n)\).

It is easy to check that this is an \(R\)-module isomorphism, showing that \(M \cong R^n\).

Remark 3.1.49. If \(\{e_i\}\) is a basis of \(M\) and \(r \in R\) is such that \(re_i = 0\), then \(0 = 0e_1 + \cdots + 0e_{i-1} + re_i + 0e_{i+1} + \cdots + 0e_n\), and hence \(r = 0\), thus \(ann(e_i) = 0\) and \(Re_i \cong R/(0) = R\). Henceforth, for any module with a basis we have \(M \cong Re_1 \oplus \cdots \oplus Re_n \cong R \oplus \cdots \oplus R = R^n\).

Proposition 3.1.50. Let \(F = R^n\) be a free module with basis \(\{e_1, \ldots, e_n\}\). Let \(R \mathcal{M}\) be a module over \(R\), and let \(m_1, \ldots, m_n \in M\). Then, there is a unique \(R\)-module homomorphism \(\alpha : F \rightarrow M\) such that \(\alpha(e_i) = m_i\).

Remark. In other words, the proposition states that any module homomorphism having as a source a free module is completely determined by its effect on the elements of a basis.

Proof. Let \(u = r_1 e_1 + \cdots + r_n e_n\). Assume that \(\alpha\) is a module homomorphism such that \(\alpha(e_i) = m_i\); then, necessarily we must have

\[
\alpha(u) = \alpha(r_1 e_1 + \cdots + r_n e_n) = r_1 \alpha(e_1) + \cdots + r_n \alpha(e_n) = r_1 m_1 + \cdots + r_n m_n,
\]

and hence α is uniquely defined. Thus, define $\alpha : F \to M$ by $\alpha(r_1e_1 + \cdots + r_ne_n) := r_1m_1 + \cdots + r_nm_n$; we only need to show that α is a module homomorphism.

Let $r, s \in R$, $u = u_1e_1 + \cdots + u_ne_n$, $v = v_1e_1 + \cdots + v_ne_n \in F$, then

$$\alpha(ru + sv) = \alpha \left(\sum (ru_i + sv_i)e_i \right) = \sum (ru_i + sv_i)m_i = \sum ru_im_i + \sum sv_im_i = \sum ru_im_i + s \sum v_im_i = r\alpha(u) + s\alpha(v),$$

therefore α is an R-module homomorphism, and clearly it verifies $\alpha(e_i) = m_i$. □

Proposition 3.1.51. Let R^M be a finitely generated R-module, so that $M = Rm_1 + \cdots + Rm_n$ for some $m_i \in M$; then, there exists a free module F and a submodule $P \leq F$ such that $M \cong F/P$.

Proof. Let $F = R^n$, consider the unique module homomorphism $\alpha : F \to M$ satisfying $\alpha(e_i) = m_i$. If $m \in M$, then there exist $r_i \in R$ such that $m = r_1m_1 + \cdots + r_nm_n$, and hence

$$\alpha(r_1e_1 + \cdots + r_ne_n) = \sum r_i\alpha(e_i) = \sum r_im_i = m,$$

thus α is surjective, i.e. $\text{Im } \alpha = M$. Applying the first isomorphism theorem for modules, we conclude that $M \cong F/\ker \alpha$, where $\ker \alpha$ is a submodule of F. □