$11^{\text {th }}$ International Mathematical Competition for University Students Skopje, 25-26 July 2004

Solutions for problems on Day 2

1. Let A be a real 4×2 matrix and B be a real 2×4 matrix such that

$$
A B=\left(\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & 1 & 0 & -1 \\
-1 & 0 & 1 & 0 \\
0 & -1 & 0 & 1
\end{array}\right)
$$

Find $B A$. [20 points]
Solution. Let $A=\binom{A_{1}}{A_{2}}$ and $B=\left(\begin{array}{ll}B_{1} & B_{2}\end{array}\right)$ where $A_{1}, A_{2}, B_{1}, B_{2}$ are 2×2 matrices. Then

$$
\left(\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & 1 & 0 & -1 \\
-1 & 0 & 1 & 0 \\
0 & -1 & 0 & 1
\end{array}\right)=\binom{A_{1}}{A_{2}}\left(\begin{array}{ll}
B_{1} & B_{2}
\end{array}\right)=\left(\begin{array}{ll}
A_{1} B_{1} & A_{1} B_{2} \\
A_{2} B_{1} & A_{2} B_{2}
\end{array}\right)
$$

therefore, $A_{1} B_{1}=A_{2} B_{2}=I_{2}$ and $A_{1} B_{2}=A_{2} B_{1}=-I_{2}$. Then $B_{1}=A_{1}^{-1}, B_{2}=-A_{1}^{-1}$ and $A_{2}=B_{2}^{-1}=$ $-A_{1}$. Finally,

$$
B A=\left(\begin{array}{ll}
B_{1} & B_{2}
\end{array}\right)\binom{A_{1}}{A_{2}}=B_{1} A_{1}+B_{2} A_{2}=2 I_{2}=\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right)
$$

2. Let $f, g:[a, b] \rightarrow[0, \infty)$ be continuous and non-decreasing functions such that for each $x \in[a, b]$ we have

$$
\int_{a}^{x} \sqrt{f(t)} d t \leq \int_{a}^{x} \sqrt{g(t)} d t
$$

and $\int_{a}^{b} \sqrt{f(t)} d t=\int_{a}^{b} \sqrt{g(t)} d t$.
Prove that $\int_{a}^{b} \sqrt{1+f(t)} d t \geq \int_{a}^{b} \sqrt{1+g(t)} d t$. [20 points]
Solution. Let $F(x)=\int_{a}^{x} \sqrt{f(t)} d t$ and $G(x)=\int_{a}^{x} \sqrt{g(t)} d t$. The functions F, G are convex, $F(a)=0=$ $G(a)$ and $F(b)=G(b)$ by the hypothesis. We are supposed to show that

$$
\int_{a}^{b} \sqrt{1+\left(F^{\prime}(t)\right)^{2}} d t \geq \int_{a}^{b} \sqrt{1+\left(G^{\prime}(t)\right)^{2}} d t
$$

i.e. The length ot the graph of F is \geq the length of the graph of G. This is clear since both functions are convex, their graphs have common ends and the graph of F is below the graph of G - the length of the graph of F is the least upper bound of the lengths of the graphs of piecewise linear functions whose values at the points of non-differentiability coincide with the values of F, if a convex polygon P_{1} is contained in a polygon P_{2} then the perimeter of P_{1} is \leq the perimeter of P_{2}.
3. Let D be the closed unit disk in the plane, and let $p_{1}, p_{2}, \ldots, p_{n}$ be fixed points in D. Show that there exists a point p in D such that the sum of the distances of p to each of $p_{1}, p_{2}, \ldots, p_{n}$ is greater than or equal to 1 . [20 points]

Solution. considering as vectors, thoose p to be the unit vector which points into the opposite direction as $\sum_{i=1}^{n} p_{i}$. Then, by the triangle inequality,

$$
\sum_{i=1}^{n}\left|p-p_{i}\right| \geq\left|n p-\sum_{i=1}^{n} p_{i}\right|=n+\left|\sum_{i=1}^{n} p_{i}\right| \geq n \ldots
$$

4. For $n \geq 1$ let M be an $n \times n$ complex matrix with distinct eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$, with multiplicities $m_{1}, m_{2}, \ldots, m_{k}$, respectively. Consider the linear operator L_{M} defined by $L_{M}(X)=M X+X M^{T}$, for any complex $n \times n$ matrix X. Find its eigenvalues and their multiplicities. (M^{T} denotes the transpose of M; that is, if $M=\left(m_{k, l}\right)$, then $\left.M^{T}=\left(m_{l, k}\right).\right) \quad$ [20 points]
Solution. We first solve the problem for the special case when the eigenvalues of M are distinct and all sums $\lambda_{r}+\lambda_{s}$ are different. Let λ_{r} and λ_{s} be two eigenvalues of M and \vec{v}_{r}, \vec{v}_{s} eigenvectors associated to them, i.e. $M \vec{v}_{j}=\lambda \vec{v}_{j}$ for $j=r, s$. We have $M \vec{v}_{r}\left(\vec{v}_{s}\right)^{T}+\vec{v}_{r}\left(\vec{v}_{s}\right)^{T} M^{T}=\left(M \vec{v}_{r}\right)\left(\vec{v}_{s}\right)^{T}+\vec{v}_{r}\left(M \vec{v}_{s}\right)^{T}=\lambda_{r} \vec{v}_{r}\left(\vec{v}_{s}\right)^{T}+\lambda_{s} \vec{v}_{r}\left(\vec{v}_{s}\right)^{T}$, so $\vec{v}_{r}\left(\vec{v}_{s}\right)$ is an eigenmatrix of L_{M} with the eigenvalue $\lambda_{r}+\lambda_{s}$.

Notice that if $\lambda_{r} \neq \lambda_{s}$ then vectors \vec{u}, \vec{w} are linearly independent and matrices $\vec{u}(\vec{w})^{T}$ and $\vec{w}(\vec{u})^{T}$ are linearly independent, too. This implies that the eigenvalue $\lambda_{r}+\lambda_{s}$ is double if $r \neq s$.

The map L_{M} maps n^{2}-dimensional linear space into itself, so it has at most n^{2} eigenvalues. We already found n^{2} eigenvalues, so there exists no more and the problem is solved for the special case.

In the general case, matrix M is a limit of matrices M_{1}, M_{2}, \ldots such that each of them belongs to the special case above. By the continuity of the eigenvalues we obtain that the eigenvalues of L_{M} are

- $2 \lambda_{r}$ with multiplicity $m_{r}^{2}(r=1, \ldots, k)$;
- $\lambda_{r}+\lambda_{s}$ with multiplicity $2 m_{r} m_{s}(1 \leq r<s \leq k)$.
(It can happen that the sums $\lambda_{r}+\lambda_{s}$ are not pairwise different; for those multiple values the multiplicities should be summed up.)

5. Prove that

$$
\int_{0}^{1} \int_{0}^{1} \frac{d x d y}{x^{-1}+|\ln y|-1} \leq 1 . \quad[20 \text { points }]
$$

Solution 1. First we use the inequality

$$
x^{-1}-1 \geq|\ln x|, x \in(0,1],
$$

which follows from

$$
\begin{gathered}
\left.\left(x^{-1}-1\right)\right|_{x=1}=|\ln x|_{x=1}=0 \\
\left(x^{-1}-1\right)^{\prime}=-\frac{1}{x^{2}} \leq-\frac{1}{x}=|\ln x|^{\prime}, x \in(0,1] .
\end{gathered}
$$

Therefore

$$
\int_{0}^{1} \int_{0}^{1} \frac{d x d y}{x^{-1}+|\ln y|-1} \leq \int_{0}^{1} \int_{0}^{1} \frac{d x d y}{|\ln x|+|\ln y|}=\int_{0}^{1} \int_{0}^{1} \frac{d x d y}{|\ln (x \cdot y)|}
$$

Substituting $y=u / x$, we obtain

$$
\int_{0}^{1} \int_{0}^{1} \frac{d x d y}{|\ln (x \cdot y)|}=\int_{0}^{1}\left(\int_{u}^{1} \frac{d x}{x}\right) \frac{d u}{|\ln u|}=\int_{0}^{1}|\ln u| \cdot \frac{d u}{|\ln u|}=1
$$

Solution 2. Substituting $s=x^{-1}-1$ and $u=s-\ln y$,

$$
\int_{0}^{1} \int_{0}^{1} \frac{d x d y}{x^{-1}+|\ln y|-1}=\int_{0}^{\infty} \int_{s}^{\infty} \frac{e^{s-u}}{(s+1)^{2} u} d u d s=\int_{0}^{\infty}\left(\int_{0}^{u} \frac{e^{s}}{(s+1)^{2}} d s\right) \frac{e^{-u}}{u} d s d u
$$

Since the function $\frac{e^{s}}{(s+1)^{2}}$ is convex,

$$
\int_{0}^{u} \frac{e^{s}}{(s+1)^{2}} d s \leq \frac{u}{2}\left(\frac{e^{u}}{(u+1)^{2}}+1\right)
$$

so

$$
\int_{0}^{1} \int_{0}^{1} \frac{d x d y}{x^{-1}+|\ln y|-1} \leq \int_{0}^{\infty} \frac{u}{2}\left(\frac{e^{u}}{(u+1)^{2}}+1\right) \frac{e^{-u}}{u} d u=\frac{1}{2}\left(\int_{0}^{\infty} \frac{d u}{(u+1)^{2}}+\int_{0}^{\infty} e^{-u} d u\right)=1
$$

6. For $n \geq 0$ define matrices A_{n} and B_{n} as follows: $A_{0}=B_{0}=(1)$ and for every $n>0$

$$
A_{n}=\left(\begin{array}{cc}
A_{n-1} & A_{n-1} \\
A_{n-1} & B_{n-1}
\end{array}\right) \text { and } B_{n}=\left(\begin{array}{cc}
A_{n-1} & A_{n-1} \\
A_{n-1} & 0
\end{array}\right)
$$

Denote the sum of all elements of a matrix M by $S(M)$. Prove that $S\left(A_{n}^{k-1}\right)=S\left(A_{k}^{n-1}\right)$ for every $n, k \geq 1$. [20 points]
Solution. The quantity $S\left(A_{n}^{k-1}\right)$ has a special combinatorical meaning. Consider an $n \times k$ table filled with 0 's and 1's such that no 2×2 contains only 1's. Denote the number of such fillings by $F_{n k}$. The filling of each row of the table corresponds to some integer ranging from 0 to $2^{n}-1$ written in base 2 . $F_{n k}$ equals to the number of k-tuples of integers such that every two consecutive integers correspond to the filling of $n \times 2$ table without 2×2 squares filled with 1 's.

Consider binary expansions of integers i and $j \overline{i_{n} i_{n-1} \ldots i_{1}}$ and $\overline{j_{n} j_{n-1} \ldots j_{1}}$. There are two cases:

1. If $i_{n} j_{n}=0$ then i and j can be consecutive iff $\overline{i_{n-1} \ldots i_{1}}$ and $\overline{j_{n-1} \ldots j_{1}}$ can be consequtive.
2. If $i_{n}=j_{n}=1$ then i and j can be consecutive iff $i_{n-1} j_{n-1}=0$ and $\overline{i_{n-2} \ldots i_{1}}$ and $\overline{j_{n-2} \ldots j_{1}}$ can be consecutive.

Hence i and j can be consecutive iff $(i+1, j+1)$-th entry of A_{n} is 1 . Denoting this entry by $a_{i, j}$, the sum $S\left(A_{n}^{k-1}\right)=\sum_{i_{1}=0}^{2^{n}-1} \cdots \sum_{i_{k}=0}^{2^{n}=1} a_{i_{1} i_{2}} a_{i_{2} i_{3}} \cdots a_{i_{k-1} i_{k}}$ counts the possible fillings. Therefore $F_{n k}=S\left(A_{n}^{k-1}\right)$.

The the obvious statement $F_{n k}=F_{k n}$ completes the proof.

