$11^{\text {th }}$ International Mathematical Competition for University Students
 Skopje, 25-26 July 2004

Solutions for problems on Day 1

Problem 1. Let S be an infinite set of real numbers such that $\left|s_{1}+s_{2}+\cdots+s_{k}\right|<1$ for every finite subset $\left\{s_{1}, s_{2}, \ldots, s_{k}\right\} \subset S$. Show that S is countable. [20 points]
Solution. Let $S_{n}=S \cap\left(\frac{1}{n}, \infty\right)$ for any integer $n>0$. It follows from the inequality that $\left|S_{n}\right|<n$. Similarly, if we define $S_{-n}=S \cap\left(-\infty,-\frac{1}{n}\right)$, then $\left|S_{-n}\right|<n$. Any nonzero $x \in S$ is an element of some S_{n} or S_{-n}, because there exists an n such that $x>\frac{1}{n}$, or $x<-\frac{1}{n}$. Then $S \subset\{0\} \cup \bigcup_{n \in N}\left(S_{n} \cup S_{-n}\right), S$ is a countable union of finite sets, and hence countable.

Problem 2. Let $P(x)=x^{2}-1$. How many distinct real solutions does the following equation have:

$$
\underbrace{P(P(\ldots(P}_{2004}(x)) \ldots))=0 ? \quad[20 \text { points }]
$$

Solution. Put $P_{n}(x)=\underbrace{P(P(\ldots(P}_{n}(x)) \ldots))$. As $P_{1}(x) \geq-1$, for each $x \in R$, it must be that $P_{n+1}(x)=P_{1}\left(P_{n}(x)\right) \geq$ -1 , for each $n \in N$ and each $x \in R$. Therefore the equation $P_{n}(x)=a$, where $a<-1$ has no real solutions. Let us prove that the equation $P_{n}(x)=a$, where $a>0$, has exactly two distinct real solutions. To this end we use mathematical induction by n. If $n=1$ the assertion follows directly. Assuming that the assertion holds for a $n \in N$ we prove that it must also hold for $n+1$. Since $P_{n+1}(x)=a$ is equivalent to $P_{1}\left(P_{n}(x)\right)=a$, we conclude that $P_{n}(x)=\sqrt{a+1}$ or $P_{n}(x)=-\sqrt{a+1}$. The equation $P_{n}(x)=\sqrt{a+1}$, as $\sqrt{a+1}>1$, has exactly two distinct real solutions by the inductive hypothesis, while the equation $P_{n}(x)=-\sqrt{a+1}$ has no real solutions (because $-\sqrt{a+1}<-1$). Hence the equation $P_{n+1}(x)=a$, has exactly two distinct real solutions.

Let us prove now that the equation $P_{n}(x)=0$ has exactly $n+1$ distinct real solutions. Again we use mathematical induction. If $n=1$ the solutions are $x= \pm 1$, and if $n=2$ the solutions are $x=0$ and $x= \pm \sqrt{2}$, so in both cases the number of solutions is equal to $n+1$. Suppose that the assertion holds for some $n \in N$. Note that $P_{n+2}(x)=P_{2}\left(P_{n}(x)\right)=P_{n}^{2}(x)\left(P_{n}^{2}(x)-2\right)$, so the set of all real solutions of the equation $P_{n+2}=0$ is exactly the union of the sets of all real solutions of the equations $P_{n}(x)=0, P_{n}(x)=\sqrt{2}$ and $P_{n}(x)=-\sqrt{2}$. By the inductive hypothesis the equation $P_{n}(x)=0$ has exactly $n+1$ distinct real solutions, while the equations $P_{n}(x)=\sqrt{2}$ and $P_{n}(x)=-\sqrt{2}$ have two and no distinct real solutions, respectively. Hence, the sets above being pairwise disjoint, the equation $P_{n+2}(x)=0$ has exactly $n+3$ distinct real solutions. Thus we have proved that, for each $n \in N$, the equation $P_{n}(x)=0$ has exactly $n+1$ distinct real solutions, so the answer to the question posed in this problem is 2005.

Problem 3. Let S_{n} be the set of all sums $\sum_{k=1}^{n} x_{k}$, where $n \geq 2,0 \leq x_{1}, x_{2}, \ldots, x_{n} \leq \frac{\pi}{2}$ and

$$
\sum_{k=1}^{n} \sin x_{k}=1
$$

a) Show that S_{n} is an interval. [10 points]
b) Let l_{n} be the length of S_{n}. Find $\lim _{n \rightarrow \infty} l_{n}$. [10 points]

Solution. (a) Equivalently, we consider the set

$$
Y=\left\{y=\left(y_{1}, y_{2}, \ldots, y_{n}\right) \mid 0 \leq y_{1}, y_{2}, \ldots, y_{n} \leq 1, y_{1}+y_{2}+\ldots+y_{n}=1\right\} \subset R^{n}
$$

and the image $f(Y)$ of Y under

$$
f(y)=\arcsin y_{1}+\arcsin y_{2}+\ldots+\arcsin y_{n} .
$$

Note that $f(Y)=S_{n}$. Since Y is a connected subspace of R^{n} and f is a continuous function, the image $f(Y)$ is also connected, and we know that the only connected subspaces of R are intervals. Thus S_{n} is an interval.
(b) We prove that

$$
n \arcsin \frac{1}{n} \leq x_{1}+x_{2}+\ldots+x_{n} \leq \frac{\pi}{2}
$$

Since the graph of $\sin x$ is concave down for $x \in\left[0, \frac{\pi}{2}\right]$, the chord joining the points $(0,0)$ and $\left(\frac{\pi}{2}, 1\right)$ lies below the graph. Hence

$$
\frac{2 x}{\pi} \leq \sin x \text { for all } x \in\left[0, \frac{\pi}{2}\right]
$$

and we can deduce the right-hand side of the claim:

$$
\frac{2}{\pi}\left(x_{1}+x_{2}+\ldots+x_{n}\right) \leq \sin x_{1}+\sin x_{2}+\ldots+\sin x_{n}=1
$$

The value 1 can be reached choosing $x_{1}=\frac{\pi}{2}$ and $x_{2}=\cdots=x_{n}=0$.
The left-hand side follows immediately from Jensen's inequality, $\operatorname{since} \sin x$ is concave down for $x \in\left[0, \frac{\pi}{2}\right]$ and $0 \leq \frac{x_{1}+x_{2}+\ldots+x_{n}}{n}<\frac{\pi}{2}$

$$
\frac{1}{n}=\frac{\sin x_{1}+\sin x_{2}+\ldots+\sin x_{n}}{n} \leq \sin \frac{x_{1}+x_{2}+\ldots+x_{n}}{n}
$$

Equality holds if $x_{1}=\cdots=x_{n}=\arcsin \frac{1}{n}$.
Now we have computed the minimum and maximum of interval S_{n}; we can conclude that $S_{n}=\left[n \arcsin \frac{1}{n}, \frac{\pi}{2}\right]$. Thus $l_{n}=\frac{\pi}{2}-n \arcsin \frac{1}{n}$ and

$$
\lim _{n \rightarrow \infty} l_{n}=\frac{\pi}{2}-\lim _{n \rightarrow \infty} \frac{\arcsin (1 / n)}{1 / n}=\frac{\pi}{2}-1
$$

Problem 4. Suppose $n \geq 4$ and let M be a finite set of n points in \mathbb{R}^{3}, no four of which lie in a plane. Assume that the points can be coloured black or white so that any sphere which intersects M in at least four points has the property that exactly half of the points in the intersection of M and the sphere are white. Prove that all of the points in M lie on one sphere. [20 points]
Solution. Define $f: M \rightarrow\{-1,1\}, f(X)=\left\{\begin{array}{c}-1 \text {, if } X \text { is white } \\ 1 \text {, if } X \text { is black }\end{array}\right.$. The given condition becomes $\sum_{X \in S} f(X)=0$ for any sphere S which passes through at least 4 points of M. For any 3 given points A, B, C in M, denote by $S(A, B, C)$ the set of all spheres which pass through A, B, C and at least one other point of M and by $|S(A, B, C)|$ the number of these spheres. Also, denote by \sum the sum $\sum_{X \in M} f(X)$.

We have

$$
\begin{equation*}
0=\sum_{S \in S(A, B, C)} \sum_{X \in S} f(X)=(|S(A, B, C)|-1)(f(A)+f(B)+f(C))+\sum \tag{1}
\end{equation*}
$$

since the values of A, B, C appear $|S(A, B, C)|$ times each and the other values appear only once.
If there are 3 points A, B, C such that $|S(A, B, C)|=1$, the proof is finished.
If $|S(A, B, C)|>1$ for any distinct points A, B, C in M, we will prove at first that $\sum=0$.
Assume that $\sum>0$. From (1) it follows that $f(A)+f(B)+f(C)<0$ and summing by all $\binom{n}{3}$ possible choices of (A, B, C) we obtain that $\binom{n}{3} \sum<0$, which means $\sum<0$ (contradicts the starting assumption). The same reasoning is applied when assuming $\sum<0$.

Now, from $\sum=0$ and (1), it follows that $f(A)+f(B)+f(C)=0$ for any distinct points A, B, C in M. Taking another point $D \in M$, the following equalities take place

$$
\begin{aligned}
& f(A)+f(B)+f(C)=0 \\
& f(A)+f(B)+f(D)=0 \\
& f(A)+f(C)+f(D)=0 \\
& f(B)+f(C)+f(D)=0
\end{aligned}
$$

which easily leads to $f(A)=f(B)=f(C)=f(D)=0$, which contradicts the definition of f.
Problem 5. Let X be a set of $\binom{2 k-4}{k-2}+1$ real numbers, $k \geq 2$. Prove that there exists a monotone sequence $\left\{x_{i}\right\}_{i=1}^{k} \subseteq X$ such that

$$
\left|x_{i+1}-x_{1}\right| \geq 2\left|x_{i}-x_{1}\right|
$$

for all $i=2, \ldots, k-1$.

Solution. We prove a more general statement:
Lemma. Let $k, l \geq 2$, let X be a set of $\binom{k+l-4}{k-2}+1$ real numbers. Then either X contains an increasing sequence $\left\{x_{i}\right\}_{i=1}^{k} \subseteq X$ of length k and

$$
\left|x_{i+1}-x_{1}\right| \geq 2\left|x_{i}-x_{1}\right| \quad \forall i=2, \ldots, k-1
$$

or X contains a decreasing sequence $\left\{x_{i}\right\}_{i=1}^{l} \subseteq X$ of length l and

$$
\left|x_{i+1}-x_{1}\right| \geq 2\left|x_{i}-x_{1}\right| \quad \forall i=2, \ldots, l-1
$$

Proof of the lemma. We use induction on $k+l$. In case $k=2$ or $l=2$ the lemma is obviously true.
Now let us make the induction step. Let m be the minimal element of X, M be its maximal element. Let

$$
X_{m}=\left\{x \in X: x \leq \frac{m+M}{2}\right\}, \quad X_{M}=\left\{x \in X: x>\frac{m+M}{2}\right\}
$$

Since $\binom{k+l-4}{k-2}=\binom{k+(l-1)-4}{k-2}+\binom{(k-1)+l-4}{(k-1)-2}$, we can see that either

$$
\left|X_{m}\right| \geq\binom{(k-1)+l-4}{(k-1)-2}+1, \quad \text { or } \quad\left|X_{M}\right| \geq\binom{ k+(l-1)-4}{k-2}+1
$$

In the first case we apply the inductive assumption to X_{m} and either obtain a decreasing sequence of length l with the required properties (in this case the inductive step is made), or obtain an increasing sequence $\left\{x_{i}\right\}_{i=1}^{k-1} \subseteq$ X_{m} of length $k-1$. Then we note that the sequence $\left\{x_{1}, x_{2}, \ldots, x_{k-1}, M\right\} \subseteq X$ has length k and all the required properties.

In the case $\left|X_{M}\right| \geq\binom{ k+(l-1)-4}{k-2}+1$ the inductive step is made in a similar way. Thus the lemma is proved.
The reader may check that the number $\binom{k+l-4}{k-2}+1$ cannot be smaller in the lemma.
Problem 6. For every complex number $z \notin\{0,1\}$ define

$$
f(z):=\sum(\log z)^{-4}
$$

where the sum is over all branches of the complex logarithm.
a) Show that there are two polynomials P and Q such that $f(z)=P(z) / Q(z)$ for all $z \in \mathbb{C} \backslash\{0,1\}$. points]
b) Show that for all $z \in \mathbb{C} \backslash\{0,1\}$

$$
f(z)=z \frac{z^{2}+4 z+1}{6(z-1)^{4}} \cdot \quad[10 \text { points }]
$$

Solution 1. It is clear that the left hand side is well defined and independent of the order of summation, because we have a sum of the type $\sum n^{-4}$, and the branches of the logarithms do not matter because all branches are taken. It is easy to check that the convergence is locally uniform on $\mathbb{C} \backslash\{0,1\}$; therefore, f is a holomorphic function on the complex plane, except possibly for isolated singularities at 0 and 1 . (We omit the detailed estimates here.)

The function \log has its only (simple) zero at $z=1$, so f has a quadruple pole at $z=1$.
Now we investigate the behavior near infinity. We have $\operatorname{Re}(\log (z))=\log |z|$, hence (with $c:=\log |z|)$

$$
\begin{aligned}
\left|\sum(\log z)^{-4}\right| & \leq \sum|\log z|^{-4}=\sum(\log |z|+2 \pi i n)^{-4}+O(1) \\
& =\int_{-\infty}^{\infty}(c+2 \pi i x)^{-4} d x+O(1) \\
& =c^{-4} \int_{-\infty}^{\infty}(1+2 \pi i x / c)^{-4} d x+O(1) \\
& =c^{-3} \int_{-\infty}^{\infty}(1+2 \pi i t)^{-4} d t+O(1) \\
& \leq \alpha(\log |z|)^{-3}
\end{aligned}
$$

for a universal constant α. Therefore, the infinite sum tends to 0 as $|z| \rightarrow \infty$. In particular, the isolated singularity at ∞ is not essential, but rather has (at least a single) zero at ∞.

The remaining singularity is at $z=0$. It is readily verified that $f(1 / z)=f(z)$ (because $\log (1 / z)=-\log (z)$); this implies that f has a zero at $z=0$.

We conclude that the infinite sum is holomorphic on \mathbb{C} with at most one pole and without an essential singularity at ∞, so it is a rational function, i.e. we can write $f(z)=P(z) / Q(z)$ for some polynomials P and Q which we may as well assume coprime. This solves the first part.

Since f has a quadruple pole at $z=1$ and no other poles, we have $Q(z)=(z-1)^{4}$ up to a constant factor which we can as well set equal to 1 , and this determines P uniquely. Since $f(z) \rightarrow 0$ as $z \rightarrow \infty$, the degree of P is at most 3, and since $P(0)=0$, it follows that $P(z)=z\left(a z^{2}+b z+c\right)$ for yet undetermined complex constants a, b, c.

There are a number of ways to compute the coefficients a, b, c, which turn out to be $a=c=1 / 6, b=2 / 3$. Since $f(z)=f(1 / z)$, it follows easily that $a=c$. Moreover, the fact $\lim _{z \rightarrow 1}(z-1)^{4} f(z)=1$ implies $a+b+c=1$ (this fact follows from the observation that at $z=1$, all summands cancel pairwise, except the principal branch which contributes a quadruple pole). Finally, we can calculate

$$
f(-1)=\pi^{-4} \sum_{n o d d} n^{-4}=2 \pi^{-4} \sum_{n \geq 1 \text { odd }} n^{-4}=2 \pi^{-4}\left(\sum_{n \geq 1} n^{-4}-\sum_{n \geq 1 \text { even }} n^{-4}\right)=\frac{1}{48}
$$

This implies $a-b+c=-1 / 3$. These three equations easily yield a, b, c.
Moreover, the function f satisfies $f(z)+f(-z)=16 f\left(z^{2}\right)$: this follows because the branches of $\log \left(z^{2}\right)=$ $\log \left((-z)^{2}\right)$ are the numbers $2 \log (z)$ and $2 \log (-z)$. This observation supplies the two equations $b=4 a$ and $a=c$, which can be used instead of some of the considerations above.

Another way is to compute $g(z)=\sum \frac{1}{(\log z)^{2}}$ first. In the same way, $g(z)=\frac{d z}{(z-1)^{2}}$. The unknown coefficient d can be computed from $\lim _{z \rightarrow 1}(z-1)^{2} g(z)=1$; it is $d=1$. Then the exponent 2 in the denominator can be increased by taking derivatives (see Solution 2). Similarly, one can start with exponent 3 directly.

A more straightforward, though tedious way to find the constants is computing the first four terms of the Laurent series of f around $z=1$. For that branch of the logarithm which vanishes at 1 , for all $|w|<\frac{1}{2}$ we have

$$
\log (1+w)=w-\frac{w^{2}}{2}+\frac{w^{3}}{3}-\frac{w^{4}}{4}+O\left(|w|^{5}\right)
$$

after some computation, one can obtain

$$
\frac{1}{\log (1+w)^{4}}=w^{-4}+2 w^{-2}+\frac{7}{6} w^{-2}+\frac{1}{6} w^{-1}+O(1) .
$$

The remaining branches of logarithm give a bounded function. So

$$
f(1+w)=w^{-4}+2 w^{-2}+\frac{7}{6} w^{-2}+\frac{1}{6} w^{-1}
$$

(the remainder vanishes) and

$$
f(z)=\frac{1+2(z-1)+\frac{7}{6}(z-1)^{2}+\frac{1}{6}(z-1)^{3}}{(z-1)^{4}}=\frac{z\left(z^{2}+4 z+1\right)}{6(z-1)^{4}} .
$$

Solution 2. ¿From the well-known series for the cotangent function,

$$
\lim _{N \rightarrow \infty} \sum_{k=-N}^{N} \frac{1}{w+2 \pi i \cdot k}=\frac{i}{2} \cot \frac{i w}{2}
$$

and

$$
\lim _{N \rightarrow \infty} \sum_{k=-N}^{N} \frac{1}{\log z+2 \pi i \cdot k}=\frac{i}{2} \cot \frac{i \log z}{2}=\frac{i}{2} \cdot i \frac{e^{2 i \cdot \frac{i \log z}{2}}+1}{e^{2 i \cdot \frac{\log z}{2}}-1}=\frac{1}{2}+\frac{1}{z-1} .
$$

Taking derivatives we obtain

$$
\begin{aligned}
& \sum \frac{1}{(\log z)^{2}}=-z \cdot\left(\frac{1}{2}+\frac{1}{z-1}\right)^{\prime}=\frac{z}{(z-1)^{2}} \\
& \sum \frac{1}{(\log z)^{3}}=-\frac{z}{2} \cdot\left(\frac{z}{(z-1)^{2}}\right)^{\prime}=\frac{z(z+1)}{2(z-1)^{3}}
\end{aligned}
$$

and

$$
\sum \frac{1}{(\log z)^{4}}=-\frac{z}{3} \cdot\left(\frac{z(z+1)}{2(z-1)^{3}}\right)^{\prime}=\frac{z\left(z^{2}+4 z+1\right)}{2(z-1)^{4}}
$$

