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Solutions for problems on Day 1

Problem 1. Let S be an infinite set of real numbers such that |s1 + s2 + · · · + sk| < 1 for every finite subset
{s1, s2, . . . , sk} ⊂ S. Show that S is countable. [20 points]

Solution. Let Sn = S ∩ ( 1
n ,∞) for any integer n > 0. It follows from the inequality that |Sn| < n. Similarly, if we

define S−n = S ∩ (−∞,− 1
n), then |S−n| < n. Any nonzero x ∈ S is an element of some Sn or S−n, because there

exists an n such that x > 1
n , or x < − 1

n . Then S ⊂ {0} ∪
⋃

n∈N

(Sn ∪S−n), S is a countable union of finite sets, and

hence countable.

Problem 2. Let P (x) = x2 − 1. How many distinct real solutions does the following equation have:

P (P (. . . (P︸ ︷︷ ︸
2004

(x)) . . . )) = 0 ? [20 points]

Solution. Put Pn(x) = P (P (...(P︸ ︷︷ ︸
n

(x))...)). As P1(x) ≥ −1, for each x ∈ R, it must be that Pn+1(x) = P1(Pn(x)) ≥

−1, for each n ∈ N and each x ∈ R. Therefore the equation Pn(x) = a, where a < −1 has no real solutions.
Let us prove that the equation Pn(x) = a, where a > 0, has exactly two distinct real solutions. To this end we
use mathematical induction by n. If n = 1 the assertion follows directly. Assuming that the assertion holds for a
n ∈ N we prove that it must also hold for n + 1. Since Pn+1(x) = a is equivalent to P1(Pn(x)) = a, we conclude
that Pn(x) =

√
a + 1 or Pn(x) = −

√
a + 1. The equation Pn(x) =

√
a + 1, as

√
a + 1 > 1, has exactly two distinct

real solutions by the inductive hypothesis, while the equation Pn(x) = −
√

a + 1 has no real solutions (because
−
√

a + 1 < −1). Hence the equation Pn+1(x) = a, has exactly two distinct real solutions.
Let us prove now that the equation Pn(x) = 0 has exactly n + 1 distinct real solutions. Again we use

mathematical induction. If n = 1 the solutions are x = ±1, and if n = 2 the solutions are x = 0 and x = ±
√

2,
so in both cases the number of solutions is equal to n + 1. Suppose that the assertion holds for some n ∈ N .
Note that Pn+2(x) = P2(Pn(x)) = P 2

n(x)(P 2
n(x) − 2), so the set of all real solutions of the equation Pn+2 = 0 is

exactly the union of the sets of all real solutions of the equations Pn(x) = 0, Pn(x) =
√

2 and Pn(x) = −
√

2.
By the inductive hypothesis the equation Pn(x) = 0 has exactly n + 1 distinct real solutions, while the equations
Pn(x) =

√
2 and Pn(x) = −

√
2 have two and no distinct real solutions, respectively. Hence, the sets above being

pairwise disjoint, the equation Pn+2(x) = 0 has exactly n + 3 distinct real solutions. Thus we have proved that,
for each n ∈ N , the equation Pn(x) = 0 has exactly n + 1 distinct real solutions, so the answer to the question
posed in this problem is 2005.

Problem 3. Let Sn be the set of all sums
n∑

k=1

xk, where n ≥ 2, 0 ≤ x1, x2, . . . , xn ≤ π
2 and

n∑
k=1

sinxk = 1 .

a) Show that Sn is an interval. [10 points]
b) Let ln be the length of Sn. Find lim

n→∞
ln. [10 points]

Solution. (a) Equivalently, we consider the set

Y = {y = (y1, y2, ..., yn)| 0 ≤ y1, y2, ..., yn ≤ 1, y1 + y2 + ... + yn = 1} ⊂ Rn

and the image f(Y ) of Y under

f(y) = arcsin y1 + arcsin y2 + ... + arcsin yn.

Note that f(Y ) = Sn. Since Y is a connected subspace of Rn and f is a continuous function, the image f(Y ) is
also connected, and we know that the only connected subspaces of R are intervals. Thus Sn is an interval.



(b) We prove that

n arcsin
1
n
≤ x1 + x2 + ... + xn ≤

π

2
.

Since the graph of sin x is concave down for x ∈ [0, π
2 ], the chord joining the points (0, 0) and (π

2 , 1) lies below the
graph. Hence

2x

π
≤ sinx for all x ∈ [0,

π

2
]

and we can deduce the right-hand side of the claim:

2
π

(x1 + x2 + ... + xn) ≤ sinx1 + sinx2 + ... + sinxn = 1.

The value 1 can be reached choosing x1 = π
2 and x2 = · · · = xn = 0.

The left-hand side follows immediately from Jensen’s inequality, since sinx is concave down for x ∈ [0, π
2 ] and

0 ≤ x1+x2+...+xn
n < π

2
1
n

=
sinx1 + sinx2 + ... + sinxn

n
≤ sin

x1 + x2 + ... + xn

n
.

Equality holds if x1 = · · · = xn = arcsin 1
n .

Now we have computed the minimum and maximum of interval Sn; we can conclude that Sn = [n arcsin 1
n , π

2 ].
Thus ln = π

2 − n arcsin 1
n and

lim
n→∞

ln =
π

2
− lim

n→∞

arcsin(1/n)
1/n

=
π

2
− 1.

Problem 4. Suppose n ≥ 4 and let M be a finite set of n points in R3, no four of which lie in a plane. Assume
that the points can be coloured black or white so that any sphere which intersects M in at least four points has
the property that exactly half of the points in the intersection of M and the sphere are white. Prove that all of
the points in M lie on one sphere. [20 points]

Solution. Define f : M → {−1, 1}, f (X) =
{
−1, if X is white
1, if X is black

. The given condition becomes
∑

X∈S f (X) = 0

for any sphere S which passes through at least 4 points of M . For any 3 given points A, B, C in M , denote by
S (A,B, C) the set of all spheres which pass through A, B, C and at least one other point of M and by |S (A,B, C)|
the number of these spheres. Also, denote by

∑
the sum

∑
X∈M f (X).

We have
0 =

∑
S∈S(A,B,C)

∑
X∈S

f (X) = (|S (A,B, C)| − 1) (f (A) + f (B) + f (C)) +
∑

(1)

since the values of A, B, C appear |S (A,B, C)| times each and the other values appear only once.
If there are 3 points A, B, C such that |S (A,B, C)| = 1, the proof is finished.
If |S (A,B, C)| > 1 for any distinct points A, B, C in M , we will prove at first that

∑
= 0.

Assume that
∑

> 0. From (1) it follows that f (A) + f (B) + f (C) < 0 and summing by all
(
n
3

)
possible

choices of (A,B, C) we obtain that
(
n
3

) ∑
< 0, which means

∑
< 0 (contradicts the starting assumption). The

same reasoning is applied when assuming
∑

< 0.
Now, from

∑
= 0 and (1), it follows that f (A) + f (B) + f (C) = 0 for any distinct points A, B, C in M .

Taking another point D ∈ M , the following equalities take place

f (A) + f (B) + f (C) = 0
f (A) + f (B) + f (D) = 0
f (A) + f (C) + f (D) = 0
f (B) + f (C) + f (D) = 0

which easily leads to f (A) = f (B) = f (C) = f (D) = 0, which contradicts the definition of f .

Problem 5. Let X be a set of
(
2k−4
k−2

)
+ 1 real numbers, k ≥ 2. Prove that there exists a monotone sequence

{xi}k
i=1 ⊆ X such that

|xi+1 − x1| ≥ 2|xi − x1|

for all i = 2, . . . , k − 1. [20 points]



Solution. We prove a more general statement:
Lemma. Let k, l ≥ 2, let X be a set of

(
k+l−4
k−2

)
+1 real numbers. Then either X contains an increasing sequence

{xi}k
i=1 ⊆ X of length k and

|xi+1 − x1| ≥ 2|xi − x1| ∀i = 2, . . . , k − 1,

or X contains a decreasing sequence {xi}l
i=1 ⊆ X of length l and

|xi+1 − x1| ≥ 2|xi − x1| ∀i = 2, . . . , l − 1.

Proof of the lemma. We use induction on k + l. In case k = 2 or l = 2 the lemma is obviously true.
Now let us make the induction step. Let m be the minimal element of X, M be its maximal element. Let

Xm = {x ∈ X : x ≤ m + M

2
}, XM = {x ∈ X : x >

m + M

2
}.

Since
(
k+l−4
k−2

)
=

(k+(l−1)−4
k−2

)
+

((k−1)+l−4
(k−1)−2

)
, we can see that either

|Xm| ≥
(

(k − 1) + l − 4
(k − 1)− 2

)
+ 1, or |XM | ≥

(
k + (l − 1)− 4

k − 2

)
+ 1.

In the first case we apply the inductive assumption to Xm and either obtain a decreasing sequence of length l
with the required properties (in this case the inductive step is made), or obtain an increasing sequence {xi}k−1

i=1 ⊆
Xm of length k − 1. Then we note that the sequence {x1, x2, . . . , xk−1,M} ⊆ X has length k and all the required
properties.

In the case |XM | ≥
(k+(l−1)−4

k−2

)
+ 1 the inductive step is made in a similar way. Thus the lemma is proved.

The reader may check that the number
(
k+l−4
k−2

)
+ 1 cannot be smaller in the lemma.

Problem 6. For every complex number z /∈ {0, 1} define

f(z) :=
∑

(log z)−4,

where the sum is over all branches of the complex logarithm.
a) Show that there are two polynomials P and Q such that f(z) = P (z)/Q(z) for all z ∈ C \ {0, 1}. [10

points]
b) Show that for all z ∈ C \ {0, 1}

f(z) = z
z2 + 4z + 1
6(z − 1)4

. [10 points]

Solution 1. It is clear that the left hand side is well defined and independent of the order of summation, because
we have a sum of the type

∑
n−4, and the branches of the logarithms do not matter because all branches are taken.

It is easy to check that the convergence is locally uniform on C \ {0, 1}; therefore, f is a holomorphic function on
the complex plane, except possibly for isolated singularities at 0 and 1. (We omit the detailed estimates here.)

The function log has its only (simple) zero at z = 1, so f has a quadruple pole at z = 1.
Now we investigate the behavior near infinity. We have Re(log(z)) = log |z|, hence (with c := log |z|)

|
∑

(log z)−4| ≤
∑

| log z|−4 =
∑

(log |z|+ 2πin)−4 + O(1)

=
∫ ∞

−∞
(c + 2πix)−4 dx + O(1)

= c−4

∫ ∞

−∞
(1 + 2πix/c)−4 dx + O(1)

= c−3

∫ ∞

−∞
(1 + 2πit)−4 dt + O(1)

≤ α(log |z|)−3

for a universal constant α. Therefore, the infinite sum tends to 0 as |z| → ∞. In particular, the isolated singularity
at ∞ is not essential, but rather has (at least a single) zero at ∞.



The remaining singularity is at z = 0. It is readily verified that f(1/z) = f(z) (because log(1/z) = − log(z));
this implies that f has a zero at z = 0.

We conclude that the infinite sum is holomorphic on C with at most one pole and without an essential singularity
at ∞, so it is a rational function, i.e. we can write f(z) = P (z)/Q(z) for some polynomials P and Q which we
may as well assume coprime. This solves the first part.

Since f has a quadruple pole at z = 1 and no other poles, we have Q(z) = (z − 1)4 up to a constant factor
which we can as well set equal to 1, and this determines P uniquely. Since f(z) → 0 as z → ∞, the degree of P
is at most 3, and since P (0) = 0, it follows that P (z) = z(az2 + bz + c) for yet undetermined complex constants
a, b, c.

There are a number of ways to compute the coefficients a, b, c, which turn out to be a = c = 1/6, b = 2/3.
Since f(z) = f(1/z), it follows easily that a = c. Moreover, the fact lim

z→1
(z − 1)4f(z) = 1 implies a + b + c = 1

(this fact follows from the observation that at z = 1, all summands cancel pairwise, except the principal branch
which contributes a quadruple pole). Finally, we can calculate

f(−1) = π−4
∑
nodd

n−4 = 2π−4
∑

n≥1odd

n−4 = 2π−4

∑
n≥1

n−4 −
∑

n≥1even

n−4

 =
1
48

.

This implies a− b + c = −1/3. These three equations easily yield a, b, c.
Moreover, the function f satisfies f(z) + f(−z) = 16f(z2): this follows because the branches of log(z2) =

log((−z)2) are the numbers 2 log(z) and 2 log(−z). This observation supplies the two equations b = 4a and a = c,
which can be used instead of some of the considerations above.

Another way is to compute g(z) =
∑ 1

(log z)2
first. In the same way, g(z) = dz

(z−1)2
. The unknown coefficient d

can be computed from lim
z→1

(z− 1)2g(z) = 1; it is d = 1. Then the exponent 2 in the denominator can be increased

by taking derivatives (see Solution 2). Similarly, one can start with exponent 3 directly.
A more straightforward, though tedious way to find the constants is computing the first four terms of the

Laurent series of f around z = 1. For that branch of the logarithm which vanishes at 1, for all |w| < 1
2 we have

log(1 + w) = w − w2

2
+

w3

3
− w4

4
+ O(|w|5);

after some computation, one can obtain
1

log(1 + w)4
= w−4 + 2w−2 +

7
6
w−2 +

1
6
w−1 + O(1).

The remaining branches of logarithm give a bounded function. So

f(1 + w) = w−4 + 2w−2 +
7
6
w−2 +

1
6
w−1

(the remainder vanishes) and

f(z) =
1 + 2(z − 1) + 7

6(z − 1)2 + 1
6(z − 1)3

(z − 1)4
=

z(z2 + 4z + 1)
6(z − 1)4

.

Solution 2. ¿From the well-known series for the cotangent function,

lim
N→∞

N∑
k=−N

1
w + 2πi · k

=
i

2
cot

iw

2

and

lim
N→∞

N∑
k=−N

1
log z + 2πi · k

=
i

2
cot

i log z

2
=

i

2
· ie

2i· i log z
2 + 1

e2i· i log z
2 − 1

=
1
2

+
1

z − 1
.

Taking derivatives we obtain ∑ 1
(log z)2

= −z ·
(

1
2

+
1

z − 1

)′
=

z

(z − 1)2
,

∑ 1
(log z)3

= −z

2
·
(

z

(z − 1)2

)′
=

z(z + 1)
2(z − 1)3

and ∑ 1
(log z)4

= −z

3
·
(

z(z + 1)
2(z − 1)3

)′
=

z(z2 + 4z + 1)
2(z − 1)4

.


