Solutions for the second day problems at the IMC 2000

Problem 1.

a) Show that the unit square can be partitioned into n smaller squares if n is large enough.
b) Let $d \geq 2$. Show that there is a constant $N(d)$ such that, whenever $n \geq N(d), a$ d-dimensional unit cube can be partitioned into n smaller cubes.

Solution. We start with the following lemma: If a and b be coprime positive integers then every sufficiently large positive integer m can be expressed in the form $a x+b y$ with x, y non-negative integers.

Proof of the lemma. The numbers $0, a, 2 a, \ldots,(b-1) a$ give a complete residue system modulo b. Consequently, for any m there exists a $0 \leq x \leq b-1$ so that $a x \equiv m \quad(\bmod b)$. If $m \geq(b-1) a$, then $y=(m-a x) / b$, for which $x+b y=m$, is a non-negative integer, too.

Now observe that any dissection of a cube into n smaller cubes may be refined to give a dissection into $n+\left(a^{d}-1\right)$ cubes, for any $a \geq 1$. This refinement is achieved by picking an arbitrary cube in the dissection, and cutting it into a^{d} smaller cubes. To prove the required result, then, it suffices to exhibit two relatively prime integers of form $a^{d}-1$. In the 2 -dimensional case, $a_{1}=2$ and $a_{2}=3$ give the coprime numbers $2^{2}-1=3$ and $3^{2}-1=8$. In the general case, two such integers are $2^{d}-1$ and $\left(2^{d}-1\right)^{d}-1$, as is easy to check.

Problem 2. Let f be continuous and nowhere monotone on $[0,1]$. Show that the set of points on which f attains local minima is dense in $[0,1]$.
(A function is nowhere monotone if there exists no interval where the function is monotone. A set is dense if each non-empty open interval contains at least one element of the set.)

Solution. Let $(x-\alpha, x+\alpha) \subset[0,1]$ be an arbitrary non-empty open interval. The function f is not monoton in the intervals $[x-\alpha, x]$ and $[x, x+\alpha]$, thus there exist some real numbers $x-\alpha \leq p<q \leq x, x \leq r<s \leq x+\alpha$ so that $f(p)>f(q)$ and $f(r)<f(s)$.

By Weierstrass' theorem, f has a global minimum in the interval $[p, s]$. The values $f(p)$ and $f(s)$ are not the minimum, because they are greater than $f(q)$ and $f(s)$, respectively. Thus the minimum is in the interior of the interval, it is a local minimum. So each nonempty interval $(x-\alpha, x+\alpha) \subset[0,1]$ contains at least one local minimum.

Problem 3. Let $p(z)$ be a polynomial of degree n with complex coefficients. Prove that there exist at least $n+1$ complex numbers z for which $p(z)$ is 0 or 1 .

Solution. The statement is not true if p is a constant polynomial. We prove it only in the case if n is positive.

For an arbitrary polynomial $q(z)$ and complex number c, denote by $\mu(q, c)$ the largest exponent α for which $q(z)$ is divisible by $(z-c)^{\alpha}$. (With other words, if c is a root of q, then $\mu(q, c)$ is the root's multiplicity. Otherwise 0 .)

Denote by S_{0} and S_{1} the sets of complex numbers z for which $p(z)$ is 0 or 1 , respectively. These sets contain all roots of the polynomials $p(z)$ and $p(z)-1$, thus

$$
\begin{equation*}
\sum_{c \in S_{0}} \mu(p, c)=\sum_{c \in S_{1}} \mu(p-1, c)=n \tag{1}
\end{equation*}
$$

The polynomial p^{\prime} has at most $n-1$ roots ($n>0$ is used here). This implies that

$$
\begin{equation*}
\sum_{c \in S_{0} \cup S_{1}} \mu\left(p^{\prime}, c\right) \leq n-1 \tag{2}
\end{equation*}
$$

If $p(c)=0$ or $p(c)-1=0$, then

$$
\begin{equation*}
\mu(p, c)-\mu\left(p^{\prime} c\right)=1 \quad \text { or } \quad \mu(p-1, c)-\mu\left(p^{\prime} c\right)=1 \tag{3}
\end{equation*}
$$

respectively. Putting (1), (2) and (3) together we obtain

$$
\begin{aligned}
& \left|S_{0}\right|+\left|S_{1}\right|=\sum_{c \in S_{0}}\left(\mu(p, c)-\mu\left(p^{\prime}, c\right)\right)+\sum_{c \in S_{1}}\left(\mu(p-1, c)-\mu\left(p^{\prime}, c\right)\right)= \\
= & \sum_{c \in S_{0}} \mu(p, c)+\sum_{c \in S_{1}} \mu(p-1, c)-\sum_{c \in S_{0} \cup S_{1}} \mu\left(p^{\prime}, c\right) \geq n+n-(n-1)=n+1 .
\end{aligned}
$$

Problem 4. Suppose the graph of a polynomial of degree 6 is tangent to a straight line at 3 points A_{1}, A_{2}, A_{3}, where A_{2} lies between A_{1} and A_{3}.
a) Prove that if the lengths of the segments $A_{1} A_{2}$ and $A_{2} A_{3}$ are equal, then the areas of the figures bounded by these segments and the graph of the polynomial are equal as well.
b) Let $k=\frac{A_{2} A_{3}}{A_{1} A_{2}}$, and let K be the ratio of the areas of the appropriate figures. Prove that

$$
\frac{2}{7} k^{5}<K<\frac{7}{2} k^{5} .
$$

Solution. a) Without loss of generality, we can assume that the point A_{2} is the origin of system of coordinates. Then the polynomial can be presented in the form

$$
y=\left(a_{0} x^{4}+a_{1} x^{3}+a_{2} x^{2}+a_{3} x+a_{4}\right) x^{2}+a_{5} x
$$

where the equation $y=a_{5} x$ determines the straight line $A_{1} A_{3}$. The abscissas of the points A_{1} and A_{3} are $-a$ and $a, a>0$, respectively. Since $-a$ and a are points of tangency, the numbers $-a$ and a must be double roots of the polynomial $a_{0} x^{4}+a_{1} x^{3}+a_{2} x^{2}+a_{3} x+a_{4}$. It follows that the polynomial is of the form

$$
y=a_{0}\left(x^{2}-a^{2}\right)^{2}+a_{5} x .
$$

The equality follows from the equality of the integrals

$$
\int_{-a}^{0} a_{0}\left(x^{2}-a^{2}\right) x^{2} \mathrm{~d} x=\int_{0}^{a} a_{0}\left(x^{2}-a^{2}\right) x^{2} \mathrm{~d} x
$$

due to the fact that the function $y=a_{0}\left(x^{2}-a^{2}\right)$ is even.
b) Without loss of generality, we can assume that $a_{0}=1$. Then the function is of the form

$$
y=(x+a)^{2}(x-b)^{2} x^{2}+a_{5} x
$$

where a and b are positive numbers and $b=k a, 0<k<\infty$. The areas of the figures at the segments $A_{1} A_{2}$ and $A_{2} A_{3}$ are equal respectively to

$$
\int_{-a}^{0}(x+a)^{2}(x-b)^{2} x^{2} \mathrm{~d} x=\frac{a^{7}}{210}\left(7 k^{2}+7 k+2\right)
$$

and

$$
\int_{0}^{b}(x+a)^{2}(x-b)^{2} x^{2} \mathrm{~d} x=\frac{a^{7}}{210}\left(2 k^{2}+7 k+7\right)
$$

Then

$$
K=k^{5} \frac{2 k^{2}+7 k+7}{7 k^{2}+7 k+2}
$$

The derivative of the function $f(k)=\frac{2 k^{2}+7 k+7}{7 k^{2}+7 k+2}$ is negative for $0<k<\infty$. Therefore $f(k)$ decreases from $\frac{7}{2}$ to $\frac{2}{7}$ when k increases from 0 to ∞. Inequalities $\frac{2}{7}<\frac{2 k^{2}+7 k+7}{7 k^{2}+7 k+2}<\frac{7}{2}$ imply the desired inequalities.

Problem 5. Let \mathbb{R}^{+}be the set of positive real numbers. Find all functions $f: \mathbb{R}^{+} \rightarrow$ \mathbb{R}^{+}such that for all $x, y \in \mathbb{R}^{+}$

$$
f(x) f(y f(x))=f(x+y)
$$

First solution. First, if we assume that $f(x)>1$ for some $x \in \mathbb{R}^{+}$, setting $y=$ $\frac{x}{f(x)-1}$ gives the contradiction $f(x)=1$. Hence $f(x) \leq 1$ for each $x \in \mathbb{R}^{+}$, which implies that f is a decreasing function.

If $f(x)=1$ for some $x \in \mathbb{R}^{+}$, then $f(x+y)=f(y)$ for each $y \in \mathbb{R}^{+}$, and by the monotonicity of f it follows that $f \equiv 1$.

Let now $f(x)<1$ for each $x \in \mathbb{R}^{+}$. Then f is strictly decreasing function, in particular injective. By the equalities

$$
f(x) f(y f(x))=f(x+y)=
$$

$$
=f(y f(x)+x+y(1-f(x)))=f(y f(x)) f((x+y(1-f(x))) f(y f(x)))
$$

we obtain that $x=(x+y(1-f(x))) f(y f(x))$. Setting $x=1, z=x f(1)$ and $a=\frac{1-f(1)}{f(1)}$, we get $f(z)=\frac{1}{1+a z}$.

Combining the two cases, we conclude that $f(x)=\frac{1}{1+a x}$ for each $x \in \mathbb{R}^{+}$, where $a \geq 0$. Conversely, a direct verification shows that the functions of this form satisfy the initial equality.

Second solution. As in the first solution we get that f is a decreasing function, in particular differentiable almost everywhere. Write the initial equality in the form

$$
\frac{f(x+y)-f(x)}{y}=f^{2}(x) \frac{f(y f(x))-1}{y f(x)}
$$

It follows that if f is differentiable at the point $x \in \mathbb{R}^{+}$, then there exists the limit $\lim _{z \rightarrow 0+} \frac{f(z)-1}{z}=:-a$. Therefore $f^{\prime}(x)=-a f^{2}(x)$ for each $x \in \mathbb{R}^{+}$, i.e. $\left(\frac{1}{f(x)}\right)^{\prime}=a$, which means that $f(x)=\frac{1}{a x+b}$. Substituting in the initial relaton, we find that $b=1$ and $a \geq 0$.

Problem 6. For an $m \times m$ real matrix A, e^{A} is defined as $\sum_{n=0}^{\infty} \frac{1}{n!} A^{n}$. (The sum is convergent for all matrices.) Prove or disprove, that for all real polynomials p and $m \times m$ real matrices A and $B, p\left(e^{A B}\right)$ is nilpotent if and only if $p\left(e^{B A}\right)$ is nilpotent. (A matrix A is nilpotent if $A^{k}=0$ for some positive integer k.)

Solution. First we prove that for any polynomial q and $m \times m$ matrices A and B, the characteristic polinomials of $q\left(e^{A B}\right)$ and $q\left(e^{B A}\right)$ are the same. It is easy to check that for any matrix $X, q\left(e^{X}\right)=\sum_{n=0}^{\infty} c_{n} X^{n}$ with some real numbers c_{n} which depend on q. Let

$$
C=\sum_{n=1}^{\infty} c_{n} \cdot(B A)^{n-1} B=\sum_{n=1}^{\infty} c_{n} \cdot B(A B)^{n-1}
$$

Then $q\left(e^{A B}\right)=c_{0} I+A C$ and $q\left(e^{B A}\right)=c_{0} I+C A$. It is well-known that the characteristic polynomials of $A C$ and $C A$ are the same; denote this polynomial by $f(x)$. Then the characteristic polynomials of matrices $q\left(e^{A B}\right)$ and $q\left(e^{B A}\right)$ are both $f\left(x-c_{0}\right)$.

Now assume that the matrix $p\left(e^{A B}\right)$ is nilpotent, i.e. $\left(p\left(e^{A B}\right)\right)^{k}=0$ for some positive integer k. Chose $q=p^{k}$. The characteristic polynomial of the matrix $q\left(e^{A B}\right)=0$ is x^{m}, so the same holds for the matrix $q\left(e^{B A}\right)$. By the theorem of Cayley and Hamilton, this implies that $\left(q\left(e^{B A}\right)\right)^{m}=\left(p\left(e^{B A}\right)\right)^{k m}=0$. Thus the matrix $q\left(e^{B A}\right)$ is nilpotent, too.

