Solutions for the second day problems at the IMC 2000

Problem 1.

a) Show that the unit square can be partitioned into n smaller squares if n is large enough.

b) Let $d \ge 2$. Show that there is a constant N(d) such that, whenever $n \ge N(d)$, a d-dimensional unit cube can be partitioned into n smaller cubes.

Solution. We start with the following lemma: If a and b be coprime positive integers then every sufficiently large positive integer m can be expressed in the form ax + by with x, y non-negative integers.

Proof of the lemma. The numbers $0, a, 2a, \ldots, (b-1)a$ give a complete residue system modulo b. Consequently, for any m there exists a $0 \le x \le b-1$ so that $ax \equiv m \pmod{b}$. If $m \ge (b-1)a$, then y = (m-ax)/b, for which x + by = m, is a non-negative integer, too.

Now observe that any dissection of a cube into n smaller cubes may be refined to give a dissection into $n + (a^d - 1)$ cubes, for any $a \ge 1$. This refinement is achieved by picking an arbitrary cube in the dissection, and cutting it into a^d smaller cubes. To prove the required result, then, it suffices to exhibit two relatively prime integers of form $a^d - 1$. In the 2-dimensional case, $a_1 = 2$ and $a_2 = 3$ give the coprime numbers $2^2 - 1 = 3$ and $3^2 - 1 = 8$. In the general case, two such integers are $2^d - 1$ and $(2^d - 1)^d - 1$, as is easy to check.

Problem 2. Let f be continuous and nowhere monotone on [0, 1]. Show that the set of points on which f attains local minima is dense in [0, 1].

(A function is nowhere monotone if there exists no interval where the function is monotone. A set is dense if each non-empty open interval contains at least one element of the set.)

Solution. Let $(x - \alpha, x + \alpha) \subset [0, 1]$ be an arbitrary non-empty open interval. The function f is not monoton in the intervals $[x - \alpha, x]$ and $[x, x + \alpha]$, thus there exist some real numbers $x - \alpha \leq p < q \leq x$, $x \leq r < s \leq x + \alpha$ so that f(p) > f(q) and f(r) < f(s).

By Weierstrass' theorem, f has a global minimum in the interval [p, s]. The values f(p) and f(s) are not the minimum, because they are greater than f(q) and f(s), respectively. Thus the minimum is in the interior of the interval, it is a local minimum. So each nonempty interval $(x - \alpha, x + \alpha) \subset [0, 1]$ contains at least one local minimum.

Problem 3. Let p(z) be a polynomial of degree n with complex coefficients. Prove that there exist at least n + 1 complex numbers z for which p(z) is 0 or 1.

Solution. The statement is not true if p is a constant polynomial. We prove it only in the case if n is positive.

For an arbitrary polynomial q(z) and complex number c, denote by $\mu(q, c)$ the largest exponent α for which q(z) is divisible by $(z - c)^{\alpha}$. (With other words, if c is a root of q, then $\mu(q, c)$ is the root's multiplicity. Otherwise 0.)

Denote by S_0 and S_1 the sets of complex numbers z for which p(z) is 0 or 1, respectively. These sets contain all roots of the polynomials p(z) and p(z) - 1, thus

$$\sum_{c \in S_0} \mu(p, c) = \sum_{c \in S_1} \mu(p - 1, c) = n.$$
(1)

The polynomial p' has at most n-1 roots (n > 0 is used here). This implies that

$$\sum_{c \in S_0 \cup S_1} \mu(p', c) \le n - 1.$$
(2)

If p(c) = 0 or p(c) - 1 = 0, then

$$\mu(p,c) - \mu(p'c) = 1$$
 or $\mu(p-1,c) - \mu(p'c) = 1$, (3)

respectively. Putting (1), (2) and (3) together we obtain

$$|S_0| + |S_1| = \sum_{c \in S_0} (\mu(p, c) - \mu(p', c)) + \sum_{c \in S_1} (\mu(p - 1, c) - \mu(p', c)) =$$
$$= \sum_{c \in S_0} \mu(p, c) + \sum_{c \in S_1} \mu(p - 1, c) - \sum_{c \in S_0 \cup S_1} \mu(p', c) \ge n + n - (n - 1) = n + 1.$$

Problem 4. Suppose the graph of a polynomial of degree 6 is tangent to a straight line at 3 points A_1 , A_2 , A_3 , where A_2 lies between A_1 and A_3 .

a) Prove that if the lengths of the segments A_1A_2 and A_2A_3 are equal, then the areas of the figures bounded by these segments and the graph of the polynomial are equal as well.

b) Let $k = \frac{A_2 A_3}{A_1 A_2}$, and let K be the ratio of the areas of the appropriate figures. Prove that

$$\frac{2}{7}k^5 < K < \frac{7}{2}k^5.$$

Solution. a) Without loss of generality, we can assume that the point A_2 is the origin of system of coordinates. Then the polynomial can be presented in the form

$$y = (a_0x^4 + a_1x^3 + a_2x^2 + a_3x + a_4)x^2 + a_5x,$$

where the equation $y = a_5 x$ determines the straight line $A_1 A_3$. The abscissas of the points A_1 and A_3 are -a and a, a > 0, respectively. Since -a and a are points of tangency, the numbers -a and a must be double roots of the polynomial $a_0 x^4 + a_1 x^3 + a_2 x^2 + a_3 x + a_4$. It follows that the polynomial is of the form

$$y = a_0(x^2 - a^2)^2 + a_5 x$$

The equality follows from the equality of the integrals

$$\int_{-a}^{0} a_0 (x^2 - a^2) x^2 dx = \int_{0}^{a} a_0 (x^2 - a^2) x^2 dx$$

due to the fact that the function $y = a_0(x^2 - a^2)$ is even.

b) Without loss of generality, we can assume that $a_0 = 1$. Then the function is of the form

$$y = (x+a)^2(x-b)^2x^2 + a_5x,$$

where a and b are positive numbers and b = ka, $0 < k < \infty$. The areas of the figures at the segments A_1A_2 and A_2A_3 are equal respectively to

$$\int_{-a}^{0} (x+a)^2 (x-b)^2 x^2 dx = \frac{a^7}{210} (7k^2 + 7k + 2)$$

and

$$\int_{0}^{b} (x+a)^{2} (x-b)^{2} x^{2} dx = \frac{a^{7}}{210} (2k^{2}+7k+7)$$

Then

$$K = k^5 \frac{2k^2 + 7k + 7}{7k^2 + 7k + 2}.$$

The derivative of the function $f(k) = \frac{2k^2 + 7k + 7}{7k^2 + 7k + 2}$ is negative for $0 < k < \infty$. Therefore f(k) decreases from $\frac{7}{2}$ to $\frac{2}{7}$ when k increases from 0 to ∞ . Inequalities $\frac{2}{7} < \frac{2k^2 + 7k + 7}{7k^2 + 7k + 2} < \frac{7}{2}$ imply the desired inequalities.

Problem 5. Let \mathbb{R}^+ be the set of positive real numbers. Find all functions $f : \mathbb{R}^+ \to \mathbb{R}^+$ such that for all $x, y \in \mathbb{R}^+$

$$f(x)f(yf(x)) = f(x+y)$$

First solution. First, if we assume that f(x) > 1 for some $x \in \mathbb{R}^+$, setting $y = \frac{x}{f(x) - 1}$ gives the contradiction f(x) = 1. Hence $f(x) \le 1$ for each $x \in \mathbb{R}^+$, which implies that f is a decreasing function.

If f(x) = 1 for some $x \in \mathbb{R}^+$, then f(x+y) = f(y) for each $y \in \mathbb{R}^+$, and by the monotonicity of f it follows that $f \equiv 1$.

Let now f(x) < 1 for each $x \in \mathbb{R}^+$. Then f is strictly decreasing function, in particular injective. By the equalities

$$f(x)f(yf(x)) = f(x+y) =$$

$$= f(yf(x) + x + y(1 - f(x))) = f(yf(x))f((x + y(1 - f(x)))f(yf(x)))$$

we obtain that x = (x + y(1 - f(x)))f(yf(x)). Setting x = 1, z = xf(1) and $a = \frac{1 - f(1)}{f(1)}$, we get $f(z) = \frac{1}{1 + az}$.

Combining the two cases, we conclude that $f(x) = \frac{1}{1+ax}$ for each $x \in \mathbb{R}^+$, where $a \ge 0$. Conversely, a direct verification shows that the functions of this form satisfy the initial equality.

Second solution. As in the first solution we get that f is a decreasing function, in particular differentiable almost everywhere. Write the initial equality in the form

$$\frac{f(x+y) - f(x)}{y} = f^2(x) \frac{f(yf(x)) - 1}{yf(x)}$$

It follows that if f is differentiable at the point $x \in \mathbb{R}^+$, then there exists the limit $\lim_{z \to 0+} \frac{f(z)-1}{z} =: -a$. Therefore $f'(x) = -af^2(x)$ for each $x \in \mathbb{R}^+$, i.e. $\left(\frac{1}{f(x)}\right)' = a$, which means that $f(x) = \frac{1}{ax+b}$. Substituting in the initial relation, we find that b = 1 and $a \ge 0$.

Problem 6. For an $m \times m$ real matrix A, e^A is defined as $\sum_{n=0}^{\infty} \frac{1}{n!}A^n$. (The sum is convergent for all matrices.) Prove or disprove, that for all real polynomials p and $m \times m$ real matrices A and B, $p(e^{AB})$ is nilpotent if and only if $p(e^{BA})$ is nilpotent. (A matrix A is nilpotent if $A^k = 0$ for some positive integer k.)

Solution. First we prove that for any polynomial q and $m \times m$ matrices A and B, the characteristic polynomials of $q(e^{AB})$ and $q(e^{BA})$ are the same. It is easy to check that for any matrix X, $q(e^X) = \sum_{n=0}^{\infty} c_n X^n$ with some real numbers c_n which depend on q. Let

$$C = \sum_{n=1}^{\infty} c_n \cdot (BA)^{n-1} B = \sum_{n=1}^{\infty} c_n \cdot B(AB)^{n-1}.$$

Then $q(e^{AB}) = c_0 I + AC$ and $q(e^{BA}) = c_0 I + CA$. It is well-known that the characteristic polynomials of AC and CA are the same; denote this polynomial by f(x). Then the characteristic polynomials of matrices $q(e^{AB})$ and $q(e^{BA})$ are both $f(x - c_0)$.

Now assume that the matrix $p(e^{AB})$ is nilpotent, i.e. $(p(e^{AB}))^k = 0$ for some positive integer k. Chose $q = p^k$. The characteristic polynomial of the matrix $q(e^{AB}) = 0$ is x^m , so the same holds for the matrix $q(e^{BA})$. By the theorem of Cayley and Hamilton, this implies that $(q(e^{BA}))^m = (p(e^{BA}))^{km} = 0$. Thus the matrix $q(e^{BA})$ is nilpotent, too.