Solutions for the first day problems at the IMC 2000

Problem 1.

Is it true that if f :[0,1] — [0,1] is

a) monotone increasing

b) monotone decreasing

then there exists an x € [0,1] for which f(x) =x?

Solution.

a) Yes.

Proof: Let A = {z € [0,1] : f(x) > z}. If f(0) = 0 we are done, if not then A is
non-empty (0 is in A) bounded, so it has supremum, say a. Let b = f(a).

I. case: a < b. Then, using that f is monotone and a was the sup, we get b = f(a) <
f((a+b)/2) < (a+b)/2, which contradicts a < b.

II. case: @ > b. Then we get b = f(a) > f((a+b)/2) > (a + b)/2 contradiction.
Therefore we must have a = b.

b) No. Let, for example,

flz)=1—2/2 if x2<1/2

and
fle)=1/2—x/2 if x>1/2

This is clearly a good counter-example.

Problem 2.

Let p(z) = 2° + x and q(z) = x° + 22. Find all pairs (w, z) of complex numbers with
w # z for which p(w) = p(z) and q(w) = q(2).

Short solution. Let

p(z) — p(y)
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P(.’,E,y) =

. () — 4(y)
q9\x) —q\y
Qlz,y) = ————
=y
We need those pairs (w, z) which satisfy P(w, z) = Q(w, z) = 0.
From P — () = 0 we have w+ z = 1. Let ¢ = wz. After a short calculation we obtain
c? — 3c+ 2 = 0, which has the solutions ¢ = 1 and ¢ = 2. From the system w + z = 1,
wz = ¢ we obtain the following pairs:
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Problem 3.
A and B are square complex matrices of the same size and

rank(AB — BA) =

Show that (AB — BA)? = 0.

Let C' = AB — BA. Since rank C' = 1, at most one eigenvalue of C' is different from 0.
Also tr C' = 0, so all the eigevalues are zero. In the Jordan canonical form there can only
be one 2 x 2 cage and thus C? = 0.

Problem 4.
a) Show that if (x;) is a decreasing sequence of positive numbers then

n 1/2 n
2 Li

b) Show that there is a constant C' so that if (x;) is a decreasing sequence of positive

numbers then .
[e ) 1 [ ) [ )

m=1

Solution.
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by checking that it is at most
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Alternatively you can observe that
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Problem 5.

Let R be a ring of characteristic zero (not necessarily commutative). Let e, f and g
be idempotent elements of R satisfying e + f + g = 0. Show thate = f = g = 0.

(R is of characteristic zero means that, if a € R and n is a positive integer, then
na # 0 unless a = 0. An idempotent  is an element satisfying xr = x2.)

Solution. Suppose that e + f + g = 0 for given idempotents e, f,g € R. Then

g=g"=(—(e+[f)’=e+(ef + fe)+ f=(ef + fe) -

i.e. ef+fe=2g, whence the additive commutator

e, fl=ef = fe=le,ef + fe] = 2e, g] = 2[e, —e — f] = —=2le, f],

i.e. ef = fe (since R has zero characteristic). Thus ef + fe = 2g becomes ef = g, so that
e+ f+ef =0. On multiplying by e, this yields e + 2ef = 0, and similarly f + 2ef = 0,
so that f = —2ef = e, hence e = f = g by symmetry. Hence, finaly, 3e = e+ f + g = 0,
ie.e=f=g=0.

For part (i) just omit some of this.

Problem 6.
Let f: R — (0,00) be an increasing differentiable function for which lim f(x) = oo

and f' is bounded.

Let F(x f f. Define the sequence (a,,) inductively by

L
flan)’

and the sequence (by) simply by b, = F~1(n). Prove that lim (a, — b,) = 0.

ap =1, apy1 =a,+

Solution. From the conditions it is obvious that F'is increasing and lim b,, = co.
n—oo

By Lagrange’s theorem and the recursion in (1), for all £ > 0 integers there exists a
real number £ € (ag, agy1) such that

F(ary1) — Flag) = f(§)(ag1 —ax) = (2)



By the monotonity, f(ax) < f(§) < f(ag+1), thus

s o) = o s S - Helen
Summing (3) for £ =0,...,n — 1 and substituting F'(b,) = n, we have
n—1
F(bn) < n+ Flao) < F(an) < F(by) + F(ao) + Y flartr) = flar)
k=0 f(a’k)

From the first two inequalities we already have a,, > b, and lim a, = cc.

Let € be an arbitrary positive number. Choose an integer K. such that f(ax_ ) >

If n is sufficiently large, then

n—oo

_ (F(a0)+ Z_ flak+1) _f(ak)> n ni flagy1) — flax) _
— k=K.

n—1

1
< O(1) +

f(ax)

flak.) k;{ (flarsr) — flar)) <

< 0:(1) + 5 (f(an) ~ flax.)) < ef(an).

Inequalities (4) and (5) together say that for any positive ¢, if n is sufficiently large,

F(an) — F(by) < ef(ap).

Again, by Lagrange’s theorem, there is a real number ¢ € (b, a,) such that

F(an) = F(bn) = f(Q)(an — bn) > f(bn)(an — bn),

thus

f(bp)(an —by) < ef(an).
Let B be an upper bound for f'. Apply f(an) < f(b,) + B(a, — by) in (7):

f(by)(an — by) < e(f(byn) + Blan — by)),
(f(bn) —eB)(an —bn) < ef(bn).

Due to lim f(b,) = oo, the first factor is positive, and we have

n—oo

S (bn)

a, — b, <e¢

for sufficiently large n.

f(b,) —eB

< 2¢

(4)

2
=.

(9)

Thus, for arbitrary positive € we proved that 0 < a,, —b,, < 2¢ if n is sufficiently large.
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