Solutions for the first day problems at the IMC 2000

Problem 1.

Is it true that if $f:[0,1] \rightarrow[0,1]$ is
a) monotone increasing
b) monotone decreasing
then there exists an $x \in[0,1]$ for which $f(x)=x$?

Solution.

a) Yes.

Proof: Let $A=\{x \in[0,1]: f(x)>x\}$. If $f(0)=0$ we are done, if not then A is non-empty (0 is in A) bounded, so it has supremum, say a. Let $b=f(a)$.
I. case: $a<b$. Then, using that f is monotone and a was the sup, we get $b=f(a) \leq$ $f((a+b) / 2) \leq(a+b) / 2$, which contradicts $a<b$.
II. case: $a>b$. Then we get $b=f(a) \geq f((a+b) / 2)>(a+b) / 2$ contradiction. Therefore we must have $a=b$.
b) No. Let, for example,

$$
f(x)=1-x / 2 \quad \text { if } \quad x \leq 1 / 2
$$

and

$$
f(x)=1 / 2-x / 2 \quad \text { if } \quad x>1 / 2
$$

This is clearly a good counter-example.

Problem 2.

Let $p(x)=x^{5}+x$ and $q(x)=x^{5}+x^{2}$. Find all pairs (w, z) of complex numbers with $w \neq z$ for which $p(w)=p(z)$ and $q(w)=q(z)$.

Short solution. Let

$$
P(x, y)=\frac{p(x)-p(y)}{x-y}=x^{4}+x^{3} y+x^{2} y^{2}+x y^{3}+y^{4}+1
$$

and

$$
Q(x, y)=\frac{q(x)-q(y)}{x-y}=x^{4}+x^{3} y+x^{2} y^{2}+x y^{3}+y^{4}+x+y .
$$

We need those pairs (w, z) which satisfy $P(w, z)=Q(w, z)=0$.
From $P-Q=0$ we have $w+z=1$. Let $c=w z$. After a short calculation we obtain $c^{2}-3 c+2=0$, which has the solutions $c=1$ and $c=2$. From the system $w+z=1$, $w z=c$ we obtain the following pairs:

$$
\left(\frac{1 \pm \sqrt{3} i}{2}, \frac{1 \mp \sqrt{3} i}{2}\right) \quad \text { and } \quad\left(\frac{1 \pm \sqrt{7} i}{2}, \frac{1 \mp \sqrt{7} i}{2}\right) .
$$

Problem 3.

A and B are square complex matrices of the same size and

$$
\operatorname{rank}(A B-B A)=1
$$

Show that $(A B-B A)^{2}=0$.
Let $C=A B-B A$. Since $\operatorname{rank} C=1$, at most one eigenvalue of C is different from 0 . Also $\operatorname{tr} C=0$, so all the eigevalues are zero. In the Jordan canonical form there can only be one 2×2 cage and thus $C^{2}=0$.

Problem 4.

a) Show that if $\left(x_{i}\right)$ is a decreasing sequence of positive numbers then

$$
\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{1 / 2} \leq \sum_{i=1}^{n} \frac{x_{i}}{\sqrt{i}}
$$

b) Show that there is a constant C so that if $\left(x_{i}\right)$ is a decreasing sequence of positive numbers then

$$
\sum_{m=1}^{\infty} \frac{1}{\sqrt{m}}\left(\sum_{i=m}^{\infty} x_{i}^{2}\right)^{1 / 2} \leq C \sum_{i=1}^{\infty} x_{i}
$$

Solution.

a)

$$
\left(\sum_{i=1}^{n} \frac{x_{i}}{\sqrt{i}}\right)^{2}=\sum_{i, j}^{n} \frac{x_{i} x_{j}}{\sqrt{i} \sqrt{j}} \geq \sum_{i=1}^{n} \frac{x_{i}}{\sqrt{i}} \sum_{j=1}^{i} \frac{x_{i}}{\sqrt{j}} \geq \sum_{i=1}^{n} \frac{x_{i}}{\sqrt{i}} i \frac{x_{i}}{\sqrt{i}}=\sum_{i=1}^{n} x_{i}^{2}
$$

b)

$$
\sum_{m=1}^{\infty} \frac{1}{\sqrt{m}}\left(\sum_{i=m}^{\infty} x_{i}^{2}\right)^{1 / 2} \leq \sum_{m=1}^{\infty} \frac{1}{\sqrt{m}} \sum_{i=m}^{\infty} \frac{x_{i}}{\sqrt{i-m+1}}
$$

by a)

$$
=\sum_{i=1}^{\infty} x_{i} \sum_{m=1}^{i} \frac{1}{\sqrt{m} \sqrt{i-m+1}}
$$

You can get a sharp bound on

$$
\sup _{i} \sum_{m=1}^{i} \frac{1}{\sqrt{m} \sqrt{i-m+1}}
$$

by checking that it is at most

$$
\int_{0}^{i+1} \frac{1}{\sqrt{x} \sqrt{i+1-x}} d x=\pi
$$

Alternatively you can observe that

$$
\begin{aligned}
& \sum_{m=1}^{i} \frac{1}{\sqrt{m} \sqrt{i+1-m}}=2 \sum_{m=1}^{i / 2} \frac{1}{\sqrt{m} \sqrt{i+1-m}} \leq \\
& \quad \leq 2 \frac{1}{\sqrt{i / 2}} \sum_{m=1}^{i / 2} \frac{1}{\sqrt{m}} \leq 2 \frac{1}{\sqrt{i / 2}} \cdot 2 \sqrt{i / 2}=4
\end{aligned}
$$

Problem 5.

Let R be a ring of characteristic zero (not necessarily commutative). Let e, f and g be idempotent elements of R satisfying $e+f+g=0$. Show that $e=f=g=0$.
(R is of characteristic zero means that, if $a \in R$ and n is a positive integer, then $n a \neq 0$ unless $a=0$. An idempotent x is an element satisfying $x=x^{2}$.)

Solution. Suppose that $e+f+g=0$ for given idempotents $e, f, g \in R$. Then

$$
g=g^{2}=(-(e+f))^{2}=e+(e f+f e)+f=(e f+f e)-g,
$$

i.e. $\mathrm{ef}+\mathrm{fe}=2 \mathrm{~g}$, whence the additive commutator

$$
[e, f]=e f-f e=[e, e f+f e]=2[e, g]=2[e,-e-f]=-2[e, f],
$$

i.e. $e f=f e$ (since R has zero characteristic). Thus $e f+f e=2 g$ becomes $e f=g$, so that $e+f+e f=0$. On multiplying by e, this yields $e+2 e f=0$, and similarly $f+2 e f=0$, so that $f=-2 e f=e$, hence $e=f=g$ by symmetry. Hence, finaly, $3 e=e+f+g=0$, i.e. $e=f=g=0$.

For part (i) just omit some of this.

Problem 6.

Let $f: \mathbb{R} \rightarrow(0, \infty)$ be an increasing differentiable function for which $\lim _{x \rightarrow \infty} f(x)=\infty$ and f^{\prime} is bounded.

Let $F(x)=\int_{0}^{x} f$. Define the sequence $\left(a_{n}\right)$ inductively by

$$
a_{0}=1, \quad a_{n+1}=a_{n}+\frac{1}{f\left(a_{n}\right)},
$$

and the sequence $\left(b_{n}\right)$ simply by $b_{n}=F^{-1}(n)$. Prove that $\lim _{n \rightarrow \infty}\left(a_{n}-b_{n}\right)=0$.
Solution. From the conditions it is obvious that F is increasing and $\lim _{n \rightarrow \infty} b_{n}=\infty$.
By Lagrange's theorem and the recursion in (1), for all $k \geq 0$ integers there exists a real number $\xi \in\left(a_{k}, a_{k+1}\right)$ such that

$$
\begin{equation*}
F\left(a_{k+1}\right)-F\left(a_{k}\right)=f(\xi)\left(a_{k+1}-a_{k}\right)=\frac{f(\xi)}{f\left(a_{k}\right)} . \tag{2}
\end{equation*}
$$

By the monotonity, $f\left(a_{k}\right) \leq f(\xi) \leq f\left(a_{k+1}\right)$, thus

$$
\begin{equation*}
1 \leq F\left(a_{k+1}\right)-F\left(a_{k}\right) \leq \frac{f\left(a_{k+1}\right)}{f\left(a_{k}\right)}=1+\frac{f\left(a_{k+1}\right)-f\left(a_{k}\right)}{f\left(a_{k}\right)} . \tag{3}
\end{equation*}
$$

Summing (3) for $k=0, \ldots, n-1$ and substituting $F\left(b_{n}\right)=n$, we have

$$
\begin{equation*}
F\left(b_{n}\right)<n+F\left(a_{0}\right) \leq F\left(a_{n}\right) \leq F\left(b_{n}\right)+F\left(a_{0}\right)+\sum_{k=0}^{n-1} \frac{f\left(a_{k+1}\right)-f\left(a_{k}\right)}{f\left(a_{k}\right)} . \tag{4}
\end{equation*}
$$

From the first two inequalities we already have $a_{n}>b_{n}$ and $\lim _{n \rightarrow \infty} a_{n}=\infty$.
Let ε be an arbitrary positive number. Choose an integer K_{ε} such that $f\left(a_{K_{\varepsilon}}\right)>\frac{2}{\varepsilon}$. If n is sufficiently large, then

$$
\begin{gather*}
F\left(a_{0}\right)+\sum_{k=0}^{n-1} \frac{f\left(a_{k+1}\right)-f\left(a_{k}\right)}{f\left(a_{k}\right)}= \\
=\left(F\left(a_{0}\right)+\sum_{k=0}^{K_{\varepsilon}-1} \frac{f\left(a_{k+1}\right)-f\left(a_{k}\right)}{f\left(a_{k}\right)}\right)+\sum_{k=K_{\varepsilon}}^{n-1} \frac{f\left(a_{k+1}\right)-f\left(a_{k}\right)}{f\left(a_{k}\right)}< \tag{5}\\
<O_{\varepsilon}(1)+\frac{1}{f\left(a_{K_{\varepsilon}}\right)} \sum_{k=K_{\varepsilon}}^{n-1}\left(f\left(a_{k+1}\right)-f\left(a_{k}\right)\right)< \\
<O_{\varepsilon}(1)+\frac{\varepsilon}{2}\left(f\left(a_{n}\right)-f\left(a_{K_{\varepsilon}}\right)\right)<\varepsilon f\left(a_{n}\right) .
\end{gather*}
$$

Inequalities (4) and (5) together say that for any positive ε, if n is sufficiently large,

$$
F\left(a_{n}\right)-F\left(b_{n}\right)<\varepsilon f\left(a_{n}\right) .
$$

Again, by Lagrange's theorem, there is a real number $\zeta \in\left(b_{n}, a_{n}\right)$ such that

$$
\begin{equation*}
F\left(a_{n}\right)-F\left(b_{n}\right)=f(\zeta)\left(a_{n}-b_{n}\right)>f\left(b_{n}\right)\left(a_{n}-b_{n}\right), \tag{6}
\end{equation*}
$$

thus

$$
\begin{equation*}
f\left(b_{n}\right)\left(a_{n}-b_{n}\right)<\varepsilon f\left(a_{n}\right) . \tag{7}
\end{equation*}
$$

Let B be an upper bound for f^{\prime}. Apply $f\left(a_{n}\right)<f\left(b_{n}\right)+B\left(a_{n}-b_{n}\right)$ in (7):

$$
\begin{gather*}
f\left(b_{n}\right)\left(a_{n}-b_{n}\right)<\varepsilon\left(f\left(b_{n}\right)+B\left(a_{n}-b_{n}\right)\right), \\
\left(f\left(b_{n}\right)-\varepsilon B\right)\left(a_{n}-b_{n}\right)<\varepsilon f\left(b_{n}\right) . \tag{8}
\end{gather*}
$$

Due to $\lim _{n \rightarrow \infty} f\left(b_{n}\right)=\infty$, the first factor is positive, and we have

$$
\begin{equation*}
a_{n}-b_{n}<\varepsilon \frac{f\left(b_{n}\right)}{f\left(b_{n}\right)-\varepsilon B}<2 \varepsilon \tag{9}
\end{equation*}
$$

for sufficiently large n.
Thus, for arbitrary positive ε we proved that $0<a_{n}-b_{n}<2 \varepsilon$ if n is sufficiently large.

