
Solutions for the first day problems at the IMC 2000

Problem 1.

Is it true that if f : [0, 1]→ [0, 1] is
a) monotone increasing
b) monotone decreasing
then there exists an x ∈ [0, 1] for which f(x) = x?
Solution.

a) Yes.
Proof: Let A = {x ∈ [0, 1] : f(x) > x}. If f(0) = 0 we are done, if not then A is

non-empty (0 is in A) bounded, so it has supremum, say a. Let b = f(a).
I. case: a < b. Then, using that f is monotone and a was the sup, we get b = f(a) ≤

f((a + b)/2) ≤ (a + b)/2, which contradicts a < b.
II. case: a > b. Then we get b = f(a) ≥ f((a + b)/2) > (a + b)/2 contradiction.

Therefore we must have a = b.
b) No. Let, for example,

f(x) = 1− x/2 if x ≤ 1/2

and
f(x) = 1/2− x/2 if x > 1/2

This is clearly a good counter-example.

Problem 2.

Let p(x) = x5 + x and q(x) = x5 + x2. Find all pairs (w, z) of complex numbers with
w 6= z for which p(w) = p(z) and q(w) = q(z).

Short solution. Let

P (x, y) =
p(x)− p(y)

x− y
= x4 + x3y + x2y2 + xy3 + y4 + 1

and

Q(x, y) =
q(x)− q(y)

x− y
= x4 + x3y + x2y2 + xy3 + y4 + x + y.

We need those pairs (w, z) which satisfy P (w, z) = Q(w, z) = 0.
From P −Q = 0 we have w + z = 1. Let c = wz. After a short calculation we obtain

c2 − 3c + 2 = 0, which has the solutions c = 1 and c = 2. From the system w + z = 1,
wz = c we obtain the following pairs:

(

1±
√

3i

2
,
1∓

√
3i

2

)

and

(

1±
√

7i

2
,
1∓

√
7i

2

)

.
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Problem 3.

A and B are square complex matrices of the same size and

rank(AB − BA) = 1 .

Show that (AB −BA)2 = 0.
Let C = AB−BA. Since rankC = 1, at most one eigenvalue of C is different from 0.

Also trC = 0, so all the eigevalues are zero. In the Jordan canonical form there can only
be one 2× 2 cage and thus C2 = 0.

Problem 4.

a) Show that if (xi) is a decreasing sequence of positive numbers then

(

n
∑

i=1

x2
i

)1/2

≤
n
∑

i=1

xi√
i
.

b) Show that there is a constant C so that if (xi) is a decreasing sequence of positive
numbers then

∞
∑

m=1

1√
m

(

∞
∑

i=m

x2
i

)1/2

≤ C
∞
∑

i=1

xi.

Solution.

a)

(

n
∑

i=1

xi√
i
)2 =

n
∑

i,j

xixj√
i
√

j
≥

n
∑

i=1

xi√
i

i
∑

j=1

xi√
j
≥

n
∑

i=1

xi√
i
i
xi√

i
=

n
∑

i=1

x2
i

b)
∞
∑

m=1

1√
m

(

∞
∑

i=m

x2
i )

1/2 ≤
∞
∑

m=1

1√
m

∞
∑

i=m

xi√
i−m + 1

by a)

=

∞
∑

i=1

xi

i
∑

m=1

1√
m
√

i−m + 1

You can get a sharp bound on

sup
i

i
∑

m=1

1√
m
√

i−m + 1

by checking that it is at most

∫ i+1

0

1√
x
√

i + 1− x
dx = π
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Alternatively you can observe that

i
∑

m=1

1√
m
√

i + 1−m
= 2

i/2
∑

m=1

1√
m
√

i + 1−m
≤

≤ 2
1

√

i/2

i/2
∑

m=1

1√
m
≤ 2

1
√

i/2
.2
√

i/2 = 4

Problem 5.

Let R be a ring of characteristic zero (not necessarily commutative). Let e, f and g
be idempotent elements of R satisfying e + f + g = 0. Show that e = f = g = 0.

(R is of characteristic zero means that, if a ∈ R and n is a positive integer, then
na 6= 0 unless a = 0. An idempotent x is an element satisfying x = x2.)

Solution. Suppose that e + f + g = 0 for given idempotents e, f, g ∈ R. Then

g = g2 = (−(e + f))2 = e + (ef + fe) + f = (ef + fe)− g,

i.e. ef+fe=2g, whence the additive commutator

[e, f ] = ef − fe = [e, ef + fe] = 2[e, g] = 2[e,−e− f ] = −2[e, f ],

i.e. ef = fe (since R has zero characteristic). Thus ef + fe = 2g becomes ef = g, so that
e + f + ef = 0. On multiplying by e, this yields e + 2ef = 0, and similarly f + 2ef = 0,
so that f = −2ef = e, hence e = f = g by symmetry. Hence, finaly, 3e = e + f + g = 0,
i.e. e = f = g = 0.

For part (i) just omit some of this.

Problem 6.

Let f : R → (0,∞) be an increasing differentiable function for which lim
x→∞

f(x) = ∞
and f ′ is bounded.

Let F (x) =
x
∫

0

f . Define the sequence (an) inductively by

a0 = 1, an+1 = an +
1

f(an)
,

and the sequence (bn) simply by bn = F−1(n). Prove that lim
n→∞

(an − bn) = 0.

Solution. From the conditions it is obvious that F is increasing and lim
n→∞

bn = ∞.

By Lagrange’s theorem and the recursion in (1), for all k ≥ 0 integers there exists a
real number ξ ∈ (ak, ak+1) such that

F (ak+1)− F (ak) = f(ξ)(ak+1 − ak) =
f(ξ)

f(ak)
. (2)
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By the monotonity, f(ak) ≤ f(ξ) ≤ f(ak+1), thus

1 ≤ F (ak+1)− F (ak) ≤ f(ak+1)

f(ak)
= 1 +

f(ak+1)− f(ak)

f(ak)
. (3)

Summing (3) for k = 0, . . . , n− 1 and substituting F (bn) = n, we have

F (bn) < n + F (a0) ≤ F (an) ≤ F (bn) + F (a0) +
n−1
∑

k=0

f(ak+1)− f(ak)

f(ak)
. (4)

From the first two inequalities we already have an > bn and lim
n→∞

an = ∞.

Let ε be an arbitrary positive number. Choose an integer Kε such that f(aKε
) > 2

ε
.

If n is sufficiently large, then

F (a0) +

n−1
∑

k=0

f(ak+1)− f(ak)

f(ak)
=

=

(

F (a0) +

Kε−1
∑

k=0

f(ak+1)− f(ak)

f(ak)

)

+

n−1
∑

k=Kε

f(ak+1)− f(ak)

f(ak)
< (5)

< Oε(1) +
1

f(aKε
)

n−1
∑

k=Kε

(

f(ak+1)− f(ak)
)

<

< Oε(1) +
ε

2

(

f(an)− f(aKε
)
)

< εf(an).

Inequalities (4) and (5) together say that for any positive ε, if n is sufficiently large,

F (an)− F (bn) < εf(an).

Again, by Lagrange’s theorem, there is a real number ζ ∈ (bn, an) such that

F (an)− F (bn) = f(ζ)(an − bn) > f(bn)(an − bn), (6)

thus
f(bn)(an − bn) < εf(an). (7)

Let B be an upper bound for f ′. Apply f(an) < f(bn) + B(an − bn) in (7):

f(bn)(an − bn) < ε
(

f(bn) + B(an − bn)
)

,
(

f(bn)− εB
)

(an − bn) < εf(bn). (8)

Due to lim
n→∞

f(bn) = ∞, the first factor is positive, and we have

an − bn < ε
f(bn)

f(bn)− εB
< 2ε (9)

for sufficiently large n.
Thus, for arbitrary positive ε we proved that 0 < an−bn < 2ε if n is sufficiently large.
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