MATH6502 Example Sheet 8. Not for credit.

1. Using the cofactor method, find the inverse of the matrix

$$\underline{\underline{A}} = \left(\begin{array}{rrrr} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 3 & 1 & -2 \end{array}\right)$$

2. Use the Gauss-Jordan method to find the inverse of both these matrices:

$$\underline{\underline{B}} = \begin{pmatrix} 3 & 2 & 2 \\ 6 & 5 & 4 \\ 2 & 1 & 5 \end{pmatrix} \quad \text{and} \quad \underline{\underline{A}} = \begin{pmatrix} 5 & 4 & 5 \\ 5 & 4 & 4 \\ 2 & 3 & 4 \end{pmatrix}.$$

Now find the product $\underline{\underline{A}} \underline{\underline{B}}$. Find its inverse using the cofactor method, and verify that your results satisfy $(\underline{\underline{A}} \underline{\underline{B}})^{-1} = \underline{\underline{B}}^{-1} \underline{\underline{A}}^{-1}$.

3. Consider the matrix

$$\underline{\underline{D}} = \left(\begin{array}{rrrrr} 2 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & x \end{array}\right)$$

- (i) Find any values of x for which $(\underline{I} \underline{D})^{-1}$ does not exist.
- (ii) Given that x = 4, write down $(\underline{I} \underline{\underline{D}})^{-1}$.
- (iii) If x = 4 and $\underline{\underline{D}}(\underline{\underline{I}} + \underline{\underline{C}}) = \underline{\underline{C}}$ then find $\underline{\underline{C}}$.
- 4. Use the definition of the matrix inverse to prove that:
 - (i) $\det(\underline{A}^{-1}) = 1/\det(\underline{A})$
 - (ii) $(\underline{\underline{A}}^{-1})^{-1} = \underline{\underline{A}}$
 - (iii) $(\underline{\underline{A}}\,\underline{\underline{B}})^{-1} = \underline{\underline{B}}^{-1}\underline{\underline{A}}^{-1}$
- 5. Solve the following set of equations by first finding the inverse of the matrix of coefficients (even though we would usually just use Gaussian elimination):

(i)	(ii)	(iii)	(iv)
3x + 2y + z = 1	x + y + z = 10	2x - y + 5z = 2	5x - 14y + 2z = -15
$4x + 3y - 4z = \frac{3}{2}$	x + 2y + z = 13	x + 7y - 10z = 1	-10x - 5y - 10z = -15
x + 2y - 3z = 1	x + y + 2z = 15	x + y + z = 2	10x + 2y - 11z = -30

6. Using the Gauss-Jordan method, find the inverse of these matrices:

$$\underline{\underline{A}} = \begin{pmatrix} -1 & -1 & 2 & 0 \\ 1 & 1 & -1 & 0 \\ 0 & 0 & -1 & 1 \\ 1 & 0 & 0 & -1 \end{pmatrix} \qquad \underline{\underline{B}} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & -1 & 2 \\ 1 & -1 & 2 & 1 \\ 1 & 3 & 3 & 2 \end{pmatrix}$$