MATH6502 Example Sheet 8. Not for credit.

1. Using the cofactor method, find the inverse of the matrix

$$
\underline{\underline{A}}=\left(\begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6 \\
3 & 1 & -2
\end{array}\right)
$$

2. Use the Gauss-Jordan method to find the inverse of both these matrices:

$$
\underline{\underline{B}}=\left(\begin{array}{lll}
3 & 2 & 2 \\
6 & 5 & 4 \\
2 & 1 & 5
\end{array}\right) \quad \text { and } \quad \underline{\underline{A}}=\left(\begin{array}{ccc}
5 & 4 & 5 \\
5 & 4 & 4 \\
2 & 3 & 4
\end{array}\right)
$$

Now find the product $\underline{\underline{1}} \underline{\underline{\underline{B}}}$. Find its inverse using the cofactor method, and verify that your results satisfy $(\underline{\underline{A}} \underline{\underline{B}})^{-1}=\underline{\underline{B}}^{-1} \underline{\underline{A}}^{-1}$.
3. Consider the matrix

$$
\underline{\underline{D}}=\left(\begin{array}{llll}
2 & 0 & 0 & 0 \\
0 & 3 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & x
\end{array}\right)
$$

(i) Find any values of x for which $(\underline{\underline{I}}-\underline{\underline{D}})^{-1}$ does not exist.
(ii) Given that $x=4$, write down $(\underline{\underline{I}}-\underline{\underline{D}})^{-1}$.
(iii) If $x=4$ and $\underline{\underline{D}}(\underline{\underline{I}}+\underline{\underline{C}})=\underline{\underline{C}}$ then find $\underline{\underline{C}}$.
4. Use the definition of the matrix inverse to prove that:
(i) $\operatorname{det}\left(\underline{\underline{A}}^{-1}\right)=1 / \operatorname{det}(\underline{\underline{A}})$
(ii) $\left(\underline{\underline{A}}^{-1}\right)^{-1}=\underline{\underline{A}}$
(iii) $(\underline{\underline{A}} \underline{\underline{B}})^{-1}=\underline{\underline{B}}^{-1} \underline{\underline{A}}^{-1}$
5. Solve the following set of equations by first finding the inverse of the matrix of coefficients (even though we would usually just use Gaussian elimination):
(i)
(ii)
(iii)
$2 x-y+5 z=2$
(iv)
$3 x+2 y+z=1$
$x+y+z=10$
$x+2 y+z=13$
$x+7 y-10 z=1$
$5 x-14 y+2 z=-15$
$4 x+3 y-4 z=\frac{3}{2}$
$x+y+2 z=15$
$x+y+z=2$
$-10 x-5 y-10 z=-15$
$10 x+2 y-11 z=-30$
6. Using the Gauss-Jordan method, find the inverse of these matrices:

$$
\underline{\underline{A}}=\left(\begin{array}{rrrr}
-1 & -1 & 2 & 0 \\
1 & 1 & -1 & 0 \\
0 & 0 & -1 & 1 \\
1 & 0 & 0 & -1
\end{array}\right) \quad \underline{\underline{B}}=\left(\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & 2 & -1 & 2 \\
1 & -1 & 2 & 1 \\
1 & 3 & 3 & 2
\end{array}\right)
$$

