MATH6502 Example Sheet 6. Hand in all questions from section A. Cover sheet with DEPARTMENT/TUTOR/YOUR NAME & signed. Due into Maths room 6.10 by 2pm on Wednesday 26 November.

Section A

1. Which of the following square matrices are symmetric?

$$\underline{\underline{A}} = \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix} \qquad \underline{\underline{B}} = \begin{pmatrix} 3 & 4 & 0 \\ 4 & 1 & -3 \\ 0 & -3 & 6 \end{pmatrix} \qquad \underline{\underline{C}} = \begin{pmatrix} 3 & 2 \\ 4 & 3 \end{pmatrix} \qquad \underline{\underline{D}} = \begin{pmatrix} 2 & 3 \\ 3 & 4 \end{pmatrix}.$$

2. Find the determinants of the following 2×2 matrices and (where there is a relationship between two matrices) comment on how the matrices and their determinants relate to one another.

(i)
$$\begin{pmatrix} 1 & 1 \\ 3 & 4 \end{pmatrix}$$
 (ii) $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ (iii) $\begin{pmatrix} 3.1 & 2.6 \\ -1.1 & 4.2 \end{pmatrix}$ (iv) $\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$
(v) $\begin{pmatrix} 1 & 2 \\ 3 & 8 \end{pmatrix}$ (vi) $\begin{pmatrix} 1 & -2 \\ 3 & -8 \end{pmatrix}$ (vii) $\begin{pmatrix} a & b \\ \lambda c & \lambda d \end{pmatrix}$ (viii) $\begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$
(ix) $\begin{pmatrix} 1 & 2 \\ 1 & 4 \end{pmatrix}$ (x) $\begin{pmatrix} 1 & 2 \\ 2 & 6 \end{pmatrix}$ (xi) $\begin{pmatrix} 5 & 0 \\ 0 & 3 \end{pmatrix}$ (xii) $\begin{pmatrix} 5 & 0 \\ 4 & 3 \end{pmatrix}$.

3. Find the determinant of the matrices <u>A</u> and <u>B</u> and show that $\det(\underline{A}\underline{B}) = \det(\underline{A})\det(\underline{B})$.

$$\underline{\underline{A}} = \begin{pmatrix} 2 & -3 & -4 \\ 1 & 0 & -2 \\ 0 & -5 & -6 \end{pmatrix} \qquad \underline{\underline{B}} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 3 & 5 \\ 4 & 1 & 3 \end{pmatrix}$$

Section B

1. Solve the following matrix multiplication for a, b, c and $d: \begin{pmatrix} 3 & 1 \\ 4 & 2 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

- 2. If $\underline{\underline{A}} \underline{\underline{B}} = \underline{\underline{A}}$ and $\underline{\underline{B}} \underline{\underline{A}} = \underline{\underline{B}}$ then show that $\underline{\underline{A}}^2 = \underline{\underline{A}}$.
- 3. Define D_n as the determinant of $\underline{\underline{A}}_n$ where $\underline{\underline{A}}_n$ are this series of $n \times n$ matrices:

$$\underline{\underline{A}}_{1} = \begin{pmatrix} a \end{pmatrix} \underline{\underline{A}}_{2} = \begin{pmatrix} a & b \\ b & a \end{pmatrix} \underline{\underline{A}}_{3} = \begin{pmatrix} a & b & 0 \\ b & a & b \\ 0 & b & a \end{pmatrix} \underline{\underline{A}}_{4} = \begin{pmatrix} a & b & 0 & 0 \\ b & a & b & 0 \\ 0 & b & a & b \\ 0 & 0 & b & a \end{pmatrix} \dots$$
(a) Find D_{1} and D_{2} .

- (b) What are the cofactors C_{11} and C_{12} for $\underline{\underline{A}}_n$?
- (c) Using (b), and expanding on the first row of $\underline{\underline{A}}_{n}$, show that $D_n = aD_{n-1} b^2D_{n-2}$.
- (d) Use (c) and (a) to show that $D_5 = a(a^2 b^2)(a^2 3b^2)$.
- 4. Find the determinant of the following matrices:

5. Show that
$$\begin{vmatrix} 1+\sin^2\theta & \cos^2\theta & 4\sin 2\theta\\ \sin^2\theta & 1+\cos^2\theta & 4\sin 2\theta\\ \sin^2\theta & \cos^2\theta & 1+4\sin 2\theta \end{vmatrix} = 2(1+2\sin 2\theta).$$