MATH6502 Example Sheet 6. Hand in all questions from section A.

 Cover sheet with DEPARTMENT/TUTOR/YOUR NAME \& signed.Due into Maths room 6.10 by 2pm on Wednesday 26 November.

Section A

1. Which of the following square matrices are symmetric?

$$
\underline{\underline{A}}=\left(\begin{array}{cc}
1 & 2 \\
-2 & 1
\end{array}\right) \quad \underline{\underline{B}}=\left(\begin{array}{ccc}
3 & 4 & 0 \\
4 & 1 & -3 \\
0 & -3 & 6
\end{array}\right) \quad \underline{\underline{C}}=\left(\begin{array}{ll}
3 & 2 \\
4 & 3
\end{array}\right) \quad \underline{\underline{D}}=\left(\begin{array}{ll}
2 & 3 \\
3 & 4
\end{array}\right) .
$$

2. Find the determinants of the following 2×2 matrices and (where there is a relationship between two matrices) comment on how the matrices and their determinants relate to one another.
(i) $\quad\left(\begin{array}{ll}1 & 1 \\ 3 & 4 \\ 1 & 2\end{array}\right)$
(ii) $\quad\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$
(iii) $\quad\left(\begin{array}{cc}3.1 & 2.6 \\ -1.1 & 4.2\end{array}\right)$
(iv) $\quad\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$
(v) $\quad\left(\begin{array}{ll}1 & 2 \\ 3 & 8\end{array}\right)$
(vi) $\quad\left(\begin{array}{ll}1 & -2 \\ 3 & -8\end{array}\right)$
(vii) $\quad\left(\begin{array}{cc}a & b \\ \lambda c & \lambda d\end{array}\right)$
(viii) $\left(\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right)$
(ix) $\quad\left(\begin{array}{ll}1 & 2 \\ 1 & 4\end{array}\right)$
(x) $\quad\left(\begin{array}{ll}1 & 2 \\ 2 & 6\end{array}\right)$
(xi) $\quad\left(\begin{array}{ll}5 & 0 \\ 0 & 3\end{array}\right)$
(xii) $\quad\left(\begin{array}{ll}5 & 0 \\ 4 & 3\end{array}\right)$.
3. Find the determinant of the matrices $\underline{\underline{A}}$ and $\underline{\underline{B}}$ and show that $\operatorname{det}(\underline{\underline{A}} \underline{\underline{B}})=\operatorname{det}(\underline{\underline{A}}) \operatorname{det}(\underline{\underline{B}})$.

$$
\underline{\underline{A}}=\left(\begin{array}{ccc}
2 & -3 & -4 \\
1 & 0 & -2 \\
0 & -5 & -6
\end{array}\right) \quad \underline{\underline{B}}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
2 & 3 & 5 \\
4 & 1 & 3
\end{array}\right)
$$

Section B

1. Solve the following matrix multiplication for a, b, c and $d:\left(\begin{array}{ll}3 & 1 \\ 4 & 2\end{array}\right)\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$.
2. If $\underline{\underline{A}} \underline{\underline{B}}=\underline{\underline{A}}$ and $\underline{\underline{B}} \underline{\underline{A}}=\underline{\underline{B}}$ then show that $\underline{\underline{A}}^{2}=\underline{\underline{A}}$.
3. Define D_{n} as the determinant of $\underline{\underline{A}}_{n}$ where $\underline{\underline{A}}_{n}$ are this series of $n \times n$ matrices: $\underline{\underline{A}}_{1}=(a) \quad \underline{\underline{A}}_{2}=\left(\begin{array}{cc}a & b \\ b & a\end{array}\right) \quad \underline{\underline{A}}_{3}=\left(\begin{array}{ccc}a & b & 0 \\ b & a & b \\ 0 & b & a\end{array}\right) \quad \underline{\underline{A}}_{4}=\left(\begin{array}{cccc}a & b & 0 & 0 \\ b & a & b & 0 \\ 0 & b & a & b \\ 0 & 0 & b & a\end{array}\right)$
(a) Find D_{1} and D_{2}.
(b) What are the cofactors C_{11} and C_{12} for $\underline{\underline{A}}_{n}$?
(c) Using (b), and expanding on the first row of $\underline{\underline{A}}_{n}$, show that $D_{n}=a D_{n-1}-b^{2} D_{n-2}$.
(d) Use (c) and (a) to show that $D_{5}=a\left(a^{2}-b^{2}\right)\left(a^{2}-3 b^{2}\right)$.
4. Find the determinant of the following matrices:
(i) $\left(\begin{array}{ccc}1 & 2 & -1 \\ 3 & 1 & 0 \\ 2 & -1 & 2\end{array}\right)$
(ii) $\left(\begin{array}{ccc}3 & 1 & 0 \\ 1 & 2 & -1 \\ 2 & -1 & 2\end{array}\right)$
(iii) $\left(\begin{array}{ccc}1 & 3 & -1 \\ -1 & 1 & 4 \\ 2 & 2 & 3\end{array}\right)$
(iv) $\left(\begin{array}{ccc}a & 2 z & 9.6 \\ 0 & b & \sqrt{2} \\ 0 & 0 & c\end{array}\right)$
(v) $\quad\left(\begin{array}{ccc}1 & 4 & 7 \\ -1 & 3 & -2 \\ 0 & 1 & 3\end{array}\right)$
(vi) $\left(\begin{array}{ccc}a & b & c \\ -1 & x & 0 \\ 0 & -1 & x\end{array}\right)$
(vii) $\left(\begin{array}{ccc}x & -1 & 0 \\ 0 & x & -1 \\ c & b & a+x\end{array}\right)$
(viii) $\left(\begin{array}{ccc}1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & -1 & 7\end{array}\right)$
(ix) $\left(\begin{array}{cccc}2 & -3 & -4 & 0 \\ 1 & 0 & -2 & 0 \\ 0 & -5 & -6 & 0 \\ 7 & 5 & 3 & x\end{array}\right)$.
5. Show that $\left|\begin{array}{ccc}1+\sin ^{2} \theta & \cos ^{2} \theta & 4 \sin 2 \theta \\ \sin ^{2} \theta & 1+\cos ^{2} \theta & 4 \sin 2 \theta \\ \sin ^{2} \theta & \cos ^{2} \theta & 1+4 \sin 2 \theta\end{array}\right|=2(1+2 \sin 2 \theta)$.
