MATH6502 Example Sheet 5. Hand in all questions from section A. Cover sheet with DEPARTMENT/TUTOR/YOUR NAME \& signed. Due into Maths room 6.10 by 2pm on Wednesday 19 November.

Section A

1. Given these two matrices, calculate the products $\underline{\underline{A}} \underline{\underline{B}}$ and $\underline{\underline{B}} \underline{\underline{A}}$:

$$
\underline{\underline{A}}=\left(\begin{array}{ccc}
1 & -1 & 1 \\
-3 & 2 & -1 \\
-2 & 1 & 0
\end{array}\right) \quad \underline{\underline{B}}=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 6 \\
1 & 2 & 3
\end{array}\right)
$$

2. Calculate every possible product of any two of the following matrices (including the square of a matrix where possible):

$$
\underline{\underline{A}}=\left(\begin{array}{ll}
1 & 3 \\
4 & 5
\end{array}\right) \quad \underline{\underline{B}}=\left(\begin{array}{l}
5 \\
6 \\
2
\end{array}\right) \quad \underline{\underline{C}}=\left(\begin{array}{ccc}
2 & 5 & -3 \\
-8 & 1 & 0 \\
6 & 5 & -1
\end{array}\right) \quad \underline{\underline{D}}=\binom{1}{-2} \quad \begin{aligned}
& \underline{\underline{E}}=\left(\begin{array}{lll}
1 & 3 & 8
\end{array}\right) \\
& \underline{\underline{F}}=\left(\begin{array}{ll}
1 & -3
\end{array}\right)
\end{aligned}
$$

Section B

1. Solve the simultaneous equations $3 x+2 y=7$ and $x+y=3$ (you can do this with techniques from school). Now write the system as a matrix-vector multiplication and verify that the vector $\binom{x}{y}$, with the values of x and y you have just found, is a solution of the matrix problem.
2. If $\underline{\underline{A}} \underline{\underline{B}}+\underline{\underline{B}} \underline{\underline{A}}=\underline{\underline{B}}$, show that $\underline{\underline{B}}^{2} \underline{\underline{A}}=\underline{\underline{A}} \underline{\underline{B}}^{2}$.
3. Find m, n and p such that

$$
\left(\begin{array}{ccc}
1 & 2 & 3 \\
2 & -3 & 6 \\
3 & 6 & 5
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
3 & p & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & m & 0 \\
0 & 0 & n
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & p \\
0 & 0 & 1
\end{array}\right) .
$$

4. Find a matrix $\underline{\underline{A}}$ such that $\underline{\underline{A}}^{2}=\underline{\underline{B}}$, where

$$
\underline{\underline{B}}=\left(\begin{array}{ll}
3 & -4 \\
1 & -1
\end{array}\right) .
$$

5. (i) Find $\underline{\underline{A}} \underline{\underline{B}}$ and $\underline{\underline{B}} \underline{\underline{A}}$ for these two matrices:

$$
\underline{\underline{A}}=\left(\begin{array}{lll}
x & 0 & 0 \\
0 & y & 0 \\
0 & 0 & z
\end{array}\right) \quad \underline{\underline{B}}=\left(\begin{array}{ccc}
6 & 4 & -3 \\
2 & 1 & 2 \\
-4 & 5 & 7
\end{array}\right)
$$

(ii) Express each of the following matrices as a product of two square matrices:

$$
\underline{\underline{C}}=\left(\begin{array}{ccc}
2 a & 5 b & 8 c \\
3 a & -b & 4 c \\
a & 6 b & c
\end{array}\right) \quad \underline{\underline{D}}=\left(\begin{array}{ccc}
p & 9 p & -7 p \\
4 q & 2 q & 5 q \\
r & -r & 3 r
\end{array}\right)
$$

6. Let $\underline{\underline{A}}$ be a 2 x 2 matrix such that $\underline{\underline{A}}^{2}$ is the zero matrix. Find the possible forms of its elements.
