MATH6502 Example Sheet 3. Hand in all questions from section A. Cover sheet with DEPARTMENT/TUTOR/YOUR NAME \& signed.
Due into Maths room 6.10 by 2pm on Wednesday 29 October.

Section A

1. The Laplacian in two dimensions can be written in two different ways:

$$
\nabla^{2} f(x, y)=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}} \quad \nabla^{2} f(r, \theta)=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial f}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} f}{\partial \theta^{2}},
$$

where r and θ are polar coordinates: $x=r \cos \theta$ and $y=r \sin \theta$. Find the Laplacian of the following functions:
(a) $f(x, y)=3 x^{2}+2 x y$
(b) $f(r, \theta)=3 r^{2} \cos ^{2} \theta+r^{2} \sin 2 \theta$
(c) $f(r, \theta)=A r^{n} \cos n \theta+B r^{n} \sin n \theta$.
2. Find the general solution to each of these ordinary differential equations (in which k is a parameter not a variable):
(a) $\frac{\mathrm{d} f}{\mathrm{~d} t}+k^{2} f=0$
(b) $\frac{\mathrm{d}^{2} f}{\mathrm{~d} x^{2}}-k^{2} f=0$
(c) $r^{2} \frac{\mathrm{~d}^{2} f}{\mathrm{~d} r^{2}}+r \frac{\mathrm{~d} f}{\mathrm{~d} r}-k^{2} f=0$,
(d) $\frac{\mathrm{d}^{2} f}{\mathrm{~d} \theta^{2}}+k^{2} f=0$.

Hint: use the trial functions $f=e^{\lambda t}, f=e^{\lambda x}, f=r^{m}$ and $f=e^{\lambda \theta}$.

Section B

1. Using the extended chain rule (MATH6501):

$$
\begin{aligned}
& \frac{\partial f}{\partial r}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial r}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial r} \\
& \frac{\partial f}{\partial \theta}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial \theta}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial \theta}
\end{aligned}
$$

and the polar coordinate definitions $x=r \cos \theta$ and $y=r \sin \theta$, prove that

$$
\frac{\partial^{2} f}{\partial r^{2}}+\frac{1}{r} \frac{\partial f}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} f}{\partial \theta^{2}}=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}} .
$$

2. Find the solution $f(x, t)$ to the one-dimensional heat equation:

$$
\frac{\partial f}{\partial t}=\kappa \frac{\partial^{2} f}{\partial x^{2}}
$$

which satisfies:

$$
f(0, t)=0 \quad f(L, t)=0 \quad f(x, 0)=x .
$$

