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Section A

1. The Laplacian in two dimensions can be written in two different ways:
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where r and θ are polar coordinates: x = r cos θ and y = r sin θ. Find the Laplacian of the following
functions:

(a) f(x, y) = 3x2+2xy (b) f(r, θ) = 3r2 cos2 θ+r2 sin 2θ (c) f(r, θ) = Arn cos nθ+Brn sinnθ.

2. Find the general solution to each of these ordinary differential equations (in which k is a parameter
not a variable):
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Hint: use the trial functions f = eλt, f = eλx, f = rm and f = eλθ.

Section B

1. Using the extended chain rule (MATH6501):

∂f

∂r
=

∂f

∂x

∂x

∂r
+

∂f

∂y

∂y

∂r

∂f

∂θ
=

∂f

∂x

∂x

∂θ
+

∂f

∂y

∂y

∂θ

and the polar coordinate definitions x = r cos θ and y = r sin θ, prove that
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2. Find the solution f(x, t) to the one-dimensional heat equation:
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which satisfies:
f(0, t) = 0 f(L, t) = 0 f(x, 0) = x.


