MATH6502 Example Sheet 1. Hand in all questions from section A. Cover sheet with DEPARTMENT/TUTOR/YOUR NAME & signed. Due into Maths room 6.10 by 2pm on Wednesday 8 October.

Section A

Note: apart from question 1, this is entirely revision from MATH6501.

1. Find the first three terms of the Taylor series for

$$f(x) = (x+1)^5 + e^x$$

near the point x = 0.

2. Use integration by parts to evaluate the following integrals:

(i)
$$\int xe^x \, \mathrm{d}x$$
 (ii) $\int_0^\pi x^2 \sin(nx) \, \mathrm{d}x$

[You will have to integrate twice for (ii).]

- 3. (a) Using radians as a measure of angle, plot $\cos(x)$ and $\sin(x)$.
 - (b) If n is a positive integer, express each of the following as either 0 or a power of (-1):

(i) $\cos(n\pi)$ (ii) $\sin(n\pi)$ (iii) $\cos((2n+1)\pi/2)$ (iv) $\sin((2n+1)\pi/2)$.

Section B

- 1. A function f(x) is defined as being even if f(-x) = f(x) and odd if f(-x) = -f(x). For products of two general functions, show that when considering function types:
 - (a) $even \times even = even$
 - (b) $odd \times odd = even$
 - (c) $even \times odd = odd$
- 2. Evaluate the following integrals:

(a)
$$\frac{1}{L} \int_{-L}^{L} e^x \cos\left(\frac{n\pi x}{L}\right) dx$$

(b) $\frac{1}{L} \int_{-L}^{L} e^x \sin\left(\frac{n\pi x}{L}\right) dx$.

You can either integrate by parts twice or use complex numbers to do both integrals at once by setting $\cos x + i \sin x = e^{ix}$.