MATH6502 Example Sheet 1. Hand in all questions from section A. Cover sheet with DEPARTMENT/TUTOR/YOUR NAME \& signed.
Due into Maths room 6.10 by 2pm on Wednesday 8 October.

Section A

Note: apart from question 1, this is entirely revision from MATH6501.

1. Find the first three terms of the Taylor series for

$$
f(x)=(x+1)^{5}+e^{x}
$$

near the point $x=0$.
2. Use integration by parts to evaluate the following integrals:
(i) $\int x e^{x} \mathrm{~d} x$
(ii) $\int_{0}^{\pi} x^{2} \sin (n x) \mathrm{d} x$
[You will have to integrate twice for (ii).]
3. (a) Using radians as a measure of angle, plot $\cos (x)$ and $\sin (x)$.
(b) If n is a positive integer, express each of the following as either 0 or a power of (-1) :
(i) $\cos (n \pi)$
(ii) $\sin (n \pi)$
(iii) $\cos ((2 n+1) \pi / 2)$
(iv) $\sin ((2 n+1) \pi / 2)$.

Section B

1. A function $f(x)$ is defined as being even if $f(-x)=f(x)$ and odd if $f(-x)=-f(x)$. For products of two general functions, show that when considering function types:
(a) even \times even $=$ even
(b) odd \times odd $=$ even
(c) even \times odd $=$ odd
2. Evaluate the following integrals:
(a) $\frac{1}{L} \int_{-L}^{L} e^{x} \cos \left(\frac{n \pi x}{L}\right) \mathrm{d} x$
(b) $\frac{1}{L} \int_{-L}^{L} e^{x} \sin \left(\frac{n \pi x}{L}\right) \mathrm{d} x$.

You can either integrate by parts twice or use complex numbers to do both integrals at once by setting $\cos x+i \sin x=e^{i x}$.

