Handout 9 More matrix properties; the transpose

Square matrix properties

These properties only apply to a square matrix, i.e. $n \times n$.

- The *leading diagonal* is the diagonal line consisting of the entries $a_{11}, a_{22}, a_{33}, \ldots a_{nn}$.
- A diagonal matrix has zeros everywhere except the leading diagonal.
- The *identity* matrix \underline{I} has zeros off the leading diagonal, and 1 for each entry on the diagonal. It is a special case of a diagonal matrix, and $\underline{AI} = \underline{IA} = \underline{A}$ for any $n \times n$ matrix \underline{A} .
- An upper triangular matrix has all its non-zero entries on or above the leading diagonal.
- A lower triangular matrix has all its non-zero entries on or below the leading diagonal.
- A symmetric matrix has the same entries below and above the diagonal: $a_{ij} = a_{ji}$ for any values of *i* and *j* between 1 and *n*.
- An antisymmetric or skew-symmetric matrix has the opposite entries below and above the diagonal: $a_{ij} = -a_{ji}$ for any values of i and j between 1 and n. This automatically means the digaonal entries must all be zero.

Transpose

To transpose a matrix, we reflect it across the line given by the leading diagonal a_{11} , a_{22} etc. In general the result is a different shape to the original matrix:

$$\underline{\underline{A}} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix} \qquad \underline{\underline{A}}^{\top} = \begin{pmatrix} a_{11} & a_{21} \\ a_{12} & a_{22} \\ a_{13} & a_{23} \end{pmatrix} \qquad [\underline{\underline{A}}^{\top}]_{ij} = \underline{\underline{A}}_{ji}$$

- If $\underline{\underline{A}}$ is $m \times n$ then $\underline{\underline{A}}^{\top}$ is $n \times m$.
- The transpose of a symmetric matrix is itself: $\underline{\underline{A}}^{\top} = \underline{\underline{A}}$ (recalling that only square matrices can be symmetric).
- For an antisymmetric matrix, $\underline{A}^{\top} = -\underline{A}$.
- The transpose of a product is $(\underline{A} \underline{B})^{\top} = \underline{B}^{\top} \underline{A}^{\top}$.
- If you add a matrix and its transpose the result is symmetric. You can only do the addition if the matrix and its transpose are the same shape; so we need a square matrix for this.
- If you subtract the transpose from the matrix the result is antisymmetric.
- The transpose of a sum is the sum of the transposes (as you would expect): $\underline{\underline{A}}^{\top} + \underline{\underline{B}}^{\top} = (\underline{\underline{A}} + \underline{\underline{B}})^{\top}$.
- If we transpose twice we get back to where we started: $(\underline{A}^{\top})^{\top} = \underline{A}$.

You can split a matrix into the sum of a symmetric and an antisymmetric matrix using the transpose:

$$\underline{\underline{A}} = \frac{1}{2}(\underline{\underline{A}} + \underline{\underline{A}}^{\top}) + \frac{1}{2}(\underline{\underline{A}} - \underline{\underline{A}}^{\top}).$$

The first of these is symmetric and the second, antisymmetric.