Handout 9 More matrix properties; the transpose

Square matrix properties

These properties only apply to a square matrix, i.e. $n \times n$.

- The leading diagonal is the diagonal line consisting of the entries $a_{11}, a_{22}, a_{33}, \ldots a_{n n}$.
- A diagonal matrix has zeros everywhere except the leading diagonal.
- The identity matrix $\underline{\underline{I}}$ has zeros off the leading diagonal, and 1 for each entry on the diagonal. It is a special case of a diagonal matrix, and $\underline{\underline{A}} \underline{\underline{I}}=\underline{\underline{I}} \underline{\underline{A}}=\underline{\underline{A}}$ for any $n \times n$ matrix $\underline{\underline{A}}$.
- An upper triangular matrix has all its non-zero entries on or above the leading diagonal.
- A lower triangular matrix has all its non-zero entries on or below the leading diagonal.
- A symmetric matrix has the same entries below and above the diagonal: $a_{i j}=a_{j i}$ for any values of i and j between 1 and n.
- An antisymmetric or skew-symmetric matrix has the opposite entries below and above the diagonal: $a_{i j}=-a_{j i}$ for any values of i and j between 1 and n. This automatically means the digaonal entries must all be zero.

Transpose

To transpose a matrix, we reflect it across the line given by the leading diagonal a_{11}, a_{22} etc. In general the result is a different shape to the original matrix:

$$
\underline{\underline{A}}=\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right) \quad \underline{\underline{A}}^{\top}=\left(\begin{array}{cc}
a_{11} & a_{21} \\
a_{12} & a_{22} \\
a_{13} & a_{23}
\end{array}\right) \quad\left[\underline{\underline{A}}^{\top}\right]_{i j}=\underline{\underline{A}}_{j i}
$$

- If $\underline{\underline{A}}$ is $m \times n$ then $\underline{\underline{A}}^{\top}$ is $n \times m$.
- The transpose of a symmetric matrix is itself: $\underline{\underline{A}}^{\top}=\underline{\underline{A}}$ (recalling that only square matrices can be symmetric).
- For an antisymmetric matrix, $\underline{\underline{A}}^{\top}=-\underline{\underline{A}}$.
- The transpose of a product is $(\underline{\underline{A}} \underline{\underline{B}})^{\top}=\underline{\underline{B}}^{\top} \underline{\underline{A}}^{\top}$.
- If you add a matrix and its transpose the result is symmetric. You can only do the addition if the matrix and its transpose are the same shape; so we need a square matrix for this.
- If you subtract the transpose from the matrix the result is antisymmetric.
- The transpose of a sum is the sum of the transposes (as you would expect): $\underline{\underline{A}}^{\top}+\underline{\underline{B}}^{\top}=(\underline{\underline{A}}+\underline{\underline{B}})^{\top}$.
- If we transpose twice we get back to where we started: $\left(\underline{\underline{A^{\top}}}\right)^{\top}=\underline{\underline{A}}$.

You can split a matrix into the sum of a symmetric and an antisymmetric matrix using the transpose:

$$
\underline{\underline{A}}=\frac{1}{2}\left(\underline{\underline{A}}+\underline{\underline{A}}^{\top}\right)+\frac{1}{2}\left(\underline{\underline{A}}-\underline{\underline{A}}^{\top}\right)
$$

The first of these is symmetric and the second, antisymmetric.

