
Handout 6 Partial Differential Equations: separation of variables

This is a powerful technique for solving linear PDEs that have no mixed derivatives, i.e. nothing of the
form ∂2f/∂x∂y.

There are 6 essential steps:

1. Assume the solution is going to be of the form X(x)T (t) or X(x)Y (y), etc. This is called separable

form.

2. Substitute that form back into the PDE.

3. Divide by X(x)T (t) or X(x)Y (y).

4. Now each term of the equation depends on a different variable so they must both be constants.

5. For each possible value of the constant (positive, negative, zero), solve the two resulting ODEs and
multiply the solutions together to give one specific solution to the PDE

6. Form the general solution of the PDE by adding linear combinations of all the specific solutions.

Example: Heat equation in one dimension

This equation governs the temperature f(x, t) in a thin uniform body of conductivity κ (thin enough
that temperature only varies along its length (not across the width):

∂f

∂t
= κ

∂2f

∂x2
.

Our process goes:

f(x, t) = X(x)T (t) X(x)T ′(t) = κX ′′(x)T (t)
T ′(t)

T (t)
=

κX ′′(x)

X(x)
= κA.

Zero constant, A = 0
T ′(t) = 0 so T (t) = A1 and X ′′(x) = 0 so X(x) = B1x + C1, and multiplying these and renaming
the constants gives

f(x, t) = αx + β.

Negative constant, A = −κλ2

T ′(t) = −κλ2T (t) so T (t) = A2 exp [−κλ2t].
X ′′(x) = −κλ2X(x) so X(x) = B2 cos (λx)+C2 sin (λx). Multiplying and renaming again, we get:

f(x, t) = exp [−κλ2t] (a cos (λx) + b sin (λx)) .

Positive constant, A = κµ2 T ′(t) = κµ2T (t) so T (t) = A3 exp [κµ2t].
X ′′(x) = µ2X(x) so X(x) = B3 exp [µx] + C3 exp [−µx]. Putting them together, we have:

f(x, t) = exp [κµ2t] (A exp [µx] + B exp [−µx]) .

Note that the temperature here grows exponentially in time: these solutions are not physical!

General solution

f(x, t) = αx + β +
∑

n

exp [−κλ2

n
t] (an cos (λnx) + bn sin (λnx))

+
∑

n

exp [κµ2

n
t] (An exp [µnx] + Bn exp [−µnx]) .



Real example: heat equation in a finite length bar with cold ends

Now suppose we have a bar of length L which is initially at temperature 1 all over, and which we cool
from both ends by holding the ends at temperature 0:

f(x, 0) = 1 f(0, t) = 0 f(L, t) = 0.

Left hand end Substituting x = 0 into our general solution, we get:

f(0, t) = 0 = β +
∑

n

an exp [−κλ2

n
t] +

∑

n

(An + Bn) exp [κµ2

n
t]

and forcing this for every possible t gives b = 0, an = 0 and An + Bn = 0. Putting these back in
makes the full solution become:

f(x, t) = αx +
∑

n

bn exp [−κλ2

n
t] sin (λnx) +

∑

n

An exp [κµ2

n
t] (exp [µnx] − exp [−µnx]) .

Right hand end Next we look at the condition f = 0 at x = L. This gives:

0 = αL +
∑

n

bn exp [−κλ2

n
t] sin (λnL) +

∑

n

An exp [κµ2

n
t](exp [µnL] − exp [−µnL]).

Again, this has to be true for all values of t and the t-dependence of each term is different: so we
end up with α = 0, An = 0 and λnL = nπ/L.

Now almost all the terms have disappeared and the full solution becomes:

f(x, t) =
∑

n

bn exp [−κn2π2t/L2] sin (nπx/L).

Initial condition Now we put in t = 0 and get:

1 =
∑

n

bn sin
(nπx

L

)

which is a Fourier sine series with period 2L that we’ve seen before:

bn =
2

L

∫

L

0

sin
(nπx

L

)

dx =
2

L

[

−

L

nπ
cos

(nπx

L

)

]L

0

=
2

nπ
(1 − cos (nπ)) =

{

0 n even
4

nπ
n odd

We can put this back into our general solution:

f(x, t) =
∑

n odd

4

nπ
exp

[

−

κn2π2t

L2

]

sin
(nπx

L

)

.

Let’s plot this function for a few values of t:
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