Handout 4 Fourier series examples

Sawtooth function

$$
f(x)=\left\{\begin{array}{ll}
-x & -\pi \leq x \leq 0 \\
x & 0 \leq x \leq \pi
\end{array} \quad\right. \text { an even function }
$$

We calculated:

$$
a_{0}=\pi \quad a_{n}=\frac{2}{\pi n^{2}}(\cos n \pi-1)=\frac{2}{n^{2} \pi}\left\{\begin{array}{ll}
0 & n \text { even } \\
-2 & n \text { odd }
\end{array} \quad b_{n}=0 .\right.
$$

The Fourier series begins:

$$
f(x)=\frac{\pi}{2}-\frac{4}{\pi}\left(\cos x+\frac{1}{9} \cos 3 x+\frac{1}{25} \cos 5 x+\cdots\right)
$$

The coefficients in this case decrease fast, like $1 / n^{2}$: this sort of decay occurs when f is continuous.

Square wave

$$
f(x)=\left\{\begin{array}{ll}
-1 & -L<x \leq 0 \\
1 & 0<x \leq L
\end{array} \quad\right. \text { an odd function. }
$$

This function is periodic, but it is not continuous: there are jumps at $0, L, 2 L, 3 L, \ldots$
We calculated:

$$
a_{n}=0 \quad b_{n}=\frac{2}{n \pi}(1-\cos n \pi)=\frac{2}{n \pi} \begin{cases}2 & n \text { odd } \\ 0 & n \text { even }\end{cases}
$$

and the Fourier series starts:

$$
f(x)=\frac{4}{\pi}\left(\sin \left(\frac{\pi x}{L}\right)+\frac{1}{3} \sin \left(\frac{3 \pi x}{L}\right)+\frac{1}{5} \sin \left(\frac{5 \pi x}{L}\right)+\cdots\right) .
$$

Here the coefficients decrease slower, like $1 / n$: this happens when f is discontinuous (has a jump).

