Handout 3 Fourier series

If we have a periodic function $f(x)$ with period $2 L$, that is,

$$
f(x+2 L)=f(x) \quad \text { for all } x,
$$

then the Fourier series for $f(x)$ is given by

$$
F(x)=\frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left\{a_{n} \cos \left(\frac{\pi n x}{L}\right)+b_{n} \sin \left(\frac{\pi n x}{L}\right)\right\} .
$$

The constants are given by

$$
\begin{array}{ll}
a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) \mathrm{d} x & \text { for } n \geq 0 \\
b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) \mathrm{d} x & \text { for } n \geq 1
\end{array}
$$

Even functions

If $f(x)$ is even, that is, $f(-x)=f(x)$, then the coefficients are

$$
a_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) \mathrm{d} x, \quad b_{n}=0 .
$$

Odd functions

If $f(x)$ is odd, that is, $f(-x)=-f(x)$, then the coefficients are

$$
a_{n}=0, \quad b_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) \mathrm{d} x .
$$

