Handout 2 Maclaurin series and Taylor series

Maclaurin series

The Maclaurin series is an approximation to a function $f(x)$ near $x=0$:

$$
F(x)=\sum_{n=0}^{\infty} f^{(n)}(0) \frac{x^{n}}{n!}
$$

where we're using the notation $f^{(n)}(x)$ to mean the n-th derivative of $f(x)$.

Example: $f(x)=1 /(1-x)$

$$
\begin{aligned}
& f(x)=\frac{1}{(1-x)} \quad f^{\prime}(x)=\frac{1}{(1-x)^{2}} \\
& f^{\prime \prime}(x)=\frac{2}{(1-x)^{3}} \quad f^{\prime \prime \prime}(x)=\frac{6}{(1-x)^{4}} \\
& f(0)=1 \quad f^{\prime}(0)=1 \\
& f^{\prime \prime}(0)=2 \quad f^{\prime \prime \prime}(0)=6 \\
& F(x)=1+x+x^{2}+x^{3}+\cdots
\end{aligned}
$$

This series converges (so $F(x)=f(x)$) as long as $-1<x<1$. It has radius of convergence 1 .

Example: $f(x)=\sin x$

$$
\begin{array}{cl}
f(x)=\sin x & f^{\prime}(x)=\cos x \\
f^{\prime \prime}(x)=-\sin x & f^{\prime \prime \prime}(x)=-\cos x \\
f(0)=0 & f^{\prime}(0)=1 \\
f^{\prime \prime}(0)=0 & f^{\prime \prime \prime}(0)=-1 \\
F(x)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots
\end{array}
$$

In fact, this series converges for all values of x : it has an infinite radius of convergence.

Taylor Series

This gives an approximation for $f(x)$ near $x=a$:

$$
F(x)=\sum_{n=0}^{\infty} f^{(n)}(a) \frac{(x-a)^{n}}{n!}
$$

Example: $\ln x$ near $x=2$

$$
\begin{aligned}
& f(x)=\ln x \quad f^{\prime}(x)=\frac{1}{x} \\
& f^{\prime \prime}(x)=\frac{-1}{x^{2}} \quad f^{\prime \prime \prime}(x)=\frac{2}{x^{3}} \\
& f(2)=\ln 2 \quad f^{\prime}(2)=1 / 2 \\
& f^{\prime \prime}(2)=-1 / 4 \quad f^{\prime \prime \prime}(2)=1 / 4 \\
& F(x)=\ln 2+\frac{(x-2)}{2}-\frac{(x-2)^{2}}{8}+\frac{(x-2)^{3}}{24}+\cdots
\end{aligned}
$$

Example: polynomial

Here we'll look at the intermediate terms of the Taylor series for $f(x)=x^{3}-3 x$ near $x=-1, x=0$ and $x=1$.

$$
f(x)=x^{3}-3 x \quad f^{\prime}(x)=3 x^{2}-3 \quad f^{\prime \prime}(x)=6 x \quad f^{\prime \prime \prime}(x)=6
$$

Near $x=-1$:

$$
f(-1)=2 \quad f^{\prime}(-1)=0 \quad f^{\prime \prime}(-1)=-6 \quad f^{\prime \prime \prime}(-1)=6 \quad F(x)=2-3(x+1)^{2}+(x+1)^{3} .
$$

Near $x=0$:

$$
f(0)=0 \quad f^{\prime}(0)=-3 \quad f^{\prime \prime}(0)=0 \quad f^{\prime \prime \prime}(0)=6 \quad F(x)=-3 x+x^{3} .
$$

Near $x=1$:

$$
f(1)=-2 \quad f^{\prime}(1)=0 \quad f^{\prime \prime}(1)=6 \quad f^{\prime \prime \prime}(1)=6 \quad F(x)=-2+3(x-1)^{2}+(x-1)^{3} .
$$

All three versions of $F(x)$ are the same function; but the first or first two terms of each give three different approximations:

The straight line in the middle is $-3 x$; the right hand curve is $-2+3(x-1)^{2}$; and the left hand curve is $2-3(x+1)^{2}$. The thick curve is $f(x)=F(x)$. Again, the radius of convergence here is infinite.

