Handout 10 Determinants

Consider an $n \times n$ matrix <u>A</u>. A very important property of any such <u>square</u> matrix is its **determinant**. We write it as

det
$$(\underline{A})$$
 or $|\underline{A}|$ or $\begin{vmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{vmatrix}$

• For a 2×2 matrix:

$$\left|\begin{array}{cc}a&b\\c&d\end{array}\right| = ad - bc.$$

- The **minor** of element a_{ij} of $\underline{\underline{A}}$ is the determinant of $\underline{\underline{M}}_{ij}$, where $\underline{\underline{M}}_{ij}$ is the $(n-1) \times (n-1)$ matrix defined by deleting row i and column j from $\underline{\underline{A}}$.
- The cofactor C_{ij} of element a_{ij} of $\underline{\underline{A}}$ is $(-1)^{i+j}$ times the minor: $C_{ij} = (-1)^{i+j} \det(\underline{\underline{M}}_{ij})$.
- Expand on row i or column j to calculate the determinant:

$$\det(\underline{A}) = \sum_{k=1}^{n} a_{ik} C_{ik} \quad \text{or} \quad \det(\underline{A}) = \sum_{k=1}^{n} a_{kj} C_{kj}$$

Example: 3×3 matrix

$$\underline{\underline{A}} = \left(\begin{array}{rrrr} 1 & 2 & 3 \\ -1 & 0 & 4 \\ -2 & -3 & 5 \end{array}\right).$$

We expand on the second column because it has a zero in it: the pattern of $(-1)^{i+j}$ will be -, +, -.

$$\det(\underline{A}) = -(2) \times \begin{vmatrix} -1 & 4 \\ -2 & 5 \end{vmatrix} + (0) \times \begin{vmatrix} 1 & 3 \\ -2 & 5 \end{vmatrix} - (-3) \times \begin{vmatrix} 1 & 3 \\ -1 & 4 \end{vmatrix}$$
$$= -2 \times [(-1)(5) - (-2)(4)] + 0 - (-3) \times [(1)(4) - (-1)(3)]$$
$$= -2 \times [-5 + 8] + 3 \times [4 + 3] = -6 + 21 = 15.$$

Properties

- $\det(\underline{A}^{\top}) = \det(\underline{A}).$
- For a **diagonal** matrix, or a (lower or upper) **triangular** matrix, the determinant is just the product of the diagonal elements.
- If we change $\underline{\underline{A}}$ by multiplying a whole row (or column) by k, then the determinant is multiplied by k. Thus, if the whole $n \times n$ matrix is multiplied by k, the determinant is multiplied by k^n .
- If we add (or subtract) a multiple of a row to another row, the determinant doesn't change.
- If we swap two rows (or two columns) the determinant changes by a factor of (-1).
- If an entire row or column is zero, the determinant is zero
- $\det(\underline{A}\underline{B}) = \det(\underline{A})\det(\underline{B}).$
- If one row or column is written as a sum, then the determinant can be written as the sum of two determinants:

$a_{11} + \alpha$	a_{12}	a_{13}		a_{11}	a_{12}	a_{13}		α	a_{12}	a_{13}
$a_{21} + \beta$	a_{22}	a_{23}	=	a_{21}	a_{22}	a_{23}	+	β	a_{22}	a_{23}
$a_{31} + \gamma$	a_{32}	a_{33}		a_{31}	a_{32}	a_{33}		γ	a_{32}	a_{33}