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1. ∇ · u = 0, u · ∇u = −∇p+∇2u: Blasius boundary layer.

We scale X = εax, Y = εby, U = εcu and V = εdv, and P = εep (where
e is not the base of natural logarithms), and note that we are expecting
v � u so d < c. We obtain the conditions:
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with the two conditions

e = 2c a = 2b+ c.

Finally the second momentum equation gives(
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These terms can only all balance if b = −c, which would give scalings
a = b = −c = −d, which violates our assumption that d < c. Instead
we accept that the pressure term dominates this equation and the leading
order equation is ∂P/∂Y = 0.

We return to the x-momentum equation and the mass conservation equa-
tion. We have the conditions

e = 2c a = 2b+ c a− c = b− d

and we are solving the dominant equations
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Now the following quantities are invariant under our transformation:

x−b/ay x−c/au x−d/av x−e/ap

Using our conditions to eliminate c, d and e and setting b/a = m these
become

x−my x−(1−2m)u xmv x−2(1−2m)p



so we pose the following solution:

u = x1−2mU(ξ) v = x−mV (ξ) p = x2(1−2m)P (ξ) ξ = x−my

However, recall we had ∂p/∂y = 0 which means P (ξ) must in fact be a
constant. The outer boundary condition on u fixes m = 1/2 and then the
similarity solution is of the form

u = U(ξ) v = x−1/2V (ξ) p = P0 ξ = x−1/2y

and the full set of boundary conditions becomes

U(0) = V (0) = 0 U(ξ) → 1, V (ξ) → 0 as ξ → ∞.

In order to reduce these to a single variable, we introduce a streamfunction
ψ so that u = ∂ψ/∂y and v = −∂ψ/∂x: this gives

ψ = x1/2f(ξ) with U(ξ) = f ′(ξ), V (ξ) =
1

2
[ξf ′(ξ)− f(ξ)].

The mass equation is then automatically satisfied and the x-momentum
equation becomes

2f ′′′(ξ) + f(ξ)f ′′(ξ) = 0,

which may only be solved numerically. The boundary conditions which
apply to it are

f(0) = f ′(0) = 0 f ′(ξ) → 1 as ξ → ∞.

2. Jν(νz) =
1

2πi

∫ ∞+iπ

∞−iπ

exp [νz sinh t− νt] dt.

Let us look at the behaviour of the function f(t) = z sinh t− t. If we put
t = x+ iy then

Real (f(t)) = z sinhx cos y − x

which has deep valleys in positive x at y = −π and y = π and a high
shoulder at y = 0. At the start and end points of our contour,

Real (f(t)) = −z sinhx− x→ −∞.

The function only has stationary points at

z cosh t− 1 = 0 cosh t =
1

z
t = ± arccosh

[
1

z

]
,

which means we can select a contour which comes up one of these val-
leys, crosses over at the positive saddle point and then descends the other
valley. The strict steepest descent contour would keep Imag (f(t)) = 0
throughout, and would be defined by

z sin y coshx = y

but close to the point x = t0, y = 0 we can approximate this contour by
the quadratic

y2 = 6z(x− t0) sinh t0.



Now we can choose any contour which stays below the level of the saddle
as it descends. One such choice is the contour consisting of two straight
lines and our quadratic function:

C1 : t = −s− iπ −∞ < s < −t0 − π2/6z sinh t0

C2 : t = t0 + s2/6z sinh t0 + is − π < s < π

C3 : t = s+ iπ t0 + π2/6z sinh t0 < s <∞

The maximum contribution from C1 and C3 comes at the corner points
where they meet C2; however, the value there is exponentially lower than
that along the contour C2, which we will take as the leading component
of our expansion:
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We can now calculate the leading terms of the integral:
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The term i + s/(3z sinh t0) comes from the change of variables in the
integral; it is clear that the part with the s will result in an exact integral
which will not contribute anything. Thus we have
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and substituting in the definition of t0:
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we obtain
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