
Analytical Methods: Solutions 3

1.
∂2u

∂t2
− x2

(t+ 1)2
∂2u

∂x2
= 0.

We try solutions of the form X(x)T (t) to have

(t+ 1)2T ′′(t)

T (t)
=

x2X ′′(x)

X(x)
= A

which gives the coupled ODEs

x2X ′′(x) = AX(x) (t+ 1)2T ′′(t) = AT (t).

The first of these has boundary conditions X(1) = X(2) = 0. It has
solutions of the form xm where

m2 −m−A = 0 m =
1±

√
1 + 4A

2
.

Putting X(x) = axm1 + bxm2 , the two boundary conditions give

a+ b = 0 a2m1 + b2m2 = 0

so we are constrained by
2m1 = 2m2 .

Note that m1 6= m2 (since otherwise we would have X(x) = 0). The
equation above can only be satisfied if m1 and m2 have equal real part:
then given that the quadratic was real, they must be a complex conjugate
pair. Say

m1 = a+ ib m2 = a− ib

Then we need

2a+ib = 2a−ib 2ib = 2−ib exp [ib ln 2] = exp [−ib ln 2]

ib ln 2 = −ib ln 2 + 2nπi b = nπ/ ln 2.

Returning to the definition of m, we have

a± inπ

ln 2
=

1±
√
1 + 4A

2
a =

1

2
A = −1

4
−
( nπ

ln 2

)2

and the solution for X(x) is

Xn(x) = αnx
1/2 sin

(
nπ lnx

ln 2

)
Now we return to the T (t) equation, using our value for A:

(t+ 1)2T ′′(t) +

[
1

4
+
( nπ

ln 2

)2
]
T (t) = 0.

This has solutions of the form T (t) = (t+ 1)λ where

λ2 − λ+
1

4
+
( nπ

ln 2

)2

= 0 λ =
1

2
± i

nπ

ln 2



so we have

T (t) = (t+ 1)1/2
{
β exp

[
inπ

ln 2
ln (t+ 1)

]
+ γ exp

[
− inπ

ln 2
ln (t+ 1)

]}
.

The initial condition u(x, 0) = 0 gives T (0) = 0 and thus β + γ = 0 and
the full solution becomes:

u(x, t) =
∑
n

αnx
1/2(t+ 1)1/2 sin

(
nπ lnx

ln 2

)
sin

(
nπ ln (t+ 1)

ln 2

)
.

2. ε
∂2u

∂x2
+ ε

∂2u

∂y2
+

∂u

∂y
= 0

(a) Trying u = u0 + εu1 + · · · gives for the first two equations

∂u0/∂y = 0
ε∂2u0/∂x

2 + ε∂2u0/∂y
2 + ∂u1/∂y = 0

The leading-order solution is

u0 = f0(x) u0 = 1− x2

and the next order equation becomes

∂u1/∂y = 2 u1 = 2y + f1(x).

(b) Scaling y = a+δY will not affect the first term; to balance the second
and third we need εδ−2 = δ−1 so δ = ε. The new governing equation
is

ε2
∂2u

∂x2
+

∂2u

∂Y 2
+

∂u

∂Y
= 0

so if we pose
f ∼ f0 + εf1 + · · ·

then at both leading order and next order we have

∂2fi/∂Y
2 + ∂fi/∂Y = 0 fi(x, Y ) = Ai(x) exp [−Y ] +Bi(x).

The boundary condition at y = 0 transforms to

∂u

∂Y
(x, 0) + u(x, 0) = 0 Bi(x) = 0.

The solution is f ∼ A0(x)e
−Y + εA1(x)e

−Y + · · · .
(c) Return to the whole equation, and substitute u = X(x)Y (y):

ε
X ′′(x)

X(x)
= −Y ′(y)

Y (y)
− ε

Y ′′(y)

Y (y)
= A

The boundary conditions u(−1, y) = u(1, y) = 0 convert to X(−1) =
X(1) = 0.

If A is positive, A = ελ2 and

X ′′(x) = λ2X(x) X(x) = a exp [λx] + b exp [−λx]



The boundary conditions cannot both be satisfied so we discard this
solution.

If A = 0 we have X(x) = αx+β which cannot satisfy the x-boundary
conditions.

Finally, if A is negative, A = −εµ2 and

X ′′(x) = −µ2X(x) X(x) = a cos [µx] + b sin [µx]

The boundary conditions fix b = 0, µ = (2n+ 1)π/2.

Then we have
εY ′′(y) + Y ′(y)− εµ2Y (y) = 0

which has solutions Y = emy if

m =
−1±

√
1 + 4ε2µ2

2ε
=

−1±
√
1 + (2n+ 1)2π2ε2

2ε

The solution satisfying the boundary conditions at x = ±1 is

u =
∑
n

an cos

[
(2n+ 1)πx

2

]
(cn exp [m1y] + dn exp [m2y])

with

m1 =
−1 +

√
1 + (2n+ 1)2π2ε2

2ε
m2 =

−1−
√

1 + (2n+ 1)2π2ε2

2ε
.

(d) When ε is small, we can expand the forms of m1 and m2:

m1 ≈ (2n+ 1)2π2ε

4
m2 ≈ −1

ε
.

So each of our Y functions consists of a slow exponential which grows
with increasing y and a fast exponential which decreases with increas-
ing y. The fast exponential is the scaled solution of (b); away from a
small region near y = 0, it is essentially zero. The slow exponential
contains the rest of the information in the domain.

Away from the region of small y, we have

u ≈
∑
n

ancn cos

[
(2n+ 1)πx

2

]
and if we apply the boundary condition at y = 1 using a Fourier
series, we can see that we have u ≈ 1 − x2 everywhere except close
to y = 0. This is the solution we found in (a).

3. The image of |z − 1| ≤ 1 under w = 1/z.

The boundary of the domain may be parametrised as

|z − 1| = 1 z = 1 + eiθ 0 ≤ θ < 2π

which transforms to

w =
1

1 + cos θ + i sin θ
=

1 + cos θ − i sin θ

(1 + cos θ)2 + sin2 θ
=

1 + cos θ − i sin θ

2 + 2 cos θ



w =
1

2
− i

sin θ

2 + 2 cos θ

The real part of w is always 1/2; the imaginary part spans the whole line
from negative infinity at θ = π to positive infinity at θ = −π.

To complete the mapping we simply need to know which side of the bound-
ary our domain lies. The point z = 1 is in the original domain: therefore
the point w = 1 is in the image domain, which is therefore given by

Real (w) ≥ 1

2
.

4. The image of −π/2 < x < π/2, 0 < y < 1 under w = sin z.

We look at each boundary in turn, writing w = η + iξ where necessary.

Bottom edge y = 0: w = sinx, −π/2 < x < π/2.

−1 < η < 1, ξ = 0.

Top edge y = 1: w = sin (x+ i) = cosh 1 sinx+ i sinh 1 cosx.

η2

cosh2 1
+

ξ2

sinh2 1
= 1, ξ > 0.

Left edge x = −π/2: w = sin (−π/2 + iy) = − cosh y, 0 < y < 1.

− cosh 1 < η < −1 ξ = 0.

Right edge x = π/2: w = sin (π/2 + iy) = cosh y, 0 < y < 1.

1 < η < cosh 1 ξ = 0.

The top edge is half an ellipse; the other three form the straight line
− cosh 1 < η < cosh 1, ξ = 0. We now need to check whether the interior
or exterior of the half-ellipse is our image. Take a point from the interior
of the rectangle – say, z = i/2. Then w = sin i/2 = i sinh (1/2), which is
inside our half ellipse. The image domain is

w = η + iξ
η2

cosh2 1
+

ξ2

sinh2 1
≤ 1, ξ > 0.

5. The image of −π/4 < x < π/4, −1 < y < 1 under w = sin z.

Again, we find the image of each edge in turn, putting z = x + iy, w =
η + iξ.

Bottom edge y = −1: w = sin (x− i) = cosh 1 sinx− i sinh 1 cosx.

η2

cosh2 1
+

ξ2

sinh2 1
= 1 − cosh 1√

2
< η <

cosh 1√
2

ξ < − sinh 1√
2

.

Top edge y = 1: As in 4, but with a reduced range of x:

η2

cosh2 1
+

ξ2

sinh2 1
= 1 − cosh 1√

2
< η <

cosh 1√
2

ξ >
sinh 1√

2
.



Left edge x = −π/4: w = sin (iy − π/4) = (− cosh y + i sinh y)/
√
2.

η2−ξ2 =
1

2
− cosh 1√

2
< η < − 1√

2
− sinh 1√

2
< ξ <

sinh 1√
2

.

Right edge x = π/4: w = sin (iy + π/4) = (cosh y + i sinh y)/
√
2.

η2 − ξ2 =
1

2

1√
2
< η <

cosh 1√
2

− sinh 1√
2

< ξ <
sinh 1√

2
.

This curvilinear rectangle looks like:

and is bounded by the hyperbola η2 − ξ2 = 1/2 and the ellipse

η2

cosh2 1
+

ξ2

sinh2 1
= 1

6. ∇2u = 0 in the domain 1 < r < eα, 0 < α < π with boundary conditions
∂u/∂r(1, θ) = 0, ∂u/∂r(eα, θ) = sin θ, u(r, 0) = u(r, π) = 0.

(a) The geometry of the domain suggests polar coordinates, in which

∇2u =
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂θ2

and the three types of separable solution are

u = (a cos [λθ] + b sin [λθ])(crλ + dr−λ)

u = (A exp [µθ] +B exp [−µθ])(C cos [µ ln r] +D sin [µ ln r])

u = (α+ β ln r)(γ + δθ).

The boundary conditions u(r, 0) = u(r, π) = 0 impose a = A = B =
γ = δ = 0 and λ = n so

u =
∑
n

sin [nθ](cnr
n + dnr

−n).



Then
∂u

∂r
=

∑
n

sin [nθ](ncrn−1 − ndr−(n+1))

and the boundary conditions ∂u/∂r(1, θ) = 0 and ∂u/∂r(eα, θ) =
sin θ give n = 1 and finally

u(r, θ) =
(r + r−1) sin θ

(1− e−2α)
.

(b) Under w = ln z with w = η + iξ, the region 0 < θ < π, 1 < r < eα

becomes 0 < η < α, 0 < ξ < π. The three zero boundary conditions
become

u(η, 0) = 0 u(η, π) = 0
∂u

∂η
(0, ξ) = 0

and since |dw/dz| = |1/z| = e−α on r = eα, the final boundary
condition becomes

∂u

∂η
(α, ξ) = eα sin ξ.

It is clear that the solution is

u = sin ξ(a cosh η + b sinh η)
∂u

∂η
= sin ξ(a sinh η + b cosh η)

u =
eα cosh η sin ξ

sinhα
=

2 cosh η sin ξ

(1− e−2α)

Now if ln z = η + iξ then η = ln r and ξ = θ so our solution is

u(z) =
2 cosh [ln r] sin θ

(1− e−2α)
=

(r + r−1) sin θ

(1− e−2α)
.

Note the analytic function of which u is the real part is

f =
2 sin (−iw)

(1− e−2α)
=

2 sin (−i ln z)

(1− e−2α)
.

7. The two distinguished stretches are δ = 1 and δ = ε. δ = 1 gives us a
regular expansion:

f = f0 + εf1 + ε2f2 + · · ·
df0
dx

= cosx
df1
dx

= −d2f0
dx2

= sinx
df2
dx

= −d2f1
dx2

= − cosx

f = c0 + sinx+ ε[c1 − cosx] + ε2[c2 − sinx] + · · ·

in which the boundary condition at x = π gives:

1 = c0 + ε[c1 + 1] + ε2[c2] + · · ·

f(x) = 1 + sinx− ε[1 + cosx]− ε2 sinx+ · · ·

For the stretch δ = ε, if z = x/ε then

d2f

dx2
+

df

dz
= ε cos εz = ε(1− ε2z2/2 + · · · )



f = F0(z) + εF1(z) + ε2F2(z) + · · ·

d2F0

dz2
+

dF0

dz
= 0

d2F1

dz2
+

dF1

dz
= 1

d2F2

dz2
+

dF2

dz
= 0

f(z) = a0 + b0e
−z + ε[a1 + b1e

−z + z] + ε2[a2 + b2e
−z] + · · ·

which becomes (using the BC at z = 0):

f(z) = a0 − a0e
−z + ε[a1 − a1e

−z + z] + ε2[a2 − a2e
−z] + · · ·

Now we match, using an intermediate variable x = εαξ. The expansion of
the outer solution is

f(x) = 1 + εαξ − 2ε− ε3αξ3/6 + ε1+2αξ2/2− ε2+αξ +O(ε3, ε5α)

The inner expansion, with z = εα−1ξ, becomes

f(z) = a0 + εαξ + εa1 + ε2a2 + · · ·

Matching the two gives a0 = 1, a1 = −2 and a2 = 0, so the matched inner
form is

f(z) = 1− e−z + ε[2e−z − 2 + z] +O(ε3).

8. (1 + ε)x2y′ = ε((1− ε)xy2 − (1 + ε)x+ y3 + 2εy2) with y(1) = 1.

Outer: set y = y0 + εy1 + ε2y2 + · · · to have (rows being order 1, ε, ε2):

x2y′0 = 0
x2y′1 + x2y′0 = xy20 − x + y30
x2y′2 + x2y′1 = 2xy0y1 − xy20 − x + 3y20y1 + 2y20

Order 1 At leading order, y′0 = 0 gives y0 = a0 and, using the boundary
condition, y0 = 1.

Order ε The equation becomes x2y′1 = 1 so y1 = a1−x−1. The boundary
condition fixes y1 = 1− x−1.

Order ε2 The equation is x2y′2 = 2−3x−1 so y2 = a2−2x−1+(3/2)x−2.
With the boundary condition we have y2 = 1/2− 2x−1 + (3/2)x−2.

The outer expansion is

y ∼ 1 + ε

(
1− 1

x

)
+ ε2

(
1

2
− 2

x
+

3

2x2

)
+ · · ·

which ceases to be uniformly asymptotic when x ∼ ε.

We rescale (noting that y is still order 1) by putting x = εz and the
original equation becomes:

(1 + ε)z2y′ = ε(1− ε)zy2 − ε(1 + ε)z + y3 + 2εy2

In the inner, we pose y = f0 + εf1 + · · · to have

z2f ′
0 = f3

0

εz2f ′
1 + εz2f ′

0 = εzf2
0 − εz + 3εf2

0 f1 + 2εf2
0



Order 1: z2f ′
0 = f3

0 has solution f0 = (A0 + 2/z)−1/2.

Matching: We use an intermediate variable η = ε−αx = ε1−αz. The
outer becomes

y ∼ 1− ε1−α 1

η
+ ε2−2α 3

2η2
+ ε− ε2−α 2

η
+

ε2

2
+ · · ·

and the inner,

y ∼ A
−1/2
0

(
1− ε1−α 1

A0η
+ ε2−2α 3

2A2
0η

2
+ · · ·

)
which matches the first three terms if we set A0 = 1. So we have
f0 = (1 + 2/z)−1/2.

Order ε: The equation becomes z2f ′
1 − 3(1+2/z)−1f1 = −(1+ 2/z)−3/2

so (using the integrating factor (1 + 2/z)3/2) we have

f1 =

(
A1 +

1

z

)(
1 +

2

z

)−3/2

Matching The outer is unchanged from before: the inner now becomes

y ∼ 1− ε1−α 1

η
+ ε2−2α 3

2η2
+ εA1 + ε2−α

(
1− 3A1

η

)
+ · · ·

which matches the next two terms of the outer if we set A1 = 1.

The inner expansion is

y ∼
(
1 +

2

z

)−1/2

+ ε

(
1 +

1

z

)(
1 +

2

z

)−3/2

+ · · ·


