Analytical Methods: Solutions 3
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We try solutions of the form X (z)T(¢) to have

(t"’ 1)2T//(t) B xQX//(x)

= = A
T(t) X(z)
which gives the coupled ODEs
2 X" (z) = AX () (t+1)2T"(t) = AT(t).

The first of these has boundary conditions X (1) = X(2) = 0. It has
solutions of the form =™ where

9 1+V1+4A

m“—m—A=0 m=-—0p—":

Putting X (z) = az™* 4 bz™2, the two boundary conditions give
a+b=0 a2™ +p2™M2 =0

so we are constrained by
2m1 — 2’”’7,2

Note that my # mg (since otherwise we would have X (z) = 0). The
equation above can only be satisfied if m; and mso have equal real part:
then given that the quadratic was real, they must be a complex conjugate

pair. Say
mi1 =a-+ib mo = a — b

Then we need

gatib _ ga—ib 2ib — 9—ib exp [ibIn 2] = exp [—ibIn 2]

ibIn2 = —ibIn 2 + 2nmi b=nm/In2.
Returning to the definition of m, we have
Linm_1EVI+dd . (E)Z
m2 2 T3 1 \n2

and the solution for X (z) is

X, (x) = /% sin <n7r hm:)

In2

Now we return to the T'(t) equation, using our value for A:
1 nm\ 2
t+1)°T"(t) + |~ (—) T(t) = 0.
e+ g+ (1) ] T =0
This has solutions of the form 7'(t) = (¢ + 1) where

1 nm\ 2 1 nm
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so we have

T(t) = (t+1)1/2 {,Bexp [izgln (t+ 1)} + 7y exp [—an In (t + 1)} } .

In2

The initial condition u(z,0) = 0 gives T'(0) = 0 and thus 8+ v = 0 and
the full solution becomes:
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L In (¢ +1
uwt) = P ana' e+ 1)! 2 sin e e ]
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Trying u = ug + euq + - - - gives for the first two equations
Oug/dy = 0
€0%up/0x® + ed%ug/0y* + Oui/oy = 0
The leading-order solution is
ug = fo(x) ug =1 — 22
and the next order equation becomes
Ouy /0y =2 up =2y + f1(x).

Scaling y = a+dY will not affect the first term; to balance the second
and third we need 672 = §~! so § = . The new governing equation
is

62@+&+%=0
ox?  0Y?2 OY
so if we pose
[ fotefite

then at both leading order and next order we have
PFiJOYE+0fi)0Y =0 filw,Y) = Ai()exp[=Y] + Bila).
The boundary condition at y = 0 transforms to

ou

_— = B = ().

57 (2,0) + u(z,0) =0 (2)=0
The solution is f ~ Ag(x)e™Y +eAj(z)e™ +---.

Return to the whole equation, and substitute u = X (2)Y (y):
X"x) _ Y'(y) _ Y'(y)

5 = €
X(x) Yiy) Y
The boundary conditions u(—1,y) = u(1,y) = 0 convert to X(—1) =
X(1)=0.
If A is positive, A = e\? and

X"(x) = N X () X(z) = aexp [ ] + bexp [ \x]



The boundary conditions cannot both be satisfied so we discard this
solution.

If A =0 we have X (z) = ax+  which cannot satisfy the z-boundary
conditions.

Finally, if A is negative, A = —ep? and
X" (z) = —p* X (z) X (z) = acos [px] + bsin [ux]

The boundary conditions fix b =0, p = (2n + 1)7/2.

Then we have
eY"(y) +Y'(y) —ep®Y(y) =0

which has solutions Y = e™¥ if

~14/1+4e2p2 —1+£+/1+ (2n+1)2n2e2
m = =
2e 2e

The solution satisfying the boundary conditions at x = £1 is

u= Z ap, COS [(2n—|—21)m:] (cn exp [m1y] + d,, exp [may])

with

=14 /14 (2n + 1)%7%2
N 2¢

 —1— /14 (2n + 1)27%2
= o .
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(d) When ¢ is small, we can expand the forms of m; and meg:

(2n + 1)%72%e -1
moR S mp A —.
£
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So each of our Y functions consists of a slow exponential which grows
with increasing y and a fast exponential which decreases with increas-
ing y. The fast exponential is the scaled solution of (b); away from a
small region near y = 0, it is essentially zero. The slow exponential
contains the rest of the information in the domain.

Away from the region of small y, we have

2 1
= Z Ay Cp, COS {W]
n

and if we apply the boundary condition at ¥y = 1 using a Fourier
series, we can see that we have u ~ 1 — 22 everywhere except close
to y = 0. This is the solution we found in (a).

3. The image of |z — 1| < 1 under w = 1/z.
The boundary of the domain may be parametrised as
lz—1] =1 z=1+¢" 0<6<2m

which transforms to

1 1+ cosf —isinf 1+ cosf —isinf
w = = =
1+cosf+isin® (1 +cosf)?+sin?6 2+ 2cosb




1 . sin6

- -

2 2+ 2cosf
The real part of w is always 1/2; the imaginary part spans the whole line
from negative infinity at 6 = 7 to positive infinity at § = —.

To complete the mapping we simply need to know which side of the bound-
ary our domain lies. The point z = 1 is in the original domain: therefore
the point w = 1 is in the image domain, which is therefore given by

1
Real (w) > 3

. The image of —7/2 <z < 7/2, 0 <y < 1 under w = sin z.
We look at each boundary in turn, writing w = n + ¢ where necessary.
Bottom edge y = 0: w =sinz, —7/2 <z < 7/2.
-l<n<l, &£€=0.
Top edge y = 1: w =sin(z +14) = cosh 1sinz + isinh 1 cosz.

n? ¢
cosh?1  sinh?1

=1, £€>0.

Left edge v = —7/2: w =sin(—n/2+1dy) = —coshy, 0 <y < 1.
—coshl<np<—1 &E=0.
Right edge © = 7/2: w =sin (/2 +iy) = coshy, 0 < y < 1.
1 <n<coshl £E=0.

The top edge is half an ellipse; the other three form the straight line
—coshl < n<coshl, £ =0. We now need to check whether the interior
or exterior of the half-ellipse is our image. Take a point from the interior
of the rectangle — say, z = /2. Then w = sini/2 = isinh (1/2), which is
inside our half ellipse. The image domain is

2 2

n §
<1, £€>0.
cosh?1  sinh?1 ~ ¢

w =1 +1i§

. The image of —7/4 < x < 7/4, —1 <y < 1 under w = sin z.

Again, we find the image of each edge in turn, putting z = = + iy, w =
1+ €.

Bottom edge y = —1: w =sin(x — i) = cosh1sinz —isinh 1 cosz.
2 2 :
n 13 cosh 1 cosh 1 sinh 1
+ =1 — << —= < ——.
cosh?1  sinh?1 V2 g V2 ¢ V2

Top edge y = 1: As in 4, but with a reduced range of x:

n? n £ _1 cosh1< <cosh1 £>sinhl
cosh?1  sinh®1 V2 K V2

3



Left edge © = —7/4: w = sin (iy — 7/4) = (— coshy + isinhy)/v/2.

27527} 7COSh1< <L 7sinh1< <sinh1
T vi ST V2 Vi
Right edge = = 7/4: w = sin (iy + 7/4) = (coshy + isinhy)/v/2.
275271 i< <cosh1 7sinh1<£<sinh1

This curvilinear rectangle looks like:

and is bounded by the hyperbola 7? — 2 = 1/2 and the ellipse

n? £
5 T
cosh“1l sinh“1

=1
6. V2u = 0 in the domain 1 < r < e®, 0 < a < 7 with boundary conditions
Ou/or(1,0) =0, Ou/0r(e*,0) =sinb, u(r,0) = u(r,7) = 0.
(a) The geometry of the domain suggests polar coordinates, in which

u 10w 10
or2  ror 1?2002

and the three types of separable solution are

Vu =

u = (acos [A] + bsin [\]) (cr™ + dr?)
u = (Aexp [ub] + Bexp [—ub])(C cos [plnr] + Dsin [pulnr])
u=(a+ Blnr)(y+d6).

The boundary conditions u(r,0) = u(r,7) = 0 impose a = A = B =
y=d0=0and A =n so

u= Zsin [nO](crnr™ + dpr™™).



Then P
3—u = E sin [n0](ner™ ™t — ndr~ (D)
r
n

and the boundary conditions du/0r(1,0) = 0 and du/Or(e*,0) =
sinf give n = 1 and finally

(r+7r71)siné
)= ——"——.

u(r, ) 1—c)

(b) Under w = Inz with w = n+ i€, theregion 0 < 6 < 7, 1 <71 < e
becomes 0 <1 < a, 0 < £ < w. The three zero boundary conditions
become

ou
n
and since |[dw/dz| = |1/z] = e=® on r = e®, the final boundary
condition becomes

gz(a,f) = e%siné.

It is clear that the solution is

0
u = sin &(a coshn + bsinhn) a—:; = sin{(asinh n + bcoshn)

e“coshnsing  2coshnsing

sinh « (1—e29)

Now if Inz = 1 + i€ then n = Inr and £ = 6 so our solution is

(2) = 2cosh[Inr]sin®  (r4r~')sing
YE T T I ey T T 1)

Note the analytic function of which u is the real part is

_ 2sin(—iw)  2sin(—ilnz)
=) = (i—e)

7. The two distinguished stretches are 6 = 1 and § = €. § = 1 gives us a
regular expansion:

f=foteh+efat -
dfo dfi — d&*fo . dfy  d&*fi
— = COS X —_ = — =Smex —_ = — = —COSXT

dz dz dz? dz dz?

f=co+sinz +ele; —cosa] +e*[cy —sinz] 4 - -

in which the boundary condition at x = 7 gives:

1=co+eler + 1] +€2[ep] +---

2

f(z) =1+sinz —e[l +cosa] —e“sinz + - --
For the stretch § = ¢, if 2 = x/¢ then
d? d
/ —|——f =ccosez =e(l —e%22/2+--+)

dz?2  dz



f=Fy(2)+eFi(z)+ 52F2(z) 4+
SR AR @R AR @R R
dz2 dz dz2 dz dz2 dz

f(2) = ag +boe % +lay +bre ™ + 2] + 2[ag + boe ] + - - -

=0

which becomes (using the BC at z = 0):
f(2) = ap —ape™* +lag — are™* + 2] + €%[ay — age 7] + - -

Now we match, using an intermediate variable z = ¢“£. The expansion of
the outer solution is

flx) =146 — 2 —39¢3/6 + 172262 /2 — 2To¢ 1 O(e3,65%)
The inner expansion, with z = e*~1¢, becomes
f(2) = ap + %€ +eay + %ag + - -

Matching the two gives ag = 1, a3 = —2 and as = 0, so the matched inner
form is
f(z)=1—e74e[2e7% — 24 2] + O(®).
(A4 e)2?y =e((1 —e)zy® — (1 + &)z + y® + 2ey?) with y(1) = 1.
Outer: set y = yo + ey1 + €2y2 + - - to have (rows being order 1, ¢, £2):

2y}, = 0
2y + Py = w2y -z + ¥
2?yh + 2%y = 2myoyn — wyd —  + 3w + 243

Order 1 At leading order, y{, = 0 gives yo = a¢ and, using the boundary
condition, yo = 1.

Order ¢ The equation becomes x2y] = 150 y; = a; —x~!. The boundary
condition fixes y; = 1 — 27 1.

Order £? The equation is 22y, = 2— 327! 80 yo = as — 2271 +(3/2)z 2.
With the boundary condition we have y, = 1/2 — 2271 + (3/2)z~2.

The outer expansion is

tre(1- D) e (2 3,
4 €x€2m2x2

which ceases to be uniformly asymptotic when = ~ ¢.

We rescale (noting that y is still order 1) by putting x = ez and the
original equation becomes:

(1+¢e)2%y =ec(l—e)zy® —e(1 + )z + 3> + 2e9?
In the inner, we pose y = fo +ef1 + -+ to have

22f) = f3
e’fi + ePfy = exf§ — ez 4+ 3efgh + 2ef§



Order 1: 22f, = f3 has solution fo = (Ag +2/2)" /2.

Matching: We use an intermediate variable n = e~%r = 7%z, The
outer becomes

1 3
11—« 2—2x
y~1l—e7%—+¢ —
7 2n? n o 2

and the inner,

_ 1 3
~ ATV (1_61—a+€2—2a +>
4 0 Agn 2A%n?

which matches the first three terms if we set Ag = 1. So we have
fo=(1+2/2)72

Order e: The equation becomes 22f] —3(1+2/2)" f1 = —(1+2/2)73/2
so (using the integrating factor (14 2/2)%/2) we have

—-3/2
fr= (A1+1> <1+2)
z z

Matching The outer is unchanged from before: the inner now becomes

1 3 1-34
Yy~ 1— 61—047 + 62—20472 T EAl + 62—& <1> T
n 2n U

which matches the next two terms of the outer if we set A; = 1.

The inner expansion is

—1/2 —-3/2
2 1 2
y~<1+> +5(1+>(1+> Hoe
z z z



