Analytical Methods: Solutions 3

1. $\frac{\partial^{2} u}{\partial t^{2}}-\frac{x^{2}}{(t+1)^{2}} \frac{\partial^{2} u}{\partial x^{2}}=0$.

We try solutions of the form $X(x) T(t)$ to have

$$
\frac{(t+1)^{2} T^{\prime \prime}(t)}{T(t)}=\frac{x^{2} X^{\prime \prime}(x)}{X(x)}=A
$$

which gives the coupled ODEs

$$
x^{2} X^{\prime \prime}(x)=A X(x) \quad(t+1)^{2} T^{\prime \prime}(t)=A T(t)
$$

The first of these has boundary conditions $X(1)=X(2)=0$. It has solutions of the form x^{m} where

$$
m^{2}-m-A=0 \quad m=\frac{1 \pm \sqrt{1+4 A}}{2}
$$

Putting $X(x)=a x^{m_{1}}+b x^{m_{2}}$, the two boundary conditions give

$$
a+b=0 \quad a 2^{m_{1}}+b 2^{m_{2}}=0
$$

so we are constrained by

$$
2^{m_{1}}=2^{m_{2}}
$$

Note that $m_{1} \neq m_{2}$ (since otherwise we would have $X(x)=0$). The equation above can only be satisfied if m_{1} and m_{2} have equal real part: then given that the quadratic was real, they must be a complex conjugate pair. Say

$$
m_{1}=a+i b \quad m_{2}=a-i b
$$

Then we need

$$
\begin{array}{cc}
2^{a+i b}=2^{a-i b} \quad 2^{i b}=2^{-i b} & \exp [i b \ln 2]=\exp [-i b \ln 2] \\
i b \ln 2=-i b \ln 2+2 n \pi i & b=n \pi / \ln 2
\end{array}
$$

Returning to the definition of m, we have

$$
a \pm \frac{i n \pi}{\ln 2}=\frac{1 \pm \sqrt{1+4 A}}{2} \quad a=\frac{1}{2} \quad A=-\frac{1}{4}-\left(\frac{n \pi}{\ln 2}\right)^{2}
$$

and the solution for $X(x)$ is

$$
X_{n}(x)=\alpha_{n} x^{1 / 2} \sin \left(\frac{n \pi \ln x}{\ln 2}\right)
$$

Now we return to the $T(t)$ equation, using our value for A :

$$
(t+1)^{2} T^{\prime \prime}(t)+\left[\frac{1}{4}+\left(\frac{n \pi}{\ln 2}\right)^{2}\right] T(t)=0
$$

This has solutions of the form $T(t)=(t+1)^{\lambda}$ where

$$
\lambda^{2}-\lambda+\frac{1}{4}+\left(\frac{n \pi}{\ln 2}\right)^{2}=0 \quad \lambda=\frac{1}{2} \pm i \frac{n \pi}{\ln 2}
$$

so we have

$$
T(t)=(t+1)^{1 / 2}\left\{\beta \exp \left[\frac{i n \pi}{\ln 2} \ln (t+1)\right]+\gamma \exp \left[-\frac{i n \pi}{\ln 2} \ln (t+1)\right]\right\}
$$

The initial condition $u(x, 0)=0$ gives $T(0)=0$ and thus $\beta+\gamma=0$ and the full solution becomes:

$$
u(x, t)=\sum_{n} \alpha_{n} x^{1 / 2}(t+1)^{1 / 2} \sin \left(\frac{n \pi \ln x}{\ln 2}\right) \sin \left(\frac{n \pi \ln (t+1)}{\ln 2}\right) .
$$

2. $\varepsilon \frac{\partial^{2} u}{\partial x^{2}}+\varepsilon \frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial u}{\partial y}=0$
(a) Trying $u=u_{0}+\varepsilon u_{1}+\cdots$ gives for the first two equations

$$
\varepsilon \partial^{2} u_{0} / \partial x^{2}+\varepsilon \partial^{2} u_{0} / \partial y^{2}+\partial u_{0} / \partial y=0 \quad 2=0
$$

The leading-order solution is

$$
u_{0}=f_{0}(x) \quad u_{0}=1-x^{2}
$$

and the next order equation becomes

$$
\partial u_{1} / \partial y=2 \quad u_{1}=2 y+f_{1}(x) .
$$

(b) Scaling $y=a+\delta Y$ will not affect the first term; to balance the second and third we need $\varepsilon \delta^{-2}=\delta^{-1}$ so $\delta=\varepsilon$. The new governing equation is

$$
\varepsilon^{2} \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial Y^{2}}+\frac{\partial u}{\partial Y}=0
$$

so if we pose

$$
f \sim f_{0}+\varepsilon f_{1}+\cdots
$$

then at both leading order and next order we have

$$
\partial^{2} f_{i} / \partial Y^{2}+\partial f_{i} / \partial Y=0 \quad f_{i}(x, Y)=A_{i}(x) \exp [-Y]+B_{i}(x)
$$

The boundary condition at $y=0$ transforms to

$$
\frac{\partial u}{\partial Y}(x, 0)+u(x, 0)=0 \quad B_{i}(x)=0
$$

The solution is $f \sim A_{0}(x) e^{-Y}+\varepsilon A_{1}(x) e^{-Y}+\cdots$.
(c) Return to the whole equation, and substitute $u=X(x) Y(y)$:

$$
\varepsilon \frac{X^{\prime \prime}(x)}{X(x)}=-\frac{Y^{\prime}(y)}{Y(y)}-\varepsilon \frac{Y^{\prime \prime}(y)}{Y(y)}=A
$$

The boundary conditions $u(-1, y)=u(1, y)=0$ convert to $X(-1)=$ $X(1)=0$.
If A is positive, $A=\varepsilon \lambda^{2}$ and

$$
X^{\prime \prime}(x)=\lambda^{2} X(x) \quad X(x)=a \exp [\lambda x]+b \exp [-\lambda x]
$$

The boundary conditions cannot both be satisfied so we discard this solution.
If $A=0$ we have $X(x)=\alpha x+\beta$ which cannot satisfy the x-boundary conditions.
Finally, if A is negative, $A=-\varepsilon \mu^{2}$ and

$$
X^{\prime \prime}(x)=-\mu^{2} X(x) \quad X(x)=a \cos [\mu x]+b \sin [\mu x]
$$

The boundary conditions fix $b=0, \mu=(2 n+1) \pi / 2$.
Then we have

$$
\varepsilon Y^{\prime \prime}(y)+Y^{\prime}(y)-\varepsilon \mu^{2} Y(y)=0
$$

which has solutions $Y=e^{m y}$ if

$$
m=\frac{-1 \pm \sqrt{1+4 \varepsilon^{2} \mu^{2}}}{2 \varepsilon}=\frac{-1 \pm \sqrt{1+(2 n+1)^{2} \pi^{2} \varepsilon^{2}}}{2 \varepsilon}
$$

The solution satisfying the boundary conditions at $x= \pm 1$ is

$$
u=\sum_{n} a_{n} \cos \left[\frac{(2 n+1) \pi x}{2}\right]\left(c_{n} \exp \left[m_{1} y\right]+d_{n} \exp \left[m_{2} y\right]\right)
$$

with
$m_{1}=\frac{-1+\sqrt{1+(2 n+1)^{2} \pi^{2} \varepsilon^{2}}}{2 \varepsilon} \quad m_{2}=\frac{-1-\sqrt{1+(2 n+1)^{2} \pi^{2} \varepsilon^{2}}}{2 \varepsilon}$.
(d) When ε is small, we can expand the forms of m_{1} and m_{2} :

$$
m_{1} \approx \frac{(2 n+1)^{2} \pi^{2} \varepsilon}{4} \quad m_{2} \approx \frac{-1}{\varepsilon} .
$$

So each of our Y functions consists of a slow exponential which grows with increasing y and a fast exponential which decreases with increasing y. The fast exponential is the scaled solution of (b); away from a small region near $y=0$, it is essentially zero. The slow exponential contains the rest of the information in the domain.
Away from the region of small y, we have

$$
u \approx \sum_{n} a_{n} c_{n} \cos \left[\frac{(2 n+1) \pi x}{2}\right]
$$

and if we apply the boundary condition at $y=1$ using a Fourier series, we can see that we have $u \approx 1-x^{2}$ everywhere except close to $y=0$. This is the solution we found in (a).
3. The image of $|z-1| \leq 1$ under $w=1 / z$.

The boundary of the domain may be parametrised as

$$
|z-1|=1 \quad z=1+e^{i \theta} \quad 0 \leq \theta<2 \pi
$$

which transforms to

$$
w=\frac{1}{1+\cos \theta+i \sin \theta}=\frac{1+\cos \theta-i \sin \theta}{(1+\cos \theta)^{2}+\sin ^{2} \theta}=\frac{1+\cos \theta-i \sin \theta}{2+2 \cos \theta}
$$

$$
w=\frac{1}{2}-i \frac{\sin \theta}{2+2 \cos \theta}
$$

The real part of w is always $1 / 2$; the imaginary part spans the whole line from negative infinity at $\theta=\pi$ to positive infinity at $\theta=-\pi$.

To complete the mapping we simply need to know which side of the boundary our domain lies. The point $z=1$ is in the original domain: therefore the point $w=1$ is in the image domain, which is therefore given by

$$
\operatorname{Real}(w) \geq \frac{1}{2}
$$

4. The image of $-\pi / 2<x<\pi / 2,0<y<1$ under $w=\sin z$.

We look at each boundary in turn, writing $w=\eta+i \xi$ where necessary.
Bottom edge $y=0$: $w=\sin x,-\pi / 2<x<\pi / 2$.

$$
-1<\eta<1, \quad \xi=0
$$

Top edge $y=1$: $w=\sin (x+i)=\cosh 1 \sin x+i \sinh 1 \cos x$.

$$
\frac{\eta^{2}}{\cosh ^{2} 1}+\frac{\xi^{2}}{\sinh ^{2} 1}=1, \quad \xi>0
$$

Left edge $x=-\pi / 2$: $w=\sin (-\pi / 2+i y)=-\cosh y, 0<y<1$.

$$
-\cosh 1<\eta<-1 \quad \xi=0
$$

Right edge $x=\pi / 2$: $w=\sin (\pi / 2+i y)=\cosh y, 0<y<1$.

$$
1<\eta<\cosh 1 \quad \xi=0
$$

The top edge is half an ellipse; the other three form the straight line $-\cosh 1<\eta<\cosh 1, \xi=0$. We now need to check whether the interior or exterior of the half-ellipse is our image. Take a point from the interior of the rectangle - say, $z=i / 2$. Then $w=\sin i / 2=i \sinh (1 / 2)$, which is inside our half ellipse. The image domain is

$$
w=\eta+i \xi \quad \frac{\eta^{2}}{\cosh ^{2} 1}+\frac{\xi^{2}}{\sinh ^{2} 1} \leq 1, \quad \xi>0
$$

5. The image of $-\pi / 4<x<\pi / 4,-1<y<1$ under $w=\sin z$.

Again, we find the image of each edge in turn, putting $z=x+i y, w=$ $\eta+i \xi$.

Bottom edge $y=-1$: $w=\sin (x-i)=\cosh 1 \sin x-i \sinh 1 \cos x$.

$$
\frac{\eta^{2}}{\cosh ^{2} 1}+\frac{\xi^{2}}{\sinh ^{2} 1}=1 \quad-\frac{\cosh 1}{\sqrt{2}}<\eta<\frac{\cosh 1}{\sqrt{2}} \quad \xi<-\frac{\sinh 1}{\sqrt{2}} .
$$

Top edge $y=1$: As in 4 , but with a reduced range of x :

$$
\frac{\eta^{2}}{\cosh ^{2} 1}+\frac{\xi^{2}}{\sinh ^{2} 1}=1 \quad-\frac{\cosh 1}{\sqrt{2}}<\eta<\frac{\cosh 1}{\sqrt{2}} \quad \xi>\frac{\sinh 1}{\sqrt{2}}
$$

Left edge $x=-\pi / 4: w=\sin (i y-\pi / 4)=(-\cosh y+i \sinh y) / \sqrt{2}$.

$$
\eta^{2}-\xi^{2}=\frac{1}{2} \quad-\frac{\cosh 1}{\sqrt{2}}<\eta<-\frac{1}{\sqrt{2}} \quad-\frac{\sinh 1}{\sqrt{2}}<\xi<\frac{\sinh 1}{\sqrt{2}}
$$

Right edge $x=\pi / 4: w=\sin (i y+\pi / 4)=(\cosh y+i \sinh y) / \sqrt{2}$.

$$
\eta^{2}-\xi^{2}=\frac{1}{2} \quad \frac{1}{\sqrt{2}}<\eta<\frac{\cosh 1}{\sqrt{2}} \quad-\frac{\sinh 1}{\sqrt{2}}<\xi<\frac{\sinh 1}{\sqrt{2}} .
$$

This curvilinear rectangle looks like:

and is bounded by the hyperbola $\eta^{2}-\xi^{2}=1 / 2$ and the ellipse

$$
\frac{\eta^{2}}{\cosh ^{2} 1}+\frac{\xi^{2}}{\sinh ^{2} 1}=1
$$

6. $\nabla^{2} u=0$ in the domain $1<r<e^{\alpha}, 0<\alpha<\pi$ with boundary conditions $\partial u / \partial r(1, \theta)=0, \partial u / \partial r\left(e^{\alpha}, \theta\right)=\sin \theta, u(r, 0)=u(r, \pi)=0$.
(a) The geometry of the domain suggests polar coordinates, in which

$$
\nabla^{2} u=\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}
$$

and the three types of separable solution are

$$
\begin{gathered}
u=(a \cos [\lambda \theta]+b \sin [\lambda \theta])\left(c r^{\lambda}+d r^{-\lambda}\right) \\
u=(A \exp [\mu \theta]+B \exp [-\mu \theta])(C \cos [\mu \ln r]+D \sin [\mu \ln r]) \\
u=(\alpha+\beta \ln r)(\gamma+\delta \theta) .
\end{gathered}
$$

The boundary conditions $u(r, 0)=u(r, \pi)=0$ impose $a=A=B=$ $\gamma=\delta=0$ and $\lambda=n$ so

$$
u=\sum_{n} \sin [n \theta]\left(c_{n} r^{n}+d_{n} r^{-n}\right)
$$

Then

$$
\frac{\partial u}{\partial r}=\sum_{n} \sin [n \theta]\left(n c r^{n-1}-n d r^{-(n+1)}\right)
$$

and the boundary conditions $\partial u / \partial r(1, \theta)=0$ and $\partial u / \partial r\left(e^{\alpha}, \theta\right)=$ $\sin \theta$ give $n=1$ and finally

$$
u(r, \theta)=\frac{\left(r+r^{-1}\right) \sin \theta}{\left(1-e^{-2 \alpha}\right)}
$$

(b) Under $w=\ln z$ with $w=\eta+i \xi$, the region $0<\theta<\pi, 1<r<e^{\alpha}$ becomes $0<\eta<\alpha, 0<\xi<\pi$. The three zero boundary conditions become

$$
u(\eta, 0)=0 \quad u(\eta, \pi)=0 \quad \frac{\partial u}{\partial \eta}(0, \xi)=0
$$

and since $|\mathrm{d} w / \mathrm{d} z|=|1 / z|=e^{-\alpha}$ on $r=e^{\alpha}$, the final boundary condition becomes

$$
\frac{\partial u}{\partial \eta}(\alpha, \xi)=e^{\alpha} \sin \xi
$$

It is clear that the solution is

$$
\begin{gathered}
u=\sin \xi(a \cosh \eta+b \sinh \eta) \quad \frac{\partial u}{\partial \eta}=\sin \xi(a \sinh \eta+b \cosh \eta) \\
u=\frac{e^{\alpha} \cosh \eta \sin \xi}{\sinh \alpha}=\frac{2 \cosh \eta \sin \xi}{\left(1-e^{-2 \alpha}\right)}
\end{gathered}
$$

Now if $\ln z=\eta+i \xi$ then $\eta=\ln r$ and $\xi=\theta$ so our solution is

$$
u(z)=\frac{2 \cosh [\ln r] \sin \theta}{\left(1-e^{-2 \alpha}\right)}=\frac{\left(r+r^{-1}\right) \sin \theta}{\left(1-e^{-2 \alpha}\right)}
$$

Note the analytic function of which u is the real part is

$$
f=\frac{2 \sin (-i w)}{\left(1-e^{-2 \alpha}\right)}=\frac{2 \sin (-i \ln z)}{\left(1-e^{-2 \alpha}\right)}
$$

7. The two distinguished stretches are $\delta=1$ and $\delta=\varepsilon . \delta=1$ gives us a regular expansion:

$$
f=f_{0}+\varepsilon f_{1}+\varepsilon^{2} f_{2}+\cdots
$$

$$
\begin{gathered}
\frac{\mathrm{d} f_{0}}{\mathrm{~d} x}=\cos x \quad \frac{\mathrm{~d} f_{1}}{\mathrm{~d} x}=-\frac{\mathrm{d}^{2} f_{0}}{\mathrm{~d} x^{2}}=\sin x \quad \frac{\mathrm{~d} f_{2}}{\mathrm{~d} x}=-\frac{\mathrm{d}^{2} f_{1}}{\mathrm{~d} x^{2}}=-\cos x \\
f=c_{0}+\sin x+\varepsilon\left[c_{1}-\cos x\right]+\varepsilon^{2}\left[c_{2}-\sin x\right]+\cdots
\end{gathered}
$$

in which the boundary condition at $x=\pi$ gives:

$$
\begin{gathered}
1=c_{0}+\varepsilon\left[c_{1}+1\right]+\varepsilon^{2}\left[c_{2}\right]+\cdots \\
f(x)=1+\sin x-\varepsilon[1+\cos x]-\varepsilon^{2} \sin x+\cdots
\end{gathered}
$$

For the stretch $\delta=\varepsilon$, if $z=x / \varepsilon$ then

$$
\frac{\mathrm{d}^{2} f}{\mathrm{~d} x^{2}}+\frac{\mathrm{d} f}{\mathrm{~d} z}=\varepsilon \cos \varepsilon z=\varepsilon\left(1-\varepsilon^{2} z^{2} / 2+\cdots\right)
$$

$$
\begin{gathered}
f=F_{0}(z)+\varepsilon F_{1}(z)+\varepsilon^{2} F_{2}(z)+\cdots \\
\frac{\mathrm{d}^{2} F_{0}}{\mathrm{~d} z^{2}}+\frac{\mathrm{d} F_{0}}{\mathrm{~d} z}=0 \quad \frac{\mathrm{~d}^{2} F_{1}}{\mathrm{~d} z^{2}}+\frac{\mathrm{d} F_{1}}{\mathrm{~d} z}=1 \quad \frac{\mathrm{~d}^{2} F_{2}}{\mathrm{~d} z^{2}}+\frac{\mathrm{d} F_{2}}{\mathrm{~d} z}=0 \\
f(z)=a_{0}+b_{0} e^{-z}+\varepsilon\left[a_{1}+b_{1} e^{-z}+z\right]+\varepsilon^{2}\left[a_{2}+b_{2} e^{-z}\right]+\cdots
\end{gathered}
$$

which becomes (using the BC at $z=0$):

$$
f(z)=a_{0}-a_{0} e^{-z}+\varepsilon\left[a_{1}-a_{1} e^{-z}+z\right]+\varepsilon^{2}\left[a_{2}-a_{2} e^{-z}\right]+\cdots
$$

Now we match, using an intermediate variable $x=\varepsilon^{\alpha} \xi$. The expansion of the outer solution is

$$
f(x)=1+\varepsilon^{\alpha} \xi-2 \varepsilon-\varepsilon^{3 \alpha} \xi^{3} / 6+\varepsilon^{1+2 \alpha} \xi^{2} / 2-\varepsilon^{2+\alpha} \xi+O\left(\varepsilon^{3}, \varepsilon^{5 \alpha}\right)
$$

The inner expansion, with $z=\varepsilon^{\alpha-1} \xi$, becomes

$$
f(z)=a_{0}+\varepsilon^{\alpha} \xi+\varepsilon a_{1}+\varepsilon^{2} a_{2}+\cdots
$$

Matching the two gives $a_{0}=1, a_{1}=-2$ and $a_{2}=0$, so the matched inner form is

$$
f(z)=1-e^{-z}+\varepsilon\left[2 e^{-z}-2+z\right]+O\left(\varepsilon^{3}\right) .
$$

8. $(1+\varepsilon) x^{2} y^{\prime}=\varepsilon\left((1-\varepsilon) x y^{2}-(1+\varepsilon) x+y^{3}+2 \varepsilon y^{2}\right)$ with $y(1)=1$.

Outer: set $y=y_{0}+\varepsilon y_{1}+\varepsilon^{2} y_{2}+\cdots$ to have (rows being order $1, \varepsilon, \varepsilon^{2}$):

$$
\begin{aligned}
& x^{2} y_{0}^{\prime}=0 \\
& x^{2} y_{1}^{\prime}+x^{2} y_{0}^{\prime}=x y_{0}^{2} \\
& x^{2} y_{2}^{\prime}+x^{2} y_{1}^{\prime}=2 x y_{0} y_{1}-x y_{0}^{2}-x+x+3 y_{0}^{3} \\
&
\end{aligned}
$$

Order 1 At leading order, $y_{0}^{\prime}=0$ gives $y_{0}=a_{0}$ and, using the boundary condition, $y_{0}=1$.
Order ε The equation becomes $x^{2} y_{1}^{\prime}=1$ so $y_{1}=a_{1}-x^{-1}$. The boundary condition fixes $y_{1}=1-x^{-1}$.
Order ε^{2} The equation is $x^{2} y_{2}^{\prime}=2-3 x^{-1}$ so $y_{2}=a_{2}-2 x^{-1}+(3 / 2) x^{-2}$. With the boundary condition we have $y_{2}=1 / 2-2 x^{-1}+(3 / 2) x^{-2}$.

The outer expansion is

$$
y \sim 1+\varepsilon\left(1-\frac{1}{x}\right)+\varepsilon^{2}\left(\frac{1}{2}-\frac{2}{x}+\frac{3}{2 x^{2}}\right)+\cdots
$$

which ceases to be uniformly asymptotic when $x \sim \varepsilon$.
We rescale (noting that y is still order 1) by putting $x=\varepsilon z$ and the original equation becomes:

$$
(1+\varepsilon) z^{2} y^{\prime}=\varepsilon(1-\varepsilon) z y^{2}-\varepsilon(1+\varepsilon) z+y^{3}+2 \varepsilon y^{2}
$$

In the inner, we pose $y=f_{0}+\varepsilon f_{1}+\cdots$ to have

$$
\begin{aligned}
z^{2} f_{0}^{\prime} & = \\
\varepsilon z^{2} f_{1}^{\prime}+\varepsilon z^{2} f_{0}^{\prime} & =\varepsilon z f_{0}^{2}-\varepsilon z+3 \varepsilon f_{0}^{2} f_{1}+2 \varepsilon f_{0}^{2}
\end{aligned}
$$

Order 1: $z^{2} f_{0}^{\prime}=f_{0}^{3}$ has solution $f_{0}=\left(A_{0}+2 / z\right)^{-1 / 2}$.
Matching: We use an intermediate variable $\eta=\varepsilon^{-\alpha} x=\varepsilon^{1-\alpha} z$. The outer becomes

$$
y \sim 1-\varepsilon^{1-\alpha} \frac{1}{\eta}+\varepsilon^{2-2 \alpha} \frac{3}{2 \eta^{2}}+\varepsilon-\varepsilon^{2-\alpha} \frac{2}{\eta}+\frac{\varepsilon^{2}}{2}+\cdots
$$

and the inner,

$$
y \sim A_{0}^{-1 / 2}\left(1-\varepsilon^{1-\alpha} \frac{1}{A_{0} \eta}+\varepsilon^{2-2 \alpha} \frac{3}{2 A_{0}^{2} \eta^{2}}+\cdots\right)
$$

which matches the first three terms if we set $A_{0}=1$. So we have $f_{0}=(1+2 / z)^{-1 / 2}$.
Order ε : The equation becomes $z^{2} f_{1}^{\prime}-3(1+2 / z)^{-1} f_{1}=-(1+2 / z)^{-3 / 2}$ so (using the integrating factor $(1+2 / z)^{3 / 2}$) we have

$$
f_{1}=\left(A_{1}+\frac{1}{z}\right)\left(1+\frac{2}{z}\right)^{-3 / 2}
$$

Matching The outer is unchanged from before: the inner now becomes

$$
y \sim 1-\varepsilon^{1-\alpha} \frac{1}{\eta}+\varepsilon^{2-2 \alpha} \frac{3}{2 \eta^{2}}+\varepsilon A_{1}+\varepsilon^{2-\alpha}\left(\frac{1-3 A_{1}}{\eta}\right)+\cdots
$$

which matches the next two terms of the outer if we set $A_{1}=1$.
The inner expansion is

$$
y \sim\left(1+\frac{2}{z}\right)^{-1 / 2}+\varepsilon\left(1+\frac{1}{z}\right)\left(1+\frac{2}{z}\right)^{-3 / 2}+\cdots
$$

