
Analytical Methods: Solutions 2

1. εx3 + x2 + (2− ε)x+ 1 = 0.

Scale x ∼ δ and note that the εx term is always smaller than the 2x term.
Further, if x2 � 1 then x2 � 2x; if x2 � 1 then 2x � 1 so the 2x term
only dominates if two other terms balance. We are now comparing the
following terms:

[A] εδ3 [B] δ2 [C] 1.

For small δ, [C] dominates. [B] catches up first at δ = 1. Then [A]
catches up with [B] when εδ3 = δ2, δ = ε−1. The distinguished scalings
are x ∼ 1 and x ∼ ε−1.

We solve first for the regular root(s): x = x0 + εx1 + ε2x2 + · · ·
Substiting in gives

x2
0 + 2x0 + 1 = 0

εx3
0 + 2εx0x1 + 2εx1 − εx0 = 0

3ε2x2
0x1 + 2ε2x0x2 + 2ε2x2

1 + 2ε2x2 − ε2x1 = 0

The leading order term gives x0 = −1. At order ε we have

−1− 2x1 + 2x1 + 1 = 0

which is automatically satisfied. At order ε2 we obtain

3x1 − 2x2 + 2x2
1 + 2x2 − x1 = 0 2x1(1 + x1) = 0

which is satisfied either by x1 = −1 or x1 = 0. In fact x = −1 is an exact
root:

εx3 + x2 + (2− ε)x+ 1 = (x+ 1)(εx2 + (1− ε)x+ 1)

so no further terms are available for the other root.

Looking for the singular root, we pose: x = ε−1x−1 + x0 + · · ·
and substituting gives

ε−2x3
−1 + ε−2x2

−1 = 0
3ε−1x2

−1x0 + 2ε−1x−1x0 + 2ε−1x−1 = 0

At order ε−2 we obtain x−1 = −1 (recall the leading x term is strictly
order 1 so 0 is not a valid solution); at order ε−1 we get x0 = 2. Thus the
three roots are x = −1− 2ε+O(ε2); x = −1; and x = −ε−1 + 2 +O(ε).

2. εx4 − x2 − x+ 2 = 0.

First we look for scalings. One of x2 or 2 is always at least as large as x
so we only consider

[A] εδ4 [B] δ2 [C] 1

At small δ [C] is largest, and it is equalled first by [B] when δ = 1. For
larger δ, [A] reaches [B] when εδ4 = δ2 i.e. δ = ε−1/2.



Look at the regular root(s) first (and assume a regular expansion):

x = x0 + εx1 + · · ·

gives
− x2

0 − x0 + 2 = 0
εx4

0 − 2εx0x1 − εx1 = 0

At order 1 we have

x2
0 + x0 − 2 = 0 (x0 + 2)(x0 − 1) = 0 x0 = 1 or x0 = −2.

If x0 = 1 the next order gives 1− 3x1 = 0 so x ∼ 1 + ε/3.

If x0 = −2 the next order gives 16 + 3x1 = 0 so x ∼ −2− 16ε/3.

Now we move on to the singular roots and the scaling suggests an expan-
sion in ε1/2:

x = ε−1/2x0 + x1 + ε1/2x2 + · · ·

Substituting gives

ε−1x4
0 − ε−1x2

0 = 0
4ε−1/2x3

0x1 − 2ε−1/2x0x1 − ε−1/2x0 = 0

At leading order we have

x4
0 − x2

0 = 0 x2
0(x0 + 1)(x0 − 1) = 0 x0 = 1 or x0 = −1.

If x0 = 1 then the next order gives 2x1 − 1 = 0 so x ∼ ε−1/2 + 1/2.

If x0 = −1 then the next order gives −2x1 + 1 = 0 so x ∼ −ε−1/2 + 1/2.

3. xe−x = ε. Define f(x) = xe−x. This function is positive for x > 0; zero
at both x = 0 and x → ∞; and f(1) = e−1 � ε so we expect two roots,
one in 0 < x < 1 and the other in 1 < x < ∞.

Let us look first for the root near x = 0. We can expand the exponential:

ε = x

(
1− x+

x2

2
− x3

6
+ · · ·

)
= x− x2 +

x3

2
− x4

6
+ · · ·

It is clear that the leading scaling is x ∼ ε. Looking for the next order,
set x = ε+ δ1x1 + · · · :

ε = ε+ δ1x1 − ε2 +O(ε3, ε2δ1)

which gives δ1x1 = ε2 and the beginning of the expansion is

x ∼ ε+ ε2 + · · ·

The root in x > 1 depends more strongly on the exponential than on the
x term, so we try a logarithmic scaling. Let us try the values of f(x) when
x = x0 ln (1/ε):

• If x0 = 1 then f(x) = ε ln (1/ε) � ε.

• If x0 = 2 then f(x) = 2ε2 ln (1/ε) � ε.



These two points bracket the root so we know the scaling is correct. We
begin our expansion

x = x0 ln (1/ε) + δ1x1 + · · ·

and substitute it in, using L1 = ln (1/ε), to obtain:

ε = εx0(x0L1 + δ1x1 + · · · ) exp [δ1x1 + · · · ] = εx0x0L1 exp [δ1x1] + · · ·

To match the powers of ε we need x0 = 0; then to make the logarithm
terms work we need

δ1x1 = −L2 δ1 = L2, x1 = −1.

in which we have used L2 = lnL1.

The beginning of the expansion is

x ∼ ln (1/ε)− ln (ln (1/ε)) + · · ·

4. u =
1

2c

∫ t

0

∫ x+c(t−t′)

x−c(t−t′)

F (x′, t′) dx′ dt′.

The easy part is the derivatives wrt x: for ease, split the integral in two:

u =
1

2c

∫ t

0

∫ x+c(t−t′)

0

F (x′, t′) dx′ dt′ − 1

2c

∫ t

0

∫ x−c(t−t′)

0

F (x′, t′) dx′ dt′

Then

∂u

∂x
=

1

2c

(∫ t

0

F (x+ c(t− t′), t′) dt′ −
∫ t

0

F (x− c(t− t′), t′) dt′
)

∂2u

∂x2
=

1

2c

(∫ t

0

Fx(x+ c(t− t′), t′) dt′ −
∫ t

0

Fx(x− c(t− t′), t′) dt′
)

Partial derivatives wrt t must be taken with more care, as both inner and
outer integrals have limits which depend on t:

∂u

∂t
=

(
1

2c

∫ x+c(t−t)

0

F (x′, t) dx′ − 1

2c

∫ x−c(t−t)

0

F (x′, t) dx′

)

+

(
1

2c

∫ t

0

cF (x+ c(t− t′), t′) dt′ − 1

2c

∫ t

0

(−c)F (x− c(t− t′), t′) dt′
)

The first two terms here cancel and we are left with

∂u

∂t
=

1

2

∫ t

0

F (x+ c(t− t′), t′) + F (x− c(t− t′), t′) dt′

∂2u

∂t2
=

1

2
(F (x+ c(t− t), t) + F (x− c(t− t), t))

+
1

2

∫ t

0

cFx(x+ c(t− t′), t′)− cFx(x− c(t− t′), t′) dt′

Putting these together gives the required result:

∂2u

∂t2
− c2

∂2u

∂x2
= F (x, t).



5. ∂2u/∂t2 − e2x∂2u/∂x2. Here c(x) = ex so the characteristics are given by

dt

dx
= ±ex t = ±ex + α

Through the point x = 0 , t = 1, the two equations become

t = ex and t = 2− ex.

6.
∂2f

∂t2
− ∂2f

∂x2
− ε cosxf = x with f(x, 0) =

∂f

∂t
(x, 0) = 0.

Set f = f0 + εf1 + · · · .

∂2f0
∂t2

− ∂2f0
∂x2

= x

ε
∂2f1
∂t2

− ε
∂2f1
∂x2

− ε cosx f0 = 0

It is useful to note that the solution of the inhomogeneous wave equation
with c = 1:

∂2f

∂t2
− ∂2f

∂x2
= F (x, t)

is

f(x, t) = p(x+ t) + q(x− t) +
1

2

∫ t

0

∫ x+t−t′

x−t+t′
F (x′, t′) dx′ dt′

and applying the boundary conditions f(x, 0) = ∂f/∂t(x, 0) = 0 to this
form gives

f(x, t) =
1

2

∫ t

0

∫ x+t−t′

x−t+t′
F (x′, t′) dx′ dt′.

Order 1. The inhomogeneous wave equation

∂2f0
∂t2

− ∂2f0
∂x2

= x f0(x, 0) =
∂f0
∂t

(x, 0) = 0

has the solution

f0(x, t) =
1

2

∫ t

0

∫ x+t−t′

x−t+t′
x′ dx′ dt′ =

1

2

∫ t

0

[
1

2
x′2
]x+t−t′

x−t+t′
dt′

=

∫ t

0

x(t− t′) dt′ =
[
x(tt′ − 1

2 t
′2)
]t
0
= 1

2xt
2.

f0(x, t) =
1
2xt

2.

Order ε. We are solving

∂2f1
∂t2

− ∂2f1
∂x2

= f0 cosx = 1
2x cosxt

2

with the same zero boundary conditions as before. The solution is

f1(x, t) =
1

4

∫ t

0

∫ x+t−t′

x−t+t′
x′ cosx′t′2 dx′ dt′



which becomes, after tedious but straightforward work,

f1(x, t) =
1
2 t

2(x cosx− 2 sinx)− x cosx+ 4 sinx

+ 1
2 (x+ t) cos (x+ t) + 1

2 (x− t) cos (x− t)− 2 sin (x+ t)− 2 sin (x− t).

7. ε
d2f

dx2
+ f

df

dx
− f = 0.

(a) Scaling the equation with f = εαF and x = a+ εβz and dividing by
εα gives

ε1−2β d
2F

dz2
+ εα−βF

dF

dz
− F = 0

The balances are:

• I and II: 1−2β = α−β so α+β = 1. These two terms dominate
if α− β < 0.

• I and III: 1 − 2β = 0 so β = 1/2. These terms dominate if
α− β > 0.

• II and III: α−β = 0 so α = β. These terms dominate if 1−2β > 0
so β < 1/2.

The scalings in the α–β plane are:
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(b) The critical scaling at which all terms balance is α = β = 1/2.

(c) If we fix α = 0 then the two possible balances are between terms
I and II, in which case β = 1, and terms II and III, in which case
β = 0.

• Setting β = 0 gives a regular expansion: the leading-order equa-
tion is f0(f

′
0 − 1) = 0 and since f0 cannot be zero (strictly order

1) we have f ′
0 = 1 and the solution is f0 = a0 + x.

• Setting β = 1 we put x = a + εz and the governing equation
becomes

d2f

dz2
+ f

df

dz
− εf = 0.

The leading-order equation is

F ′′
0 + F0F

′
0 = 0 F ′

0 +
1
2F

2
0 = A0 F ′

0 = A0 − 1
2F

2
0



which has three possible solutions according to the sign of A0: if
A0 = −2k2 then

−
∫

dz =

∫
2 dF0

4k2 + F 2
0

=
arctan (F0/2k)

k

F0 = −2k tan [k(z +B0)];

if A0 = 2k2 then∫
2k dz =

∫
4k dF0

4k2 − F 2
0

=

∫
4k dF0

(2k + F0)(2k − F0)

2k(z +B0) =

∫ (
1

(2k + F0)
+

1

(2k − F0)

)
dF0 = ln

∣∣∣∣2k + F0

2k − F0

∣∣∣∣
which in turn has three possible solutions:

F0 = ±2k F0 = 2k tanh [k(z +B0)] F0 = 2k coth [k(z +B0)];

and finally, if A0 = 0 then∫
dz =

∫
−2 dF0

F 2
0

=
2

F0
−B0 F0 =

2

z +B0
.

8. ε3
d3f

dx3
+ ε

d2f

dx2
+

df

dx
+ f = 0.

Putting x = a+ δX, the terms scale as

[A] ε3δ−3 [B] εδ−2 [C] δ−1 [D] 1

For very small δ, [A] dominates. It is first caught by [B] at δ = ε2. [B]
is overtaken by [C] at δ = ε and finally [C] is balanced by [D] at δ = 1.
The three distinguished stretches are δ = 1, δ = ε and δ = ε2.

Using δ = 1, the leading-order equation is f ′ + f = 0 giving f = be−x.
Using x = a+ εy, the leading equation is f ′′ + f ′ = 0, so f = be−y + c.
Using x = a+ε2z, the leading equation is f ′′′+f ′′ = 0, so f = be−z+cz+d.

9. (a) The discriminant is B2−4AC = t2−4x so the operator is hyperbolic
in t2 > 4x, parabolic on the parabola t2 = 4x and elliptic where
t2 < 4x.

(b) The discriminant is B2−4AC = 4−4xt so the operator is hyperbolic
in xt < 1, parabolic on the hyperbola xt = 1 and elliptic in xt > 1.


