Analytical Methods: Solutions 2

1. $\varepsilon x^{3}+x^{2}+(2-\varepsilon) x+1=0$.

Scale $x \sim \delta$ and note that the εx term is always smaller than the $2 x$ term. Further, if $x^{2} \gg 1$ then $x^{2} \gg 2 x$; if $x^{2} \ll 1$ then $2 x \ll 1$ so the $2 x$ term only dominates if two other terms balance. We are now comparing the following terms:
$[\mathbf{A}] \varepsilon \delta^{3}$
[B] δ^{2}
[C] 1.

For small $\delta,[\mathbf{C}]$ dominates. [B] catches up first at $\delta=1$. Then $[\mathbf{A}]$ catches up with [B] when $\varepsilon \delta^{3}=\delta^{2}, \delta=\varepsilon^{-1}$. The distinguished scalings are $x \sim 1$ and $x \sim \varepsilon^{-1}$.

We solve first for the regular root(s): $x=x_{0}+\varepsilon x_{1}+\varepsilon^{2} x_{2}+\cdots$
Substiting in gives

$$
\begin{array}{rllllll}
x_{0}^{2} & +2 x_{0} & & +1 & =0 \\
\varepsilon x_{0}^{3} & + & 2 \varepsilon x_{0} x_{1} & +2 \varepsilon x_{1} & -\varepsilon x_{0} & & =0 \\
3 \varepsilon^{2} x_{0}^{2} x_{1} & +2 \varepsilon^{2} x_{0} x_{2}+2 \varepsilon^{2} x_{1}^{2} & +2 \varepsilon^{2} x_{2} & -\varepsilon^{2} x_{1} & & =0
\end{array}
$$

The leading order term gives $x_{0}=-1$. At order ε we have

$$
-1-2 x_{1}+2 x_{1}+1=0
$$

which is automatically satisfied. At order ε^{2} we obtain

$$
3 x_{1}-2 x_{2}+2 x_{1}^{2}+2 x_{2}-x_{1}=0 \quad 2 x_{1}\left(1+x_{1}\right)=0
$$

which is satisfied either by $x_{1}=-1$ or $x_{1}=0$. In fact $x=-1$ is an exact root:

$$
\varepsilon x^{3}+x^{2}+(2-\varepsilon) x+1=(x+1)\left(\varepsilon x^{2}+(1-\varepsilon) x+1\right)
$$

so no further terms are available for the other root.
Looking for the singular root, we pose: $x=\varepsilon^{-1} x_{-1}+x_{0}+\cdots$ and substituting gives

$$
\begin{aligned}
\varepsilon^{-2} x_{-1}^{3} & +\varepsilon^{-2} x_{-1}^{2} \\
3 \varepsilon^{-1} x_{-1}^{2} x_{0} & +2 \varepsilon^{-1} x_{-1} x_{0}+2 \varepsilon^{-1} x_{-1}
\end{aligned}=00
$$

At order ε^{-2} we obtain $x_{-1}=-1$ (recall the leading x term is strictly order 1 so 0 is not a valid solution); at order ε^{-1} we get $x_{0}=2$. Thus the three roots are $x=-1-2 \varepsilon+O\left(\varepsilon^{2}\right) ; x=-1$; and $x=-\varepsilon^{-1}+2+O(\varepsilon)$.
2. $\varepsilon x^{4}-x^{2}-x+2=0$.

First we look for scalings. One of x^{2} or 2 is always at least as large as x so we only consider
$[\mathbf{A}] \varepsilon \delta^{4}$
[B] δ^{2}
[C] 1

At small $\delta[\mathbf{C}]$ is largest, and it is equalled first by $[\mathbf{B}]$ when $\delta=1$. For larger $\delta,[\mathbf{A}]$ reaches $[\mathbf{B}]$ when $\varepsilon \delta^{4}=\delta^{2}$ i.e. $\delta=\varepsilon^{-1 / 2}$.

Look at the regular root(s) first (and assume a regular expansion):

$$
x=x_{0}+\varepsilon x_{1}+\cdots
$$

gives

At order 1 we have

$$
x_{0}^{2}+x_{0}-2=0 \quad\left(x_{0}+2\right)\left(x_{0}-1\right)=0 \quad x_{0}=1 \quad \text { or } x_{0}=-2 .
$$

If $x_{0}=1$ the next order gives $1-3 x_{1}=0$ so $x \sim 1+\varepsilon / 3$.
If $x_{0}=-2$ the next order gives $16+3 x_{1}=0$ so $x \sim-2-16 \varepsilon / 3$.
Now we move on to the singular roots and the scaling suggests an expansion in $\varepsilon^{1 / 2}$:

$$
x=\varepsilon^{-1 / 2} x_{0}+x_{1}+\varepsilon^{1 / 2} x_{2}+\cdots
$$

Substituting gives

$$
\begin{array}{ccc}
\varepsilon^{-1} x_{0}^{4} & -\varepsilon^{-1} x_{0}^{2} & =0 \\
4 \varepsilon^{-1 / 2} x_{0}^{3} x_{1} & -2 \varepsilon^{-1 / 2} x_{0} x_{1}-\varepsilon^{-1 / 2} x_{0} & =0
\end{array}
$$

At leading order we have

$$
x_{0}^{4}-x_{0}^{2}=0 \quad x_{0}^{2}\left(x_{0}+1\right)\left(x_{0}-1\right)=0 \quad x_{0}=1 \quad \text { or } x_{0}=-1 .
$$

If $x_{0}=1$ then the next order gives $2 x_{1}-1=0$ so $x \sim \varepsilon^{-1 / 2}+1 / 2$. If $x_{0}=-1$ then the next order gives $-2 x_{1}+1=0$ so $x \sim-\varepsilon^{-1 / 2}+1 / 2$.
3. $x e^{-x}=\varepsilon$. Define $f(x)=x e^{-x}$. This function is positive for $x>0$; zero at both $x=0$ and $x \rightarrow \infty$; and $f(1)=e^{-1} \gg \varepsilon$ so we expect two roots, one in $0<x<1$ and the other in $1<x<\infty$.
Let us look first for the root near $x=0$. We can expand the exponential:

$$
\varepsilon=x\left(1-x+\frac{x^{2}}{2}-\frac{x^{3}}{6}+\cdots\right)=x-x^{2}+\frac{x^{3}}{2}-\frac{x^{4}}{6}+\cdots
$$

It is clear that the leading scaling is $x \sim \varepsilon$. Looking for the next order, set $x=\varepsilon+\delta_{1} x_{1}+\cdots$:

$$
\varepsilon=\varepsilon+\delta_{1} x_{1}-\varepsilon^{2}+O\left(\varepsilon^{3}, \varepsilon^{2} \delta_{1}\right)
$$

which gives $\delta_{1} x_{1}=\varepsilon^{2}$ and the beginning of the expansion is

$$
x \sim \varepsilon+\varepsilon^{2}+\cdots
$$

The root in $x>1$ depends more strongly on the exponential than on the x term, so we try a logarithmic scaling. Let us try the values of $f(x)$ when $x=x_{0} \ln (1 / \varepsilon)$:

- If $x_{0}=1$ then $f(x)=\varepsilon \ln (1 / \varepsilon) \gg \varepsilon$.
- If $x_{0}=2$ then $f(x)=2 \varepsilon^{2} \ln (1 / \varepsilon) \ll \varepsilon$.

These two points bracket the root so we know the scaling is correct. We begin our expansion

$$
x=x_{0} \ln (1 / \varepsilon)+\delta_{1} x_{1}+\cdots
$$

and substitute it in, using $L_{1}=\ln (1 / \varepsilon)$, to obtain:

$$
\varepsilon=\varepsilon^{x_{0}}\left(x_{0} L_{1}+\delta_{1} x_{1}+\cdots\right) \exp \left[\delta_{1} x_{1}+\cdots\right]=\varepsilon^{x_{0}} x_{0} L_{1} \exp \left[\delta_{1} x_{1}\right]+\cdots
$$

To match the powers of ε we need $x_{0}=0$; then to make the logarithm terms work we need

$$
\delta_{1} x_{1}=-L_{2} \quad \delta_{1}=L_{2}, \quad x_{1}=-1 .
$$

in which we have used $L_{2}=\ln L_{1}$.
The beginning of the expansion is

$$
x \sim \ln (1 / \varepsilon)-\ln (\ln (1 / \varepsilon))+\cdots
$$

4. $u=\frac{1}{2 c} \int_{0}^{t} \int_{x-c\left(t-t^{\prime}\right)}^{x+c\left(t-t^{\prime}\right)} F\left(x^{\prime}, t^{\prime}\right) \mathrm{d} x^{\prime} \mathrm{d} t^{\prime}$.

The easy part is the derivatives wrt x : for ease, split the integral in two:

$$
u=\frac{1}{2 c} \int_{0}^{t} \int_{0}^{x+c\left(t-t^{\prime}\right)} F\left(x^{\prime}, t^{\prime}\right) \mathrm{d} x^{\prime} \mathrm{d} t^{\prime}-\frac{1}{2 c} \int_{0}^{t} \int_{0}^{x-c\left(t-t^{\prime}\right)} F\left(x^{\prime}, t^{\prime}\right) \mathrm{d} x^{\prime} \mathrm{d} t^{\prime}
$$

Then

$$
\begin{aligned}
\frac{\partial u}{\partial x} & =\frac{1}{2 c}\left(\int_{0}^{t} F\left(x+c\left(t-t^{\prime}\right), t^{\prime}\right) \mathrm{d} t^{\prime}-\int_{0}^{t} F\left(x-c\left(t-t^{\prime}\right), t^{\prime}\right) \mathrm{d} t^{\prime}\right) \\
\frac{\partial^{2} u}{\partial x^{2}} & =\frac{1}{2 c}\left(\int_{0}^{t} F_{x}\left(x+c\left(t-t^{\prime}\right), t^{\prime}\right) \mathrm{d} t^{\prime}-\int_{0}^{t} F_{x}\left(x-c\left(t-t^{\prime}\right), t^{\prime}\right) \mathrm{d} t^{\prime}\right)
\end{aligned}
$$

Partial derivatives wrt t must be taken with more care, as both inner and outer integrals have limits which depend on t :

$$
\begin{aligned}
& \frac{\partial u}{\partial t}=\left(\frac{1}{2 c} \int_{0}^{x+c(t-t)} F\left(x^{\prime}, t\right) \mathrm{d} x^{\prime}-\frac{1}{2 c} \int_{0}^{x-c(t-t)} F\left(x^{\prime}, t\right) \mathrm{d} x^{\prime}\right) \\
& +\left(\frac{1}{2 c} \int_{0}^{t} c F\left(x+c\left(t-t^{\prime}\right), t^{\prime}\right) \mathrm{d} t^{\prime}-\frac{1}{2 c} \int_{0}^{t}(-c) F\left(x-c\left(t-t^{\prime}\right), t^{\prime}\right) \mathrm{d} t^{\prime}\right)
\end{aligned}
$$

The first two terms here cancel and we are left with

$$
\begin{aligned}
& \frac{\partial u}{\partial t}=\frac{1}{2} \int_{0}^{t} F\left(x+c\left(t-t^{\prime}\right), t^{\prime}\right)+F\left(x-c\left(t-t^{\prime}\right), t^{\prime}\right) \mathrm{d} t^{\prime} \\
\frac{\partial^{2} u}{\partial t^{2}}= & \frac{1}{2}(F(x+c(t-t), t)+F(x-c(t-t), t)) \\
& +\frac{1}{2} \int_{0}^{t} c F_{x}\left(x+c\left(t-t^{\prime}\right), t^{\prime}\right)-c F_{x}\left(x-c\left(t-t^{\prime}\right), t^{\prime}\right) \mathrm{d} t^{\prime}
\end{aligned}
$$

Putting these together gives the required result:

$$
\frac{\partial^{2} u}{\partial t^{2}}-c^{2} \frac{\partial^{2} u}{\partial x^{2}}=F(x, t)
$$

5. $\partial^{2} u / \partial t^{2}-e^{2 x} \partial^{2} u / \partial x^{2}$. Here $c(x)=e^{x}$ so the characteristics are given by

$$
\frac{\mathrm{d} t}{\mathrm{~d} x}= \pm e^{x} \quad t= \pm e^{x}+\alpha
$$

Through the point $x=0, t=1$, the two equations become

$$
t=e^{x} \quad \text { and } \quad t=2-e^{x} .
$$

6. $\frac{\partial^{2} f}{\partial t^{2}}-\frac{\partial^{2} f}{\partial x^{2}}-\varepsilon \cos x f=x$ with $f(x, 0)=\frac{\partial f}{\partial t}(x, 0)=0$.

Set $f=f_{0}+\varepsilon f_{1}+\cdots$.

$$
\begin{aligned}
\frac{\partial^{2} f_{0}}{\partial t^{2}}-\frac{\partial^{2} f_{0}}{\partial x^{2}} & =x \\
\varepsilon \frac{\partial^{2} f_{1}}{\partial t^{2}}-\varepsilon \frac{\partial^{2} f_{1}}{\partial x^{2}}-\varepsilon \cos x f_{0} & =0
\end{aligned}
$$

It is useful to note that the solution of the inhomogeneous wave equation with $c=1$:

$$
\frac{\partial^{2} f}{\partial t^{2}}-\frac{\partial^{2} f}{\partial x^{2}}=F(x, t)
$$

is

$$
f(x, t)=p(x+t)+q(x-t)+\frac{1}{2} \int_{0}^{t} \int_{x-t+t^{\prime}}^{x+t-t^{\prime}} F\left(x^{\prime}, t^{\prime}\right) \mathrm{d} x^{\prime} \mathrm{d} t^{\prime}
$$

and applying the boundary conditions $f(x, 0)=\partial f / \partial t(x, 0)=0$ to this form gives

$$
f(x, t)=\frac{1}{2} \int_{0}^{t} \int_{x-t+t^{\prime}}^{x+t-t^{\prime}} F\left(x^{\prime}, t^{\prime}\right) \mathrm{d} x^{\prime} \mathrm{d} t^{\prime}
$$

Order 1. The inhomogeneous wave equation

$$
\frac{\partial^{2} f_{0}}{\partial t^{2}}-\frac{\partial^{2} f_{0}}{\partial x^{2}}=x \quad f_{0}(x, 0)=\frac{\partial f_{0}}{\partial t}(x, 0)=0
$$

has the solution

$$
\begin{aligned}
& f_{0}(x, t)= \frac{1}{2} \int_{0}^{t} \int_{x-t+t^{\prime}}^{x+t-t^{\prime}} x^{\prime} \mathrm{d} x^{\prime} \mathrm{d} t^{\prime}=\frac{1}{2} \int_{0}^{t}\left[\frac{1}{2} x^{\prime 2}\right]_{x-t+t^{\prime}}^{x+t-t^{\prime}} \mathrm{d} t^{\prime} \\
&= \int_{0}^{t} x\left(t-t^{\prime}\right) \mathrm{d} t^{\prime}=\left[x\left(t t^{\prime}-\frac{1}{2} t^{\prime 2}\right)\right]_{0}^{t}=\frac{1}{2} x t^{2} \\
& f_{0}(x, t)=\frac{1}{2} x t^{2}
\end{aligned}
$$

Order ε. We are solving

$$
\frac{\partial^{2} f_{1}}{\partial t^{2}}-\frac{\partial^{2} f_{1}}{\partial x^{2}}=f_{0} \cos x=\frac{1}{2} x \cos x t^{2}
$$

with the same zero boundary conditions as before. The solution is

$$
f_{1}(x, t)=\frac{1}{4} \int_{0}^{t} \int_{x-t+t^{\prime}}^{x+t-t^{\prime}} x^{\prime} \cos x^{\prime} t^{\prime 2} \mathrm{~d} x^{\prime} \mathrm{d} t^{\prime}
$$

which becomes, after tedious but straightforward work,

$$
\begin{aligned}
& \quad f_{1}(x, t)=\frac{1}{2} t^{2}(x \cos x-2 \sin x)-x \cos x+4 \sin x \\
& +\frac{1}{2}(x+t) \cos (x+t)+\frac{1}{2}(x-t) \cos (x-t)-2 \sin (x+t)-2 \sin (x-t) .
\end{aligned}
$$

7. $\varepsilon \frac{\mathrm{d}^{2} f}{\mathrm{~d} x^{2}}+f \frac{\mathrm{~d} f}{\mathrm{~d} x}-f=0$.
(a) Scaling the equation with $f=\varepsilon^{\alpha} F$ and $x=a+\varepsilon^{\beta} z$ and dividing by ε^{α} gives

$$
\varepsilon^{1-2 \beta} \frac{\mathrm{~d}^{2} F}{\mathrm{~d} z^{2}}+\varepsilon^{\alpha-\beta} F \frac{\mathrm{~d} F}{\mathrm{~d} z}-F=0
$$

The balances are:

- I and II: $1-2 \beta=\alpha-\beta$ so $\alpha+\beta=1$. These two terms dominate if $\alpha-\beta<0$.
- I and III: $1-2 \beta=0$ so $\beta=1 / 2$. These terms dominate if $\alpha-\beta>0$.
- II and III: $\alpha-\beta=0$ so $\alpha=\beta$. These terms dominate if $1-2 \beta>0$ so $\beta<1 / 2$.
The scalings in the $\alpha-\beta$ plane are:

(b) The critical scaling at which all terms balance is $\alpha=\beta=1 / 2$.
(c) If we fix $\alpha=0$ then the two possible balances are between terms I and II, in which case $\beta=1$, and terms II and III, in which case $\beta=0$.
- Setting $\beta=0$ gives a regular expansion: the leading-order equation is $f_{0}\left(f_{0}^{\prime}-1\right)=0$ and since f_{0} cannot be zero (strictly order 1) we have $f_{0}^{\prime}=1$ and the solution is $f_{0}=a_{0}+x$.
- Setting $\beta=1$ we put $x=a+\varepsilon z$ and the governing equation becomes

$$
\frac{\mathrm{d}^{2} f}{\mathrm{~d} z^{2}}+f \frac{\mathrm{~d} f}{\mathrm{~d} z}-\varepsilon f=0
$$

The leading-order equation is

$$
F_{0}^{\prime \prime}+F_{0} F_{0}^{\prime}=0 \quad F_{0}^{\prime}+\frac{1}{2} F_{0}^{2}=A_{0} \quad F_{0}^{\prime}=A_{0}-\frac{1}{2} F_{0}^{2}
$$

which has three possible solutions according to the sign of A_{0} : if $A_{0}=-2 k^{2}$ then

$$
\begin{gathered}
-\int \mathrm{d} z=\int \frac{2 \mathrm{~d} F_{0}}{4 k^{2}+F_{0}^{2}}=\frac{\arctan \left(F_{0} / 2 k\right)}{k} \\
F_{0}=-2 k \tan \left[k\left(z+B_{0}\right)\right]
\end{gathered}
$$

if $A_{0}=2 k^{2}$ then

$$
\begin{gathered}
\int 2 k \mathrm{~d} z=\int \frac{4 k \mathrm{~d} F_{0}}{4 k^{2}-F_{0}^{2}}=\int \frac{4 k \mathrm{~d} F_{0}}{\left(2 k+F_{0}\right)\left(2 k-F_{0}\right)} \\
2 k\left(z+B_{0}\right)=\int\left(\frac{1}{\left(2 k+F_{0}\right)}+\frac{1}{\left(2 k-F_{0}\right)}\right) \mathrm{d} F_{0}=\ln \left|\frac{2 k+F_{0}}{2 k-F_{0}}\right|
\end{gathered}
$$

which in turn has three possible solutions:

$$
F_{0}= \pm 2 k \quad F_{0}=2 k \tanh \left[k\left(z+B_{0}\right)\right] \quad F_{0}=2 k \operatorname{coth}\left[k\left(z+B_{0}\right)\right]
$$

and finally, if $A_{0}=0$ then

$$
\int \mathrm{d} z=\int \frac{-2 \mathrm{~d} F_{0}}{F_{0}^{2}}=\frac{2}{F_{0}}-B_{0} \quad F_{0}=\frac{2}{z+B_{0}}
$$

8. $\varepsilon^{3} \frac{\mathrm{~d}^{3} f}{\mathrm{~d} x^{3}}+\varepsilon \frac{\mathrm{d}^{2} f}{\mathrm{~d} x^{2}}+\frac{\mathrm{d} f}{\mathrm{~d} x}+f=0$.

Putting $x=a+\delta X$, the terms scale as
$[\mathbf{A}] \varepsilon^{3} \delta^{-3}$
$[\mathbf{B}] \varepsilon \delta^{-2}$
$[\mathbf{C}] \delta^{-1}$
[D] 1

For very small $\delta,[\mathbf{A}]$ dominates. It is first caught by $[\mathbf{B}]$ at $\delta=\varepsilon^{2}$. [B] is overtaken by $[\mathbf{C}]$ at $\delta=\varepsilon$ and finally $[\mathbf{C}]$ is balanced by $[\mathbf{D}]$ at $\delta=1$. The three distinguished stretches are $\delta=1, \delta=\varepsilon$ and $\delta=\varepsilon^{2}$.
Using $\delta=1$, the leading-order equation is $f^{\prime}+f=0$ giving $f=b e^{-x}$.
Using $x=a+\varepsilon y$, the leading equation is $f^{\prime \prime}+f^{\prime}=0$, so $f=b e^{-y}+c$.
Using $x=a+\varepsilon^{2} z$, the leading equation is $f^{\prime \prime \prime}+f^{\prime \prime}=0$, so $f=b e^{-z}+c z+d$.
9. (a) The discriminant is $B^{2}-4 A C=t^{2}-4 x$ so the operator is hyperbolic in $t^{2}>4 x$, parabolic on the parabola $t^{2}=4 x$ and elliptic where $t^{2}<4 x$.
(b) The discriminant is $B^{2}-4 A C=4-4 x t$ so the operator is hyperbolic in $x t<1$, parabolic on the hyperbola $x t=1$ and elliptic in $x t>1$.

