Analytical Methods: Solutions 2

Lerd+22+(2—-¢)z+1=0.
Scale x ~ § and note that the ex term is always smaller than the 2x term.
Further, if 22 > 1 then 22 > 2z: if 22 < 1 then 22 < 1 so the 2z term
only dominates if two other terms balance. We are now comparing the
following terms:

A] e B] 62 ] 1.

For small §, [C] dominates. [B] catches up first at § = 1. Then [A]
catches up with [B] when €§% = 62, § = ¢~!. The distinguished scalings

arexz ~1and x ~ e~ 1,

We solve first for the regular root(s): @ = xg + ey + 29 + -+
Substiting in gives

x3 + 2z + 1 =0

exd + 2ex0x + 2z — exo = 0

352,@%351 + 2e%z010 + 252:5% + 2%z — 214 = 0
The leading order term gives zop = —1. At order € we have

—1—-2z1 4221 +1=0
which is automatically satisfied. At order £? we obtain
311 — 229 + 227 + 220 — 27 =0 221(14+21) =0

which is satisfied either by x1 = —1 or 1 = 0. In fact x = —1 is an exact
root:
e+ +(2-ez+1l=(z+1)(ex’+(1—¢e)z+1)

so no further terms are available for the other root.

Looking for the singular root, we pose: & =& tx_y +x¢ + -
and substituting gives

e, + 22, = 0
e a2 2y + 2e7tlxyme + 267w, = 0
At order e72 we obtain #_; = —1 (recall the leading = term is strictly

order 1 so 0 is not a valid solution); at order e~! we get 29 = 2. Thus the

three roots are # = —1 —2e + O(e?); x = —1;and 2 = —e~ 1 + 2+ O(e).

2 ext—x2—zx+2=0.

First we look for scalings. One of 22 or 2 is always at least as large as
so we only consider

[A] e0? B] 62 [C] 1

At small ¢ [C] is largest, and it is equalled first by [B] when 6§ = 1. For
larger 4, [A] reaches [B] when e6* = 62 i.e. § = e~ 1/2.



Look at the regular root(s) first (and assume a regular expansion):

T=x0+exy+---

gives
— x3 - 1z + 2 =0
Eﬂcg — 2ex9T1 — €£X1 = 0
At order 1 we have
24wy —2=0 (20 +2)(xg—1) =0 zo=1 or zg=—2.

If o = 1 the next order gives 1 —3x; =0sox ~ 1+ ¢/3.
If 20 = —2 the next order gives 16 + 321 =0 so z ~ —2 — 16¢/3.

Now we move on to the singular roots and the scaling suggests an expan-
sion in g'/2:
x 25_1/2x0 + 21 +51/2m2—|—-~-

Substituting gives

e lad — e la2 =0
4e7 2030y — 26V 2x02; — e V22 = 0
At leading order we have
zh— 22 =0 z3(zo+ 1) (20 —1) =0 xo=1 or xy=—1.

If 2o = 1 then the next order gives 2z; — 1 =0so x ~ e /2 + 1/2.
If xyp = —1 then the next order gives —2x1 +1=0so0 = ~ —e~ /2 4 1/2.

. ze~® = ¢. Define f(x) = xze~®. This function is positive for x > 0; zero
at both x = 0 and  — oo; and f(1) = e~! > ¢ so we expect two roots,
one in 0 < x < 1 and the other in 1 < x < .

Let us look first for the root near x = 0. We can expand the exponential:

2 3 3t

It is clear that the leading scaling is  ~ . Looking for the next order,
set x =e+ 011+

e=c+ 0z —2+ 0(5375251)
which gives 0,21 = €2 and the beginning of the expansion is

r~eted 4

The root in = > 1 depends more strongly on the exponential than on the
x term, so we try a logarithmic scaling. Let us try the values of f(z) when
x=x0ln(1/e):

o If 2y =1 then f(z) =¢cln(l/e) > e.

o If zp =2 then f(z) =2e%In(1/e) < e.



These two points bracket the root so we know the scaling is correct. We
begin our expansion

T = xoln(l/e) + 0121 + - -
and substitute it in, using L; = In (1/¢), to obtain:
e =¢e"(xoly + 0121+ -+ )exp[d1z1 + -] = xoLiexp[d1z1] + - - -

To match the powers of € we need xyg = 0; then to make the logarithm
terms work we need

51171 = —L2 51 = LQ, xr1 = —1.

in which we have used Ly = In L;.

The beginning of the expansion is

z~In(l/e)—In(In(1/e))+---

1 t pxte(t—t')
. u:—/ / F(2' t')da’ dt’.
2¢ 0 Jz—c(t—t')

The easy part is the derivatives wrt x: for ease, split the integral in two:

1 t  pxtc(t—t’) 1 t px—c(t—t')
u:—/ / F(m’,t’)dx'dt’——/ / F(2' t')da’ dt’
2c Jo Jo 2¢ Jo Jo

Then

Bu 1 t / / / K / ’ /
81‘20(/0 Fla+ct—1t),t)dt 7/0 F(xc(tt),t)dt)

Pu_ 1 /tF (x+c(t—1) t')dt’—/tF (x —c(t—t),t")dt
6$2_2C 0 ‘ 7 0 ’ ’

Partial derivatives wrt ¢ must be taken with more care, as both inner and
outer integrals have limits which depend on t:

ou 1 z+c(t—t) 1 z—c(t—t)
—==|= F(a',t)da’ — — F(2',t)da’
ot (20/0 (@', 8) dw 2¢ Jo (@) dw

+ (210 /Ot CF(z+ ot — '), ) dt! — ;c/()t(c)F(x et — 1), 1) dt’>

The first two terms here cancel and we are left with

% = ;/OtF(erc(t — ", )+ Flz —c(t—t),¢)dt
Pu 1
g = 5 Fletclt—1),t) + Flz —ct -1),1)

1 t
+§/ cFp(z+c(t —t),t") — cFy(z —c(t —t'),¢')dt’
0

Putting these together gives the required result:

Ou 4t

52~ 92 = F(z,t).



5. 0%u/ot? — e?*9%u/0x?. Here c(x) = e® so the characteristics are given by

dt

a::l:ex t=+e" 4+«

Through the point x =0, ¢t = 1, the two equations become

t=¢e* and t=2-¢".
’f  0f . of
2 a2 —ecoszf = x with f(x,0) = E(Jc,O) =0.
Set f= fo+eft+
*fh  Pfo _
ot? 0x2 -
9% f1 9% f1
€ 52 €8z2 — ecosxfyp = O

It is useful to note that the solution of the inhomogeneous wave equation
with ¢ = 1: 2 oy
g oz L@l
is
x+t— t’
f(z,t) =plz+t)+q(z—1)+ / / (', t') da’ dt/

tt/
and applying the boundary conditions f(x,0) = 9f/0t(x,0) = 0 to this

form gives
att—t/
/ / (2, t") dx’ dt’.
T—tt!

Order 1. The inhomogeneous wave equation

fo  0fo

ot? or2

p+t—t/ 1 /171 z+t—t’
/ / o de’ dt’ = 7/ [m’ﬂ dt’
T—t4t 2Jo 12 T—t+t

= /O a(t —t)dt’ = [a(tt’ — 3] = Lat®.

9fo
ot

fo(x,0) = —=(2,0) =0

has the solution

f()(fﬂ,t)

fo(z,t) = %xtg.
Order . We are solving

PhH9*h
ot? 0x?

with the same zero boundary conditions as before. The solution is

r+t— t’
/ / 2’ cos 't da’ d¢’
r—t+t’

= focosx = %x cos xt?



which becomes, after tedious but straightforward work,

fi(z,t) = $t?(zcosz — 2sinz) — zcosz + 4sinz

+ 2(z+t)cos(z+t)+ 3(xz—t)cos (z —t) — 2sin (z + t) — 2sin (z — t).

d2

7. f S + f i —f=0.

(a) Scaling the equation with f = ¢*F and = = a + €’z and dividing by
e* gives

dF

-2 8F | appdf g
dz

422
The balances are:

e landII: 1-28 = a— B so a4+ = 1. These two terms dominate

ifa—p <0.
el and II: 1 — 28 = 0 so B = 1/2. These terms dominate if
a—p>0.
e Il and III: a«—f = 0so a = 5. These terms dominate if 1—23 > 0
so /< 1/2.
The scalings in the a—f plane are:
5
A
I
II

11

(b) The critical scaling at which all terms balance is « = 8 = 1/2.

(c¢) If we fix & = 0 then the two possible balances are between terms
I and II, in which case f = 1, and terms II and III, in which case

8 =0.
e Setting 8 = 0 gives a regular expansion: the leading-order equa-
tion is fo(f) — 1) = 0 and since fy cannot be zero (strictly order
1) we have fj =1 and the solution is fo = ag + =.
e Setting 8 = 1 we put x = a + £z and the governing equation
becomes 2 f
d
=0.
dz2 + f

The leading-order equation is

F + FyFy =0 Fo+ 3F5 = Ao Fy=A0— 3F}



8.

9.

which has three possible solutions according to the sign of Ag: if
Ay = —2k? then

/ / 2dF, arctan (Fp/2k)
— [ dz = =
K2 + R k

FO = —2ktan [k(z + Bo)],
if Ay = 2k? then

/de _/ 4k dFy _/ 4k dF,
T —F T ) @kt Fo)(2k - Fy)

B 1 1 |26+ F
2k(Z+BO)_/((2k+FO)+(2k—F0)> dFo=tn

2k — Fy
which in turn has three possible solutions:

Fy =42k Fy=2ktanh[k(z + By)] Fo = 2kcoth[k(z+ Bo)];

and finally, if Ay = 0 then

_92dF, 2 P
dz = -~ _B Fo = .
/ * 2 0 0T T B

af A df
3= J R e =
¢ dx3+5dx2+dx+f 0-

Putting x = a + §.X, the terms scale as
[A] 3573 [B] 672 [C] ot D] 1

For very small §, [A] dominates. It is first caught by [B] at § = £2. [B]
is overtaken by [C] at 6 = ¢ and finally [C] is balanced by [D] at § = 1.
The three distinguished stretches are § = 1, § = € and § = 2.

Using ¢ = 1, the leading-order equation is f’ + f = 0 giving f = be™*.
Using © = a + ey, the leading equation is f” + f' =0, so f = be ¥ + c.
Using x = a+¢2z, the leading equation is "'+ f" = 0, so f = be™*+cz+d.

(a) The discriminant is B2 —4AC = t? —4x so the operator is hyperbolic

in t? > 4z, parabolic on the parabola > = 42 and elliptic where
1?2 < 4x.

(b) The discriminant is B%2 —4AC = 4 —4xt so the operator is hyperbolic
in at < 1, parabolic on the hyperbola xt = 1 and elliptic in xt > 1.



