Analytical Methods: Solutions 1

1. $\frac{1}{a \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta v_{\theta} f\right)+\frac{1}{a \sin \theta} \frac{\partial}{\partial \phi}\left(v_{\phi} f\right)+\sin ^{2} \theta \cos 2 \phi=0$ with

$$
v_{\theta}=a \sin \theta \cos \theta \cos 2 \phi, \quad v_{\phi}=-a \sin \theta \sin 2 \phi
$$

First we need to substitute the v terms in and tidy up the equation:

$$
\begin{gathered}
\frac{\cos 2 \phi}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin ^{2} \theta \cos \theta f\right)-\frac{\partial}{\partial \phi}(\sin 2 \phi f)+\sin ^{2} \theta \cos 2 \phi=0 \\
\sin \theta \cos \theta \cos 2 \phi \frac{\partial f}{\partial \theta}-\sin 2 \phi \frac{\partial f}{\partial \phi}-3 f \sin ^{2} \theta \cos 2 \phi+\sin ^{2} \theta \cos 2 \phi=0
\end{gathered}
$$

Now we look for characteristics: curves on which

$$
\sin \theta \cos \theta \cos 2 \phi \frac{\partial}{\partial \theta}-\sin 2 \phi \frac{\partial}{\partial \phi}=g(\theta, \phi) \frac{\mathrm{d}}{\mathrm{~d} r}
$$

We can decouple the equations by dividing through by $\cos 2 \phi$ to give the two parametric equations

$$
\frac{\mathrm{d} \theta}{\mathrm{~d} r}=\sin \theta \cos \theta \quad \frac{\mathrm{d} \phi}{\mathrm{~d} r}=-\frac{\sin 2 \phi}{\cos 2 \phi}
$$

The ϕ equation integrates easily:
$\int \frac{2 \cos 2 \phi}{\sin 2 \phi} \mathrm{~d} \phi=-2 \int \mathrm{~d} r \quad \ln \sin 2 \phi=-2 r+C^{\prime} \quad \sin 2 \phi=C e^{-2 r}$.
The θ equation is a little harder:

$$
\int \mathrm{d} r=\int \frac{\sin ^{2} \theta+\cos ^{2} \theta}{\sin \theta \cos \theta} \mathrm{~d} \theta=\int \frac{\cos \theta}{\sin \theta}+\frac{\sin \theta}{\cos \theta} \mathrm{d} \theta=\ln \sin \theta-\ln \cos \theta
$$

Our characteristic is given parametrically by

$$
\sin 2 \phi=C e^{-2 r}, \quad r=\ln \tan \theta, \quad \sin 2 \phi \tan ^{2} \theta=C .
$$

This curve satisfies the two equations

$$
\frac{\mathrm{d} \theta}{\mathrm{~d} r}=\sin \theta \cos \theta \quad \frac{\mathrm{d} \phi}{\mathrm{~d} r}=-\frac{\sin 2 \phi}{\cos 2 \phi}
$$

and so our original PDE becomes

$$
\begin{gathered}
\cos 2 \phi \frac{\mathrm{~d} \theta}{\mathrm{~d} r} \frac{\partial f}{\partial \theta}+\cos 2 \phi \frac{\mathrm{~d} \phi}{\mathrm{~d} r} \frac{\partial f}{\partial \phi}-3 f \sin ^{2} \theta \cos 2 \phi+\sin ^{2} \theta \cos 2 \phi=0 \\
\frac{\mathrm{~d} f}{\mathrm{~d} r}-3 f \sin ^{2} \theta+\sin ^{2} \theta=0
\end{gathered}
$$

We need to substitute $\sin ^{2} \theta$ in terms of r before solving:

$$
\tan \theta=e^{r} \quad \tan ^{2} \theta=e^{2 r} \quad \cos ^{2} \theta=\frac{1}{\left(1+e^{2 r}\right)} \quad \sin ^{2} \theta=\frac{e^{2 r}}{\left(1+e^{2 r}\right)}
$$

$$
\left(1+e^{2 r}\right) \frac{\mathrm{d} f}{\mathrm{~d} r}-3 e^{2 r} f+e^{2 r}=0
$$

This ODE has general solution

$$
f=F(C)\left(1+e^{2 r}\right)^{3 / 2}+\frac{1}{3}
$$

Finally we need to return to the original variables θ and ϕ, eliminating C and r from the solution. We already know $r=\ln \tan \theta$ and $C=$ $\sin 2 \phi \tan ^{2} \theta$ so the final solution is

$$
f=F\left(\sin 2 \phi \tan ^{2} \theta\right) \sec ^{3} \theta+\frac{1}{3}
$$

2. $\frac{\partial u}{\partial t}+u^{2} \frac{\partial u}{\partial x}=0$.

This is a nonlinear first-order PDE. We look for characteristics of the form

$$
x=x(r) \quad t=t(r) \quad \text { along which } \quad \frac{\mathrm{d} u}{\mathrm{~d} r}=0
$$

We look at the equation

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=u^{2}
$$

for constant u, and see the curve family

$$
x=u^{2} r+x_{0} \quad t=r
$$

On each of these u is a constant, so u depends only on x_{0} and not on r :

$$
u=F\left(x_{0}\right)
$$

We can rearrange the characteristic curve as $x_{0}=x-u^{2} t$ and thus the general implicit solution is

$$
u=F\left(x-u^{2} t\right)
$$

Now we want to apply the initial conditions: $u(x, 0)=\sqrt{x}$ gives

$$
\sqrt{x}=F(x) \quad u=\sqrt{\left(x-u^{2} t\right)}
$$

The boundary condition $u(0, t)=0$ is now automatically satisfied.
We can rearrange our implicit solution to make it explicit:

$$
u=\sqrt{\left(x-u^{2} t\right)} \quad u^{2}=x-u^{2} t \quad u^{2}(1+t)=x \quad u(x, t)=\sqrt{\frac{x}{(1+t)}}
$$

3. $y^{\prime \prime}+2 \varepsilon y^{\prime}+\left(1+\varepsilon^{2}\right) y=1$, with $y(0)=0$ and $y(\pi / 2)=0$.

Put $y=y_{0}+\varepsilon y_{1}+\varepsilon^{2} y_{2}$:

$$
\begin{aligned}
y_{0}^{\prime \prime} & +y_{0} & =1 \\
\varepsilon y_{1}^{\prime \prime}+2 \varepsilon y_{0}^{\prime} & +\varepsilon y_{1} & =0 \\
\varepsilon^{2} y_{2}^{\prime \prime}+2 \varepsilon^{2} y_{1}^{\prime} & +\varepsilon^{2} y_{2}+\varepsilon^{2} y_{0} & =0
\end{aligned}
$$

Leading order: $y_{0}^{\prime \prime}+y=1$ gives $y_{0}=1+A_{0} \cos x+B_{1} \sin x$.
Boundary conditions: $A_{0}=-1, B_{1}=-1$. The leading-order solution is

$$
y_{0}=1-\cos x-\sin x .
$$

Order $\varepsilon: y_{1}^{\prime \prime}+2 y_{0}^{\prime}+y_{1}=0$ becomes $y_{1}^{\prime \prime}+y_{1}=-2 \sin x+2 \cos x$.
The general solution is $y_{1}=x \sin x+x \cos x+A_{1} \cos x+B_{1} \sin x$ and applying the boundary conditions gives $A_{1}=0$ and $B_{1}=-\pi / 2$:

$$
y_{1}=(x-\pi / 2) \sin x+x \cos x
$$

Order $\varepsilon^{2}: y_{2}^{\prime \prime}+2 y_{1}^{\prime}+y_{2}+y_{0}=0$ becomes

$$
y_{2}^{\prime \prime}+y_{2}=-\sin x-(1-\pi) \cos x-2 x \cos x+2 x \sin x-1 .
$$

After a little more work we obtain the general solution
$y_{2}=(\pi / 2) x \sin x-1-(1 / 2) x^{2} \sin x-(1 / 2) x^{2} \cos x+A_{2} \cos x+B_{2} \sin x$.
Applying the boundary conditions fixes $A_{2}=1$ and $B_{2}=1-\pi^{2} / 8$, so $y_{2}=(\pi / 2) x \sin x-1-(1 / 2) x^{2} \sin x-(1 / 2) x^{2} \cos x+\cos x+\left(1-\pi^{2} / 8\right) \sin x$.

The first three terms of the solution are

$$
\begin{aligned}
& y=1-\cos x-\sin x+\varepsilon[(x-\pi / 2) \sin x+x \cos x] \\
& \quad-\varepsilon^{2}\left[1+\left(x^{2} / 2-\pi x / 2-1+\pi^{2} / 8\right) \sin x+\left(x^{2} / 2-1\right) \cos x\right]
\end{aligned}
$$

4. $I=\int_{0}^{\varepsilon} \frac{\mathrm{d} x}{\left(\varepsilon^{2}-x^{2}+\cos \varepsilon-\cos x\right)^{1 / 2}}$.

Make a change of variables $x=\varepsilon z$ to give

$$
I=\int_{0}^{1} \frac{\varepsilon \mathrm{~d} z}{\left(\varepsilon^{2}-\varepsilon^{2} z^{2}+\cos \varepsilon-\cos (\varepsilon z)\right)^{1 / 2}}
$$

and now expand the cosine terms, keeping terms up to order ε^{4} (the " 1 " terms cancel):

$$
\begin{aligned}
I & =\int_{0}^{1} \frac{\varepsilon \mathrm{~d} z}{\left(\varepsilon^{2}-\varepsilon^{2} z^{2}-\frac{1}{2} \varepsilon^{2}+\varepsilon^{4} / 24-\left[-\frac{1}{2} \varepsilon^{2} z^{2}+\varepsilon^{4} z^{4} / 24\right]+O\left(\varepsilon^{6}\right)\right)^{1 / 2}} \\
& =\int_{0}^{1} \frac{\mathrm{~d} z}{\left(1-z^{2}-1 / 2+\varepsilon^{2} / 24+z^{2} / 2-\varepsilon^{2} z^{4} / 24+O\left(\varepsilon^{4}\right)\right)^{1 / 2}} \\
& =\int_{0}^{1} \frac{\sqrt{2} \mathrm{~d} z}{\left(1-z^{2}+\varepsilon^{2}\left(1-z^{4}\right) / 12+O\left(\varepsilon^{4}\right)\right)^{1 / 2}} \\
& =\int_{0}^{1} \frac{\sqrt{2} \mathrm{~d} z}{\left(1-z^{2}\right)^{1 / 2}\left(1+\varepsilon^{2}\left(1+z^{2}\right) / 12+O\left(\varepsilon^{4}\right)\right)^{1 / 2}}
\end{aligned}
$$

Now we can expand the bracket $\left(1+\varepsilon^{2}\left(1+z^{2}\right) / 12+O\left(\varepsilon^{4}\right)\right)^{-1 / 2}$:

$$
\begin{aligned}
I & =\int_{0}^{1} \frac{\sqrt{2} \mathrm{~d} z}{\left(1-z^{2}\right)^{1 / 2}}\left(1+\varepsilon^{2}\left(1+z^{2}\right) / 12+O\left(\varepsilon^{4}\right)\right)^{-1 / 2} \\
& =\int_{0}^{1} \frac{\sqrt{2} \mathrm{~d} z}{\left(1-z^{2}\right)^{1 / 2}}\left(1-\varepsilon^{2}\left(1+z^{2}\right) / 24+O\left(\varepsilon^{4}\right)\right)
\end{aligned}
$$

From here to the end is just calculus: substitute $z=\sin \theta$ and after some manipulation we obtain:

$$
I=\frac{\pi}{\sqrt{2}}\left(1-\frac{\varepsilon^{2}}{16}+O\left(\varepsilon^{4}\right)\right)
$$

5. $u_{t}+u u_{x}=0$.

We scale $s=\varepsilon^{a} t, z=\varepsilon^{b} x$ and $v=\varepsilon^{c} u$. The equation becomes

$$
\varepsilon^{a-c} v_{s}+\varepsilon^{b-2 c} v v_{z}=0
$$

so we have a balance if $c=b-a$. Then since the quantities

$$
t^{-b / a} x \quad t^{-c / a} u=t^{(a-b) / a} u
$$

are invariant, we can pose a solution (with $b=m a$)

$$
u=t^{(b-a) / a} f(\xi)=t^{m-1} f(\xi) \quad \xi=t^{-b / a} x=t^{-m} x
$$

The resultant ODE is

$$
[f(\xi)-m \xi] f^{\prime}(\xi)+(m-1) f(\xi)=0
$$

If we are given the inital condition

$$
u(x, 1)=\frac{x+\left(x^{2}-1\right)^{1 / 2}}{2}
$$

then that fixes the function

$$
f(\xi)=\frac{\xi+\left(\xi^{2}-1\right)^{1 / 2}}{2}
$$

and we determine m from the ODE: $m=1 / 2$. Then our solution is

$$
u=t^{-1 / 2}\left(\frac{x t^{-1 / 2}+\left(x^{2} t^{-1}-1\right)^{1 / 2}}{2}\right)=\frac{x / t+\left[(x / t)^{2}-t^{-1}\right]^{1 / 2}}{2}
$$

Using the method of characteristics, the characteristic curves are given by

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=u \quad t=r+1 \quad x=u r+x_{0}
$$

with implicit solution

$$
u=F(x+u-u t)
$$

The initial condition

$$
u(x, 1)=\frac{x+\left(x^{2}-1\right)^{1 / 2}}{2} \text { gives } F(x)=\frac{x+\left(x^{2}-1\right)^{1 / 2}}{2}
$$

with implicit solution

$$
2 u=(x+u-u t)+\left((x+u-u t)^{2}-1\right)^{1 / 2}
$$

which rearranges to

$$
-4 t u^{2}+4 x u-1=0 \quad u=\frac{x \pm \sqrt{x^{2}-t}}{2 t} .
$$

Taking the positive root in order to match the initial condition, we obtain the same solution as before:

$$
u=\frac{x+\sqrt{x^{2}-t}}{2 t}=\frac{x / t+\left[(x / t)^{2}-t^{-1}\right]^{1 / 2}}{2}
$$

