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1.
1

a sin θ

∂

∂θ
(sin θvθf) +

1

a sin θ

∂

∂φ
(vφf) + sin2 θ cos 2φ = 0 with

vθ = a sin θ cos θ cos 2φ, vφ = −a sin θ sin 2φ.

First we need to substitute the v terms in and tidy up the equation:

cos 2φ

sin θ

∂

∂θ
(sin2 θ cos θf)− ∂

∂φ
(sin 2φf) + sin2 θ cos 2φ = 0

sin θ cos θ cos 2φ
∂f

∂θ
− sin 2φ

∂f

∂φ
− 3f sin2 θ cos 2φ+ sin2 θ cos 2φ = 0

Now we look for characteristics: curves on which

sin θ cos θ cos 2φ
∂

∂θ
− sin 2φ

∂

∂φ
= g(θ, φ)

d

dr

We can decouple the equations by dividing through by cos 2φ to give the
two parametric equations

dθ

dr
= sin θ cos θ

dφ

dr
= − sin 2φ

cos 2φ

The φ equation integrates easily:∫
2 cos 2φ

sin 2φ
dφ = −2

∫
dr ln sin 2φ = −2r + C ′ sin 2φ = Ce−2r.

The θ equation is a little harder:∫
dr =

∫
sin2 θ + cos2 θ

sin θ cos θ
dθ =

∫
cos θ

sin θ
+

sin θ

cos θ
dθ = ln sin θ − ln cos θ

Our characteristic is given parametrically by

sin 2φ = Ce−2r, r = ln tan θ, sin 2φ tan2 θ = C.

This curve satisfies the two equations

dθ

dr
= sin θ cos θ

dφ

dr
= − sin 2φ

cos 2φ

and so our original PDE becomes

cos 2φ
dθ

dr

∂f

∂θ
+ cos 2φ

dφ

dr

∂f

∂φ
− 3f sin2 θ cos 2φ+ sin2 θ cos 2φ = 0

df

dr
− 3f sin2 θ + sin2 θ = 0

We need to substitute sin2 θ in terms of r before solving:

tan θ = er tan2 θ = e2r cos2 θ =
1

(1 + e2r)
sin2 θ =

e2r

(1 + e2r)



(1 + e2r)
df

dr
− 3e2rf + e2r = 0

This ODE has general solution

f = F (C)(1 + e2r)3/2 +
1

3

Finally we need to return to the original variables θ and φ, eliminating
C and r from the solution. We already know r = ln tan θ and C =
sin 2φ tan2 θ so the final solution is

f = F (sin 2φ tan2 θ) sec3 θ +
1

3
.

2.
∂u

∂t
+ u2 ∂u

∂x
= 0.

This is a nonlinear first-order PDE. We look for characteristics of the form

x = x(r) t = t(r) along which
du

dr
= 0.

We look at the equation
dx

dt
= u2

for constant u, and see the curve family

x = u2r + x0 t = r.

On each of these u is a constant, so u depends only on x0 and not on r:

u = F (x0).

We can rearrange the characteristic curve as x0 = x − u2t and thus the
general implicit solution is

u = F (x− u2t).

Now we want to apply the initial conditions: u(x, 0) =
√
x gives

√
x = F (x) u =

√
(x− u2t).

The boundary condition u(0, t) = 0 is now automatically satisfied.

We can rearrange our implicit solution to make it explicit:

u =
√
(x− u2t) u2 = x− u2t u2(1 + t) = x u(x, t) =

√
x

(1 + t)
.

3. y′′ + 2εy′ + (1 + ε2)y = 1, with y(0) = 0 and y(π/2) = 0.

Put y = y0 + εy1 + ε2y2:

y′′0 + y0 = 1
εy′′1 + 2εy′0 + εy1 = 0
ε2y′′2 + 2ε2y′1 + ε2y2 + ε2y0 = 0



Leading order: y′′0 + y = 1 gives y0 = 1 +A0 cosx+B1 sinx.
Boundary conditions: A0 = −1, B1 = −1. The leading-order solution is

y0 = 1− cosx− sinx.

Order ε: y′′1 + 2y′0 + y1 = 0 becomes y′′1 + y1 = −2 sinx+ 2 cosx.
The general solution is y1 = x sinx + x cosx + A1 cosx + B1 sinx and
applying the boundary conditions gives A1 = 0 and B1 = −π/2:

y1 = (x− π/2) sinx+ x cosx.

Order ε2: y′′2 + 2y′1 + y2 + y0 = 0 becomes

y′′2 + y2 = − sinx− (1− π) cosx− 2x cosx+ 2x sinx− 1.

After a little more work we obtain the general solution

y2 = (π/2)x sinx− 1− (1/2)x2 sinx− (1/2)x2 cosx+A2 cosx+B2 sinx.

Applying the boundary conditions fixes A2 = 1 and B2 = 1− π2/8, so

y2 = (π/2)x sinx−1−(1/2)x2 sinx−(1/2)x2 cosx+cosx+(1−π2/8) sinx.

The first three terms of the solution are

y = 1− cosx− sinx+ ε[(x− π/2) sinx+ x cosx]

− ε2[1 + (x2/2− πx/2− 1 + π2/8) sinx+ (x2/2− 1) cosx].

4. I =

∫ ε

0

dx

(ε2 − x2 + cos ε− cosx)1/2
.

Make a change of variables x = εz to give

I =

∫ 1

0

ε dz

(ε2 − ε2z2 + cos ε− cos (εz))1/2

and now expand the cosine terms, keeping terms up to order ε4 (the “1”
terms cancel):

I =

∫ 1

0

εdz

(ε2 − ε2z2 − 1
2ε

2 + ε4/24− [−1
2ε

2z2 + ε4z4/24] +O(ε6))1/2

=

∫ 1

0

dz

(1− z2 − 1/2 + ε2/24 + z2/2− ε2z4/24 +O(ε4))1/2

=

∫ 1

0

√
2 dz

(1− z2 + ε2(1− z4)/12 +O(ε4))1/2

=

∫ 1

0

√
2 dz

(1− z2)1/2(1 + ε2(1 + z2)/12 +O(ε4))1/2

Now we can expand the bracket (1 + ε2(1 + z2)/12 +O(ε4))−1/2:

I =

∫ 1

0

√
2 dz

(1− z2)1/2
(1 + ε2(1 + z2)/12 +O(ε4))−1/2

=

∫ 1

0

√
2 dz

(1− z2)1/2
(1− ε2(1 + z2)/24 +O(ε4))



From here to the end is just calculus: substitute z = sin θ and after some
manipulation we obtain:

I =
π√
2

(
1− ε2

16
+O(ε4)

)
.

5. ut + uux = 0.

We scale s = εat, z = εbx and v = εcu. The equation becomes

εa−cvs + εb−2cvvz = 0,

so we have a balance if c = b− a. Then since the quantities

t−b/ax t−c/au = t(a−b)/au

are invariant, we can pose a solution (with b = ma)

u = t(b−a)/af(ξ) = tm−1f(ξ) ξ = t−b/ax = t−mx.

The resultant ODE is

[f(ξ)−mξ]f ′(ξ) + (m− 1)f(ξ) = 0.

If we are given the inital condition

u(x, 1) =
x+ (x2 − 1)1/2

2

then that fixes the function

f(ξ) =
ξ + (ξ2 − 1)1/2

2

and we determine m from the ODE: m = 1/2. Then our solution is

u = t−1/2

(
xt−1/2 + (x2t−1 − 1)1/2

2

)
=

x/t+ [(x/t)2 − t−1]1/2

2
.

Using the method of characteristics, the characteristic curves are given by

dx

dt
= u t = r + 1 x = ur + x0.

with implicit solution
u = F (x+ u− ut).

The initial condition

u(x, 1) =
x+ (x2 − 1)1/2

2
gives F (x) =

x+ (x2 − 1)1/2

2

with implicit solution

2u = (x+ u− ut) + ((x+ u− ut)2 − 1)1/2

which rearranges to

−4tu2 + 4xu− 1 = 0 u =
x±

√
x2 − t

2t
.

Taking the positive root in order to match the initial condition, we obtain
the same solution as before:

u =
x+

√
x2 − t

2t
=

x/t+ [(x/t)2 − t−1]1/2

2
.


