Analytical Methods: Exercises 2

1. Find the distinguished scalings, and the first two terms in the expansion of each root, for the following equation:

$$
\varepsilon x^{3}+x^{2}+(2-\varepsilon) x+1=0
$$

2. Find the first two terms of all four roots of $\varepsilon x^{4}-x^{2}-x+2=0$.
3. Work out the first two terms in an expansion of each solution to $x e^{-x}=\varepsilon$.
4. Verify that the function

$$
u=\frac{1}{2 c} \int_{0}^{t} \int_{x-c\left(t-t^{\prime}\right)}^{x+c\left(t-t^{\prime}\right)} F\left(x^{\prime}, t^{\prime}\right) \mathrm{d} x^{\prime} \mathrm{d} t^{\prime}
$$

satisfies the inhomogeneous wave equation $u_{t t}-c^{2} u_{x x}=F(x, t)$.
5. [Weinberger p.40] Find the characteristics through $(0,1)$ for the equation

$$
\frac{\partial^{2} u}{\partial t^{2}}-e^{2 x} \frac{\partial^{2} u}{\partial x^{2}}=0
$$

6. Find two terms of a regular perturbation expansion for $f(x, t)$ in:

$$
\frac{\partial^{2} f}{\partial t^{2}}-\frac{\partial^{2} f}{\partial x^{2}}-\varepsilon \cos x f=x
$$

with boundary conditions $f(x, 0)=\partial f / \partial t(x, 0)=0$. This particular problem can be solved in the same way even if $\varepsilon=1$: this is the method of successive approximations. [Ref: Weinberger p. 384.]
7. $\varepsilon \frac{\mathrm{d}^{2} f}{\mathrm{~d} x^{2}}+f \frac{\mathrm{~d} f}{\mathrm{~d} x}-f=0$.
(a) Find the scalings $f=\varepsilon^{\alpha} F$ and stretches $x=a+\varepsilon^{\beta} z$ at which two dominant terms balance, and sketch these scalings in the $\alpha-\beta$ plane.
(b) Hence determine the critical α and β for all three terms to balance.
(c) Give also the possible values of β if the boundary conditions fix $\alpha=0$. Find the leading term in an expansion for f in each case.
8. Find the distinguished stretches, and the leading term of each solution:

$$
\varepsilon^{3} \frac{\mathrm{~d}^{3} f}{\mathrm{~d} x^{3}}+\varepsilon \frac{\mathrm{d}^{2} f}{\mathrm{~d} x^{2}}+\frac{\mathrm{d} f}{\mathrm{~d} x}+f=0
$$

9. [Weinberger] Find where the following operators are hyperbolic, parabolic, and elliptic:
(a) $\frac{\partial^{2} u}{\partial t^{2}}+t \frac{\partial^{2} u}{\partial x \partial t}+x \frac{\partial^{2} u}{\partial x^{2}}$
(b) $t \frac{\partial^{2} u}{\partial t^{2}}+2 \frac{\partial^{2} u}{\partial x \partial t}+x \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial u}{\partial x}$.

Answers

1. Scalings $x \sim 1$ and $x \sim \varepsilon^{-1}$; roots $x=-1-2 \varepsilon+O\left(\varepsilon^{2}\right), x=-\varepsilon^{-1}+2+O(\varepsilon)$, $x=-1$ (exact solution, no further terms).
2. $x \sim 1+\varepsilon / 3 ; x \sim-2-16 \varepsilon / 3 ; x \sim \varepsilon^{-1 / 2}+1 / 2 ; x \sim-\varepsilon^{-1 / 2}+1 / 2$.
3. $x e^{-x}=\varepsilon$. There are two roots: $x \sim \varepsilon+\varepsilon^{2}$ and $x \sim \ln (1 / \varepsilon)-\ln (\ln (1 / \varepsilon))$.
4. $t=e^{x}$ and $t=2-e^{x}$.
5. $f(x, t)=\frac{1}{2} x t^{2}+\varepsilon\left[\frac{1}{2} t^{2}(x \cos x-2 \sin x)-x \cos x+4 \sin x\right.$ $\left.+\frac{1}{2}(x+t) \cos (x+t)+\frac{1}{2}(x-t) \cos (x-t)-2 \sin (x+t)-2 \sin (x-t)\right]$
6. (a) $\alpha+\beta=1, \alpha<\beta ; \beta=1 / 2, \alpha>\beta ; \alpha=\beta, \beta<1 / 2$. (b) $\alpha=\beta=1 / 2$.
(c) $\beta=0: f_{0}=a+x . \beta=1$: any of $F_{0}=$ constant, $F_{0}=2(z+b)^{-1}$, $F_{0}=-2 k \tan [k(z+b)], 2 k \tanh [k(z+b)]$, or $2 k \operatorname{coth}[k(z+b)]$.
7. $1, \varepsilon, \varepsilon^{2} . f=b e^{-x} ; f=b e^{-(x-a) / \varepsilon}+c ; f=b e^{-(x-a) / \varepsilon^{2}}+c(x-a) / \varepsilon^{2}+d$.
8. (a) $\mathrm{H} t^{2}>4 x$; $\mathrm{P} t^{2}=4 x$; $\mathrm{E} t^{2}<4 x$. (b) $\mathrm{H} x t<1$; $\mathrm{P} x t=1$; $\mathrm{E} x t>1$.
