Analytical Methods: Exercises 1

1. Find the general solution to the PDE for $f(\theta, \phi)$:

$$
\frac{1}{a \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta v_{\theta} f\right)+\frac{1}{a \sin \theta} \frac{\partial}{\partial \phi}\left(v_{\phi} f\right)+\sin ^{2} \theta \cos 2 \phi=0
$$

in which

$$
\begin{aligned}
v_{\theta} & =a \sin \theta \cos \theta \cos 2 \phi \\
v_{\phi} & =-a \sin \theta \sin 2 \phi
\end{aligned}
$$

2. Consider the problem

$$
\frac{\partial u}{\partial t}+u^{2} \frac{\partial u}{\partial x}=0
$$

in $x \geq 0, t \geq 0$, with initial and boundary conditions

$$
u(x, 0)=\sqrt{x} \quad u(0, t)=0
$$

Find the general solution implicitly and hence the specific solution in this case.
3. Try a regular perturbation expansion in the following differential equation:

$$
y^{\prime \prime}+2 \varepsilon y^{\prime}+\left(1+\varepsilon^{2}\right) y=1, \quad y(0)=0, \quad y(\pi / 2)=0
$$

Calculate the first three terms, that is, up to order ε^{2}. Apply the boundary conditions at each order.
4. Calculate the first two nonzero terms of a regular expansion in ε for the following integral:

$$
I=\int_{0}^{\varepsilon} \frac{\mathrm{d} x}{\left(\varepsilon^{2}-x^{2}+\cos \varepsilon-\cos x\right)^{1 / 2}}
$$

[Hint: you will need to keep terms of order ε^{4} initially.]
5. Try a dilation transformation on the Burger's equation: $u_{t}+u u_{x}=0$.

Find the specific solution for initial conditions

$$
u(x, 1)=\frac{x+\left(x^{2}-1\right)^{1 / 2}}{2}
$$

and show it matches that obtained by the method of characteristics.

Answers

1. $f(\theta, \phi)=F\left(\sin 2 \phi \tan ^{2} \theta\right) \sec ^{3} \theta+\frac{1}{3}$.
2. Implicit solution $u=F\left(x-u^{2} t\right)$, particular solution $u(x, t)=\sqrt{\frac{x}{(1+t)}}$.
3.

$$
\begin{aligned}
y=1- & \cos x-\sin x+\varepsilon[(x-\pi / 2) \sin x+x \cos x] \\
& \quad-\varepsilon^{2}\left[1+\left(x^{2} / 2-\pi x / 2-1+\pi^{2} / 8\right) \sin x+\left(x^{2} / 2-1\right) \cos x\right]
\end{aligned}
$$

4. $I=\frac{\pi}{\sqrt{2}}\left(1-\frac{\varepsilon^{2}}{16}+O\left(\varepsilon^{4}\right)\right)$.
5. $u=t^{m-1} f(\xi)$ with $\xi=t^{-m} x$ and $(f(\xi)-m \xi) f^{\prime}(\xi)+(m-1) f(\xi)=0$.

Specific solution $u=\left(x / t+\left[(x / t)^{2}-t^{-1}\right]^{1 / 2}\right) / 2$.

